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ABSTRACT
Solid results from Transformers have made them prevailing archi-

tectures in various natural language and vision tasks. As a default

component in Transformers, Layer Normalization (LN) normalizes

activations within each token to boost the robustness. However,

LN requires on-the-fly statistics calculation in inference as well as

division and square root operations, leading to inefficiency on hard-

ware. What is more, replacing LN with other hardware-efficient

normalization schemes (e.g., Batch Normalization) results in in-

ferior performance, even collapse in training. We find that this

dilemma is caused by abnormal behaviors of activation statistics,

including large fluctuations over iterations and extreme outliers

across layers. To tackle these issues, we propose Unified Normal-

ization (UN), which can speed up the inference by being fused

with other linear operations and achieve comparable performance

on par with LN. UN strives to boost performance by calibrating

the activation and gradient statistics with a tailored fluctuation

smoothing strategy. Meanwhile, an adaptive outlier filtration strat-

egy is applied to avoid collapse in training whose effectiveness

is theoretically proved and experimentally verified in this paper.

We demonstrate that UN can be an efficient drop-in alternative

to LN by conducting extensive experiments on language and vi-

sion tasks. Besides, we evaluate the efficiency of our method on

GPU. Transformers equipped with UN enjoy about 31% inference
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speedup and nearly 18% memory reduction. Code will be released

at https://github.com/hikvision-research/Unified-Normalization.
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1 INTRODUCTION
Transformers [38] are initially introduced for Natural Language

Processing (NLP) tasks [10, 28]. Since Transformers make few as-

sumptions about the structural bias of input data, these architec-

tures can be universally and flexibly applied in other scenarios,

such as multi-modal and speech tasks [20, 40]. The basic modules

of Transformers are stackable multi-head self-attention (MHSA)

and feed-forward network (FFN) that enable the capture of long-

term dependencies between tokens. In these basic modules, Layer

Normalization (LN) [2] is chosen as a default component that re-

leases the training process from heavy dependency on mini-batch

samples to handle variable-length input. However, LN requires

additional computation and memory overheads during inference

because of the on-the-fly statistics, as well as division and square

root operations. LN thus is inefficient and hardly meets industrial

needs [34, 45]. Nevertheless, replacing LN with Batch Normaliza-

tion (BN) [19] leads to inferior performance in NLP tasks [35]. Shen

et al. [35] show that the large fluctuations in Transformers within
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Figure 1: Performance comparison on Transformer
(IWSLT14), T2T-ViT-14 (ImageNet), and Swin-T (COCO)
during training. The offline methods that could be fused
into other linear operations in inference are all plotted with
a solid line. PN originally comes with a layer-scale layer,
which is removed in PN∗.

activation statistics result in poor performance. Recently, Trans-

formers are broadly proliferated to Computer Vision (CV) tasks

that have led to a series of breakthroughs in image classification,

object detection, instance segmentation, etc., also known as Vision

Transformers (ViTs) [4, 7, 12–14, 26, 36, 48, 49]. LN is directly in-

herited from the original Transformer as an essential component

in these ViTs despite the fixed-length inputs. Similar to NLP tasks,

significant performance degradation (even collapse in training) will

also be triggered by replacing LN with BN in Transformers in CV

tasks [6, 33, 46]. Shao et al. [33] hold the view that BN is harm-

ful to ViTs that result in performance degradation. In previous

works [6, 46], the authors claim that replacing all LN with BN in

ViTs leads to convergence problems. Since the naive replacement

for LN leads to inferior performance and instability, the deploy-

ment of Transformers still suffers from the on-the-fly statistics

computation.

There are two main methods to improve the hardware efficiency

of normalization in Transformers. 1) Simplifying the computation

of online statistics [35, 50] and removing inefficient operations (e.g.,

square root) [23]. Although the performance is maintained, the

dynamic calculation for online statistics still exists. 2) Removing

the computation for online statistics that utilizes fixed statistics

during inference as an offline method, such as BN [19]. In this way,

inference can be sped up by circumventing the redundant statistics

computation getting rid of division and square root operations. As

there is no free lunch, significant performance drop and conver-

gence problems are reported in these works [35, 45, 46]. MABN [45]

and PN [35] utilize moving average strategies to mitigate the fluc-

tuations in Transformers in NLP tasks. However, these mentioned

methods are task-specific where the inferior performance and in-

stability still exist in ViTs.

To address the issues above, we dissect the abnormal behaviors

of statistics in Transformers. We investigate the activation statistics

under moving average strategies in the training of Transformers.

We uncover that the fluctuations of the activation statistics are more

drastic than that of the gradient statistics during training. Moreover,

we find the range of activation statistics task-agnostically keeps

increasing along with both the depth and the progress of training,

in which the risk of outliers arises. In this sense, extreme outliers

are nearly inevitable and continually deteriorate the consistency

between activation and gradient statistics. These observations il-

lustrate that the inferior performance and instability (shown in

Figure 1) are very like boil down to abnormal behaviors of activa-

tion statistics in Transformers.

In this paper, we aim to replace LN with an offline method to

promote applications for Transformers in language and vision tasks.

We propose Unified Normalization (UN) to accelerate inference

in Transformers and achieve comparable performance with LN.

Specifically, we design a tailored fluctuation smoothing strategy

to deal with the fluctuations of different degree in activation and

gradient statistics. At the same time, an adaptive outlier filtration

strategy is introduced to ensure stable convergence, where the

impact of outliers can be proved to be significantly reduced both in

theory and experiments. Extensive experiments demonstrate the

effectiveness of UN. In a nutshell, our contributions are as follows:

• We analyze the abnormal behaviors of activation statistics

in Transformers and find the large fluctuations and extreme

outliers are responsible for inferior performance and insta-

bility.

• A tailored fluctuation smoothing strategy is designed to

calibrate the activation and gradient statistics and boost the

performance.

• An adaptive outlier filtration strategy is introduced to reduce

the impact of extreme outliers on the basis of theoretical

analysis.

• Extensive evaluations in neural machine translation, image

classification, object detection, and instance segmentation

illustrate the superiority of our method, which is capable

of being a drop-in alternative to LN in Transformers. Fur-

thermore, we show that Transformers equipped with UN

gain nearly 18% memory reduction and over 31% speedup

in inference on GPU.

2 RELATEDWORK
2.1 Transformers and Vision Transformers
Transformers [38] initially show surprising capability in sequence

modeling and neural machine translation. Owing to the high flex-

ibility, Transformers [3, 10, 15, 47] have become the most recent

dominant architectures over various NLP tasks and speech tasks.

In 2020, Carion et al. [4] propose the first end-to-end Transformer-

based detector DETR. Later, ViT [13] is proposed as the very first

pure Transformer in CV tasks. The following years have witnessed

explosive development of Transformers in CV tasks. T2T [49] in-

troduces token-to-token module that combines adjacent tokens in

early stage to model local information. Swin [26] and Swin V2 [25]

have applied window-based attention to reduce the overhead of

computation in MHSA and achieve state-of-the-art performance.
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Figure 2: Normalization methods. Each subfigure shows a
feature map tensor, where B is the batch axis, N is the num-
ber of tokens (or the sequence length) axis, andC is the chan-
nel (also known as the embedding size) axis.

Most recently, Ding et al. [11] explore attention in both spatial and

channel tokens to propose a powerful backbone DaViT for vision

tasks. In these aforementioned Transformers and Vision Transform-

ers, LN is the preferred choice for normalization.

In addition, some works [7, 14, 18] originally build Transformers

with BN, whilst these works need elaborate design on convolutional

operations to stabilize training that have considerably modified the

original ViT [13].

2.2 Normalization Methods
Normalization is widely used for stabilizing training and boosting

performance in deep neural networks [17]. As illustrated in Figure 2,

related normalization methods could be categorized into online

methods and offline methods according to whether the inference

statistics can be fused or not.

2.2.1 Online Methods. Online methods require the calculation of

on-the-fly statistics during training as well as inference. IN [37],

GN [41], and LN [2] are representative onlinemethods that calculate

statistics in different dimensions as shown in Figure 2. Switchable

Normalization [27] learns to switch between different types of

normalization by learning their importance weights. It is widely

believed that LN is customized for variable-length NLP samples [35].

With the rise of Vision Transformers (ViTs) [13, 26, 39, 49], LN has

also become a preferred choice for CV tasks. Lately, DTN [33]

exploits the connection within adjacent tokens to improve the

performance of LN in ViTs. To make LN more hardware-efficient,

some works [23, 44, 50] attempt to reduce the cost of computation

in LN. Zhang et al. [50] propose a simpler method RMSNorm that

scales inputs by the root mean square. However, the inefficient

dynamic calculation for online statistics is still not fundamentally

removed.

2.2.2 Offline Methods. Offline methods use estimated inference

statistics that could be frozen for arbitrary inputs. Only a point-wise

add and multiplication are required during inference that enables

the fusion of offline methods with adjacent linear operations. In

this way, offline methods can be removed entirely from models

and achieve efficient inference [45, 46]. However, once these meth-

ods cooperate with Transformers, large fluctuations over iterations

will lead to performance degradation and even collapse in train-

ing [6, 33, 35, 46]. Yao et al. [46] find Transformers trained with

Algorithm 1 Fusing Normalization

Input: 𝛾, 𝛽, 𝜇, 𝜎2 ∈ R𝐶 // in Equation 1

W ∈ R𝐶out×𝐶 , 𝑏 ∈ R𝐶out // parameters in the subsequent layer

Output: W′ ∈ R𝐶out×𝐶 , 𝑏 ′ ∈ R𝐶out // fused parameters

1: 𝛾 = 𝛾/𝜎
2: 𝛽 = 𝛽 − 𝛾 · 𝜇
3: 𝑏 ′ = 𝑏 +W × 𝛽 // 𝑦 = W(𝑁𝑜𝑟𝑚(𝑥)) + 𝑏 is equivalent to

4: W′ = W · (1𝐶out
× 𝛾𝑇 ) // 𝑦 = W′𝑥 + 𝑏 ′

BN are very unstable and crash irregularly. Chen et al. [6] attempt

to partially replace LN with BN in FFN for stabilizing the train-

ing of Transformers. To mitigate the impact of large fluctuations,

MABN [45] leverages exponential moving average statistics in ac-

tivation statistics, and accordingly uses simple moving average

statistics in gradient statistics to estimate gradients. Similarly, Shen

et al. [35] propose PN∗
that uses exponential moving average sta-

tistics in both activation and gradient statistics. Preceding works

aim to improve the efficiency of LN in Transformers but still suffer

from inferior performance and instability. Thus, it is valuable for

the community to design a more effective and robust method.

3 METHOD
In this section, we describe the design process of Unified Normal-

ization (UN). First, we develop a unified framework for leveraging

offline methods. Based on the framework, we next apply a tailored

fluctuation smoothing strategy to mitigate the fluctuations and an

adaptive outlier filtration strategy for stabilizing training.

3.1 Unified Framework
We develop a unified framework for applying offline methods in

Transformers. In this pipeline, the inference statistics are fixed so

that they could be fused with other linear operations for speedup.

For a normalization layer, let X ∈ R𝐵×𝐶 and Y ∈ R𝐵×𝐶 denote

the input and output, where 𝐵 is the batch size and 𝐶 indicates

the number of channels. Note that the number of tokens 𝑁 , which

could be squeezed into 𝐵, is omitted in this section for clarity. For

arbitrary input in inference, all offline methods perform in a unified

manner

Y = 𝛾 · X − 𝜇
√
𝜎2 + 𝜖

+ 𝛽. (1)

Here, 𝜖 is a small constant, and 𝛾, 𝛽 ∈ R𝐶 are learnable parameters.

The inference statistics 𝜇, 𝜎2 ∈ R𝐶 are estimated in the training pro-

cess and independent of inputs. Since the statistics and parameters

are fixed during inference, offline normalization can be merged. The

pseudo code for fusing offline normalization with adjacent linear

operation can be found in Algorithm 1. On the contrary, LN requires

calculation for on-the-fly statistics 𝜇𝐿𝑁 = 𝜇𝐿𝑁 (X), 𝜎2
𝐿𝑁

= 𝜎2
𝐿𝑁

(X)
that consumes extra computation time.

In forward propagation of training, the normalization procedure

is shown as follows,

Z𝑡 =
X𝑡 − 𝜇𝑡√︃
𝜎2𝑡 + 𝜖

, (2)

Y𝑡 = 𝛾 · Z𝑡 + 𝛽. (3)
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Let Z𝑡 denote the normalized alternative to input X𝑡 at iteration
𝑡 . The training statistics for normalizing are marked as 𝜇𝑡 and 𝜎

2
𝑡 ,

given by

𝜇𝑡 = Θ𝜇 (𝜇𝑡 , · · · , 𝜇𝑡−𝑀+1), (4)

𝜎2𝑡 = Θ𝜎2 (𝜎2𝑡 , · · · , 𝜎2𝑡−𝑀+1). (5)

Here, 𝜇𝑡 , · · · , 𝜇𝑡−𝑀+1 and𝜎2𝑡 , · · · , 𝜎2𝑡−𝑀+1 are sequences of recorded
statistics from recent𝑀 iterations. We consider 𝜇𝑡 and 𝜎

2
𝑡 to be the

first-moment and second-moment statistics for current inputX𝑡 . In
general, the training statistics can be used to update the inference

statistics by applying moving averages. In backward propagation,

the gradients of loss 𝐿 pass as:

𝜕𝐿

𝜕Z𝑡
= 𝛾 · 𝜕𝐿

𝜕Y𝑡
, (6)

𝜕𝐿

𝜕X𝑡
=

1√︃
𝜎2𝑡 + 𝜖

( 𝜕𝐿

𝜕Z𝑡
−𝜓𝜇𝑡 − Z𝑡 ·𝜓𝜎2

𝑡
) . (7)

Giving gradients
𝜕𝐿
𝜕Y𝑡

,𝜓𝜇𝑡 and𝜓𝜎2
𝑡
indicate the gradient statistics

that used for estimating
𝜕𝐿
𝜕X𝑡

. In this framework, estimated gradients

are gained from averaging functions Θ𝑔𝜇 and Θ𝑔𝜎2 ,

𝜓𝜇𝑡 = Θ𝑔𝜇 (𝑔𝜇𝑡 , · · · , 𝑔𝜇𝑡−𝑀+1 ), (8)

𝜓𝜎2
𝑡
= Θ𝑔𝜎2 (𝑔𝜎2

𝑡
, · · · , 𝑔𝜎2

𝑡−𝑀+1
). (9)

The gradients passed from 𝜇𝑡 and 𝜎
2
𝑡 are denoted as 𝑔𝜇𝑡 and 𝑔𝜎2

𝑡
.

Offline Methods in the Unified Framework. With the help of

the unified framework, offline methods can be expressed by choos-

ing different statistical objects and averaging functions Θ.
For instance, BN can be formulated by choosing the mean and

variance for the first-moment and second-moment statistics, i.e.,

𝜇𝑡 =
1

𝐵

∑𝐵
𝑖=1x𝑖 , 𝜎2𝑡 =

1

𝐵

∑𝐵
𝑖=1 (𝑥𝑖 − 𝜇𝑡 )2 . (10)

Then setting averaging functions as:

𝜇𝑡 = 𝜇𝑡 , 𝜎2𝑡 = 𝜎2𝑡 , 𝜓𝜇𝑡 = 𝑔𝜇𝑡 , 𝜓𝜎2
𝑡
= 𝑔𝜎2

𝑡
. (11)

Here, the averaging functions simply focus on statistics of current

iteration 𝑡 and ignore the last 𝑀 − 1 statistics in the sequences.

During training, the inference statistics are updated as,

𝜇 = 𝛼𝜇 + (1 − 𝛼)𝜇𝑡 , 𝜎2 = 𝛼𝜎2 + (1 − 𝛼)𝜎2𝑡 . (12)

As illustrated in Equation 11, BN merely focuses on the activations

in the current iteration. This makes BN fragile for large fluctuations

over iterations.

For MABN [45], the authors reduce the number of statistics for

stabilizing training and remove the first-moment statistic. Hence,

the quadratic mean is chosen as the second-moment statistic:

𝜎2𝑡 =
1

𝐵

∑𝐵
𝑖=1x

2
𝑖 . (13)

Figure 3: The average PNACof activation and gradient statis-
tics over iterations inTransformer. Ahigher PNAC indicates
milder fluctuations.

Algorithm 2 Fluctuation Smoothing

Forward Propagation
Input: X𝑡 ∈ R𝐵×𝐶
Output: Y𝑡 ∈ R𝐵×𝐶
1: 𝜎2𝑡 = 1

𝐵

∑𝐵
𝑖=1x

2
𝑡,𝑖

// mini-batch quadratic mean

2: 𝜎2𝑡 =
𝑀

√︃∏𝑀−1
𝑖=0 𝜎2

𝑡−𝑖 // geometric mean

3: Z𝑡 =
X𝑡√
𝜎2
𝑡 +𝜖

// normalizing

4: Y𝑡 = 𝛾 · Z𝑡 + 𝛽 // re-scaling and shifting

5: 𝜎2 = 𝛼𝜎2 + (1 − 𝛼)𝜎2𝑡 // updating for inference
Backward Propagation
Input: 𝜕𝐿

𝜕Y𝑡
∈ R𝐵×𝐶

Output: 𝜕𝐿
𝜕X𝑡

∈ R𝐵×𝐶

1:
𝜕𝐿
𝜕Z𝑡

= 𝛾 · 𝜕𝐿
𝜕Y𝑡

2: 𝑔𝜎2
𝑡
= 1
𝐵

∑𝐵
𝑖=1

𝜕𝐿
𝜕z𝑖

z𝑖 // gradients from 𝜎2𝑡

3: 𝜓𝜎2
𝑡
= 𝛼𝜓𝜎2

𝑡−1
+ (1 − 𝛼) 1

𝑀

∑𝑀−1
𝑖=0 𝑔𝜎2

𝑡−𝑖
// estimating gradients

4:
𝜕𝐿
𝜕X𝑡

= 1√
𝜎2
𝑡 +𝜖

( 𝜕𝐿
𝜕Z𝑡

− Z𝑡 ·𝜓𝜎2
𝑡
)

The averaging functions for MABN are set as follow,

𝜇𝑡 = 0, 𝜎2𝑡 = 𝐸𝑀𝐴𝑆1, 𝜓𝜇𝑡 = 0, 𝜓𝜎2
𝑡
= 𝑆𝑀𝐴𝑆2 . (14)

The inference statistics 𝜎2 for MABN are updated the same as

Equation 12. With solely applying EMAS in activation statistics, it

is hard for MABN to avoid influence from extreme outliers.

3.2 Fluctuation Smoothing
Analysis with Normality Test. We dive deeper to analyze the

abnormal behaviors of activation statistics in Transformers. To

investigate the magnitude of fluctuations in activation and gradi-

ent statistics, we quantitatively analyze the abnormal behaviors

with quadratic mean as the second-moment statistics. For statis-

tics 𝜎2𝑡 ∈ R𝐶 , we conduct the normality test[8] on a sequence of

𝜎2𝑡 , · · · , 𝜎2𝑡−𝑀+1 to establish whether or not the sequence comes

from a normally distributed population, then calculate the percent-

age of channels held for normality. We define the Percentage of

Normality over All Channels (PNAC) which measure the degree of

1
EMAS (Exponential Moving Average Statistics) for 𝐾 : 𝐾 = 𝜂 · 𝐾 + (1 − 𝜂) · 𝐾𝑡

2
SMAS (Simple Moving Average Statistics) for 𝐾 with a window size 𝑀 : 𝐾 =
1
𝑀

∑𝑀−1
𝑖=0 𝐾𝑡−𝑖



Unified Normalization MM ’22, October 10–14, 2022, Lisboa, Portugal

Figure 4: The activation (the 1st and 2nd rows) and gradient (the 3rd and 4th rows) statistics in channel C of normalization
layer L. In activation statistics, we show the GM and AM of activation statistics in solid ’blue’ and ’orange’ lines respectively.

fluctuations in statistics:

𝑃𝑁𝐴𝐶 =
|{𝑐𝑖 |Normality Test(𝑐𝑖 ), 𝑝 > 0.05}|

𝐶
×100%, 𝑖 = 1, · · · ,𝐶.

(15)

The lower PNAC, the larger fluctuations in statistics. In this way,

we compute PNAC for each layer averaged over iterations and plot

it in Figure 3. At the very beginning of training, both activation

and gradient statistics mildly fluctuate over iterations. At the end

of the training, there is a significant drop in the PNAC of activation

statistics which means large fluctuations exist in activation statis-

tics. On the contrary, we find that there are milder fluctuations in

gradient statistics.

Moreover, we next visualize the activation and gradient statistics

in different layers and channels, as shown in Figure 4. The range of

activation statistics gets larger along the depth and training process.

We find that the skewed distribution of activation statistics contains

extreme outliers that could impact the arithmetic mean. We thus

turn to adopt geometric mean (GM) with less sensitivity to outliers

instead of arithmetic mean (AM) to gain a better representation

of activation statistics in a skewed distribution. The averaging

functions are defined as:

𝜇𝑡 = 0, 𝜎2𝑡 =
𝑀

√︃∏𝑀−1
𝑖=0 𝜎2

𝑡−𝑖 , (16)

𝜓𝜇𝑡 = 0, 𝜓𝜎2
𝑡
= 𝛼𝜓𝜎2

𝑡−1
+ (1 − 𝛼) 1

𝑀

∑𝑀−1
𝑖=0 𝑔𝜎2

𝑡−𝑖
. (17)

By applying quadratic mean as the second-moment statistics, we

visualize the GM and AM of activation statistics in Figure 4:in an

approximately normal distribution (i.e., mild fluctuations), GM is

close to AM; in skewed distribution (i.e., large fluctuations), the

extreme outliers greatly influenced AM, while GM is still close to

the majority. Owing to the gradient statistics 𝑔𝜎2
𝑡
are first-moment

statistics and do not obey non-negativity constraints, it is unable

to use GM directly. Therefore, we utilize AM in gradient statistics

that further with a momentum for gradient estimation in back-

ward propagation. Specially, we leverage the quadratic mean as

the second-moment statistics in our method to reduce the number

of statistics that ensure the stability in applying moving average

strategies, as proved in [45]. Our strategy could be formulated as

shown in Algorithm 2. Omitting the impact of updated weights

over different iterations, UN is set with moderate window sizes.

3.3 Outlier Filtration
Although the fluctuation smoothing is leveraged to calibrate the

activation statistics, extreme outliers are observed and somehow

lead to instability in training (as shown in Figure 1). With the mov-

ing average strategies (in Equation 4 and 5) applied to activation

statistics, it is impossible to calculate the accurate gradients from

previous iterations [17]. Once extreme outliers deteriorate the gra-

dient estimation error, the risk of instability increases. Based on

the assumption, we attempt to take a step further by introducing

an adaptive outlier filtration strategy. More specifically, the main

goal of outlier filtration is to decide when to apply the moving

average strategies. To identify outliers, we set an adaptive thresh-

old for outlier filtration with the 𝐴𝑀 − 𝐺𝑀 inequality [1]. Let

Ω𝑡 = (𝜎2𝑡 , 𝜎2𝑡−1, · · · , 𝜎
2
𝑡−𝑀+1) denote the𝑀 recent activation statis-

tics recorded in forward propagation at iteration 𝑡 , where𝑀 > 1,
then we have

𝐸 (Ω𝑡 ) − Π(Ω𝑡 ) ≤ 𝑀 ·𝑉 (Ω
1
2
𝑡 ), (18)

where Ω
1
2
𝑡 = (𝜎𝑡 , · · · , 𝜎𝑡−𝑀+1) and 𝑉 (·), 𝐸 (·), Π(·) are operators

that calculate the variance, arithmetic mean, and geometric mean

for input respectively. The extreme outliers will enlarge variances.

We thus use the upper bound of the last iteration to detect outliers

for the current iteration. Hence, 𝑀 · 𝑉 (Ω
1
2

𝑡−1) can be used as an

adaptive threshold for outlier filtration. That is to say, once the

mini-batch is deemed to contain extremely large outliers and all

the moving average strategies will be dropped in a specific normal-

ization layer,{
𝜎2𝑡 = 𝜎2𝑡 , 𝜓𝜎2

𝑡
= 𝑔𝜎2

𝑡
if 𝐸 (Ω𝑡 ) − Π(Ω𝑡 ) > 𝑀 ·𝑉 (Ω

1
2

𝑡−1)
Equation (16) and (17) otherwise.

(19)
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The current statistics𝜎2𝑡 and𝑔𝜎2
𝑡
will be used for forward-propagating

and backward-propagating once outliers are found. In Equation 19,

the threshold for outlier filtration is independent of the specific

input 𝑋𝑡 , making this strategy more adaptive to the ever-changing

activation statistics during training. Besides, 𝜎2 and𝜓𝜎2
𝑡
are used

to update the recorded statistics at iteration 𝑡 for passivating the

outliers in moving average. The rest of the operations are just the

same as Algorithm 2.

Lemma 3.1. Let𝐴𝑡 = (𝑎𝑡 , 𝑎𝑡−1, ..., 𝑎𝑡−𝑀+1) and𝐴𝑡−1 = (𝑎𝑡−1, 𝑎𝑡−2,
..., 𝑎𝑡−𝑀 ) are two vectors satisfying 𝑎𝑖 > 0 and 𝑎𝑖 < 𝑎𝑡 ,∀𝑎𝑖 ∈ 𝐴𝑡−1.
𝐸 (·), Π(·), and 𝑉 (·) denote the calculation of arithmetic mean, geo-

metric mean, and variance for an arbitrary vector. If𝑀 ·𝑉 (𝐴
1
2

𝑡−1) <
𝐸 (𝐴𝑡 ) − Π(𝐴𝑡 ) holds, then 𝜆 =

Π (𝐴𝑡 )
𝑎𝑡

< 1.

Proof. From the AM-GM inequality and the lemma condition,

we have the following inequality

Π(𝐴𝑡 ) − Π(𝐴𝑡−1) < 𝐸 (𝐴𝑡 ) − 𝐸 (𝐴𝑡−1) . (20)

Since 𝐸 (𝐴𝑡 ) − 𝐸 (𝐴𝑡−1) = 𝑎𝑡−𝑎𝑡−𝑀
𝑀

, then

𝑀 · (Π(𝐴𝑡 ) − Π(𝐴𝑡−1)) < 𝑎𝑡 − 𝑎𝑡−𝑀 . (21)

With 𝑎𝑡 > 0, the above inequality can be transformed to

𝑀 · 𝜆(1 − 𝑀

√︂
𝑎𝑡−𝑀
𝑎𝑡

) < 1 − 𝑎𝑡−𝑀
𝑎𝑡

. (22)

Therefore,

𝜆 <
1

𝑀
·

1 − 𝑎𝑡−𝑀
𝑎𝑡

1 − 𝑀

√︃
𝑎𝑡−𝑀
𝑎𝑡

<
1

𝑀
·𝑀 = 1. (23)

The last inequality holds because function 𝑓 (𝑥) = 1−𝑥
1− 𝑀

√
𝑥
is mono-

tonically increasing in [0, 1). □

Corollary 3.2. For a Network using UN without outlier filtration,
let 𝑔𝜎2

𝑡
denote the ground truth gradient computed based on the chain

rule and 𝑔𝜎2
𝑡
denote estimated gradient given by a averaging function.

If 𝑥𝑡 contains an outlier, then

𝑔𝜎2
𝑡

𝑔𝜎2
𝑡

<
1

𝑀
. (24)

Proof. UN uses geometric mean to estimate the training statis-

tics, which modifies the current mini-batch statistics but detaches

from the backward pass. Hence,

𝑔𝜎2
𝑡
=

𝜕𝐿

𝜕𝜎2𝑡

=
𝜕𝐿

𝜕𝜎2𝑡

·
𝜕𝜎2𝑡

𝜕𝜎2𝑡

= 𝑔𝜎2
𝑡

𝜕𝜎2𝑡

𝜕𝜎2𝑡

. (25)

Combined with Lemma 3.1, we have

𝑔𝜎2
𝑡

𝑔𝜎2
𝑡

=
𝜕𝜎2𝑡

𝜕𝜎2𝑡

=
1

𝑀
·
𝜎2𝑡

𝜎2𝑡

=
1

𝑀
· Π(Ω𝑡 )

𝜎2𝑡

<
1

𝑀
. (26)

□

With the adaptive outlier filtration strategy proposed in this section,

we can avoid a catastrophic gradient estimation error. Based on

Corollary 3.2, we prove that the gradient estimation error will be

shrunk by a factor 1/𝑀 when an outlier is found.

Table 1: The performance (BELU [31], higher is better) of
Transformers on neural machine translation. ‘Offline’ indi-
cates a method can be fused in inference. ’NoNorm’ means
modelswithout normalization. ’FAIL’ indicates collapse dur-
ing training. PN∗ is PN without a layer-scale layer.

Method Offline

IWSLT14 WMT14

BLEU △ BELU △

LN [2] % 35.3 40.0

RMSNorm [50] % 35.3 0.0 39.8 -0.2

PN [35] % 35.3 0.0 39.8 -0.2

NoNorm / FAIL / 32.8 -7.2

BN [19] ! 31.1 -4.2 35.1 -4.9

MABN [45] ! 35.4 +0.1 36.5 -3.5

PN
∗
[35] ! 35.0 -0.3 39.7 -0.3

UN ! 35.4 +0.1 39.9 -0.1

Table 2: The performance (Top-1 accuracy %) of image clas-
sification on ImageNet-1K and CIFAR10/100.

Method Offline

Swin-T T2T-ViT-14
†

ImageNet ImageNet CIFAR10 CIFAR100

Top1 △ Top1 △ Top1 △ Top1 △

LN [2] % 81.3 81.5 98.3 88.4

BN [19] ! 80.8 -0.5 79.8 -1.7 96.6 -1.7 88.2 -0.2

MABN [45] ! 80.9 -0.4 FAIL / / / / /

PN
∗
[35] ! 80.9 -0.4 FAIL / / / / /

UN ! 81.0 -0.3 80.9 -0.6 98.3 0.0 88.9 +0.5

†: On CIFAR10/100, models are initialized with pre-trained weights from ImageNet-

1K. Note that T2T-ViT-14 cooperates with MABN and PN
∗
crash during training

on ImageNet, we thus do not report the corresponding results on CIFAR10/100.

4 EXPERIMENTS
4.1 Implementation Details
To put all experiments on an equal footing, we simply replace all

LN in corresponding architectures with its drop-in counterparts,

without varying the position of the normalization layer or adding

extra operators. All models are trained and tested with the same

configurations. To simplify the settings, the momentum of UN is

set as 𝛼 = 0.9 (the same as BN) to avoid repeatedly tuning hyper-

parameter over different tasks. Akin to [45], we set a warming-up

step for UN, 4K by default. To show robust results, we report the av-

erage performance from 5-run results for small datasets, IWSLT14,

CIFAR10, and CIFAR100. See Appendix B for more experimental

details.

4.2 Results
4.2.1 Neural Machine Translation. The comparison between online

and offline methods is listed in Table 1. Although RMSNorm [50]

and PN achieve comparable results with LN, online methods are

not able to access efficient deployment on hardware. We report

the performance of the Transformers trained without normaliza-

tion layers (marked as ’NoNorm’). The instability in training and

declined performance highlight the necessity of applying normal-

ization. Besides, previous offline methods, such as BN, MABN, and
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Table 3: Object detection on COCO val2017 with Faster R-
CNN using Swin-T as the backbone. All models are trained
with 36 epochs.

Method Offline AP
Box △ AP

Box

50 AP
Box

75 AP
Box

𝑠 AP
Box

𝑚 AP
Box

𝑙

LN [2] % 45.5 67.5 50.2 31.5 48.8 58.4

BN [19] ! 44.6 -0.9 66.8 48.9 30.4 48.0 57.8

MABN [45] ! 44.8 -0.7 66.8 49.0 29.0 47.9 57.3

PN
∗
[35] ! 44.3 -1.2 66.7 48.4 29.6 47.4 57.2

UN ! 45.2 -0.3 67.2 49.7 30.1 48.4 58.2

PN
∗
suffer from degradation of performance. Instead, our method

outperforms other offline methods and achieves more balanced

results that are on par with online methods on both IWSLT14 and

WMT14.

4.2.2 Image Classification. Table 2 reports the results of T2T-ViT-
14 and Swin-T on ImageNet. In T2T-ViT-14, MABN and PN

∗
that

leverage vanilla moving average strategies experience divergence

in training. BN appears instability since the early stage of train-

ing (shown in Figure 1), leading to degradation in accuracy. UN

enjoys stability during training and obtains an improvement of

1.1% over BN. In Swin-T, the top-1 accuracy of BN drops by 0.5%.

UN surpasses other offline methods and restores the accuracy to

81.0%. After that, we evaluate UN on downstream classification

tasks (CIFAR10/100). The training loss fluctuates dramatically and

irregularly in T2T-ViT-14 finetuned with BN, leading to a significant

drop in accuracy. UN converges stably without tuning any settings

and outperforms LN on top-1 accuracy.

4.2.3 Object Detection and Instance Segmentation. In Table 3, our

method restores the performance from other offline methods, with

only a slight decrease of 0.3% mAP compared to LN. In Table 4,

the result also reveals that our method achieves comparable perfor-

mance with LN. Here, we show UN surpasses other offline methods

that draw strength from the fluctuation smoothing and outlier fil-

tration. With these results, the conclusion easily comes to light that

UN could be generalized to other vision tasks more than only image

classification.

4.3 Analysis
4.3.1 Ablation Study. In Table 5, we ablate UN to verify the con-

tribution of the basic components. Note that in the fluctuation

smoothing of UN, GM, AM, and momentum 𝛼 are all used as mov-

ing average strategies. We remove the basic components one by

one, as shown in Exp2-5. In Exp2, the performance deteriorates

without any moving strategies applied for activation statistics. In

gradient estimation, we conduct a compound moving strategy for

gradient statistics, including arithmetic mean and momentum 𝛼 .

In exp3-4, performance degrades after removing any basic part of

the compound moving strategy, which implies both of them are

contributed to better estimation for gradients. To compare to Exp2,

we remove all moving strategies from gradient statistics in exp5. It

turns out that models suffer from performance loss without gradi-

ent estimation. In this result, we show the fluctuation smoothing

proposed in this paper has empowered UN to gain solid perfor-

mance. Additionally, we also report the ablation study on IWSLT14,

Figure 5: The accumulated steps of dropping moving aver-
ages in the outlier filtration during training.We plot the out-
comes in red, orange, and green after training 12, 24, and 36
epochs, respectively.

Figure 6: Comparing the similarity of feature maps across
T2T-ViT-14 (ImageNet) with shallow layers highlighted in
the red box. The similarity is measured with Centered Ker-
nel Alignment (CKA) [29] over layers including normaliza-
tion layers, MHSA, and FFN in T2T-ViT-14. All LN layers in
T2T-ViT-14 are simply replaced with BN and UN.

whose details can be found in Appendix C.1. On IWSLT14, the

models can still benefit from the fluctuation smoothing for further

improvement.

4.3.2 Effect of the Window Size. We compare different window

sizes𝑀 ∈ {2, 4, 6, 8, 10} on COCO val2017. Table 6 reports the effect

of window sizes in UN. When UN is set with moderate window

sizes, the models converge stably and gain competitive performance

at the end.

4.3.3 Outlier Filtration. As illustrated in Figure 1, it is easy to see

that the outlier filtration stabilizes the training of UN in T2T-ViT

while other offline methods tend to crash during training. Table 7

showcases the results with and without outlier filtration. In Trans-

formers, the fluctuations in activation statistics increase along with

the depth. Figure 5 shows the accumulated steps of iterations that

have found outliers. Outliers tend to emerge from a deeper layer.

As the model is trained with more epochs, the percentage increases.

The observation implies that Transformers trained with offline

methods might get larger fluctuations when scaling up the depth.

This result also reveals that the fluctuations also increase along

with the training process.

4.3.4 Feature Similarity. With employing Centered Kernel Align-

ment (CKA), a widely-used representation similarity metric, we can
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Table 4: Object detection and semantic segmentation on COCO val2017 with Mask R-CNN using Swin-T as the backbone. All
models are trained with 36 epochs.

Method Offline AP
Box △ AP

Box

50 AP
Box

75 AP
Box

𝑠 AP
Box

𝑚 AP
Box

𝑙
AP

Mask △ AP
Mask

50 AP
Mask

75 AP
Mask

𝑠 AP
Mask

𝑚 AP
Mask

𝑙

LN [2] % 46.0 68.1 50.3 31.2 49.2 60.1 41.6 65.1 44.9 25.9 45.1 56.9

BN [19] ! 44.9 -1.1 67.2 49.0 29.6 48.4 58.3 40.8 -0.8 64.0 43.8 24.9 44.4 55.3

MABN [45] ! 45.1 -0.9 67.2 49.6 30.0 48.3 57.7 41.0 -0.6 64.2 44.1 24.9 44.7 55.0

PN
∗
[35] ! 44.6 -1.4 66.8 48.9 29.1 47.6 57.6 40.7 -0.9 63.7 43.6 24.1 43.8 54.9

UN ! 45.6 -0.4 67.6 50.4 29.6 49.2 58.9 41.4 -0.2 64.8 44.5 25.2 45.1 55.7

Table 5: Ablation study onCOCOval2017.MaskR-CNNwith
Swin-T is trained for 12 epochs.

Exp

FP BP COCO
‡

GM AM 𝛼 AP
Box Δ AP

Mask Δ

1 ! ! ! 42.8 39.2

2 ! ! 42.2 -0.6 38.8 -0.4

3 ! ! 42.4 -0.4 38.8 -0.4

4 ! ! 42.4 -0.4 39.0 -0.2

5 ! 42.5 -0.3 39.0 -0.2

Table 6: The effect of using different window sizes (𝑀) in UN
is evaluated on COCO val2017.

𝑀 2 4 6 8 10

AP
Box

42.8 42.8 42.8 42.8 42.5

AP
Mask

39.2 39.3 39.1 39.2 39.2

Table 7: The effect of using the outlier filtration is evaluated
on ImageNet and COCO val2017.

Outlier

Filtration

T2T-ViT-14 Swin-T

ImageNet ImageNet Faster RCNN Mask RCNN

Top1 Top1 AP
Box

AP
Box

AP
Mask

w/ 80.9 81.0 42.2 42.8 39.2

w/o FAIL 80.7 FAIL FAIL FAIL

study the internal representations between different models. As de-

picted in Figure 6, we compare the similarity of intermediate feature

maps between models trained with different normalization meth-

ods. We mainly focus on the diagonal pixels in the heatmap that

indicate the similarity across layers of the same depth. UN shows

a more remarkable similarity with LN compared to BN, especially

in shallow layers. This result somehow explains the superiority of

our method.

4.3.5 Efficiency. Transformers are broadly applied to vision tasks

and attempt to achieve efficient deployment. LN comes with an

additional overhead of computation and memory that results in

inefficient inference. Besides, LN can not be supported on many

edge devices, e.g., NXP i.MX Series and TITDA4x. There is still

Table 8: Inference efficiency comparison between LN and
UN in Swin-T. MEM (MB) is the maximum allocated mem-
ory during inference. TPUT (Img./Sec.) shows the average
throughput calculated over 1000 batches. We set a batch size
of 512 for ImageNet and 2 for COCO (with Mask R-CNN).

Task Method MEM Reduction TPUT Speedup

ImageNet

LN 9978 - 1179.5 -

UN 8213 17.7% 1547.8 31.2%

COCO

LN 955 - 17.8 -

UN 897 6.1% 22.1 24.2%

room for Transformers to be further improved to achieve hardware-

efficient deployment. In this paper, we focus on improving the

normalization layer for Transformers in order to achieve a better

trade-off between performance and inference speed. With fusing

UN to other linear layers, the division and square root operations are

also removed in inference. Experimentally, we test the efficiency

on GeForce RTX 3090 with Swin-T as reported in Table 8. For

classification, we show that when our method is fused with other

linear operations, it gains about 18% memory reduction and over
31% throughput improvement. For object detection, Mask R-CNN

with Swin-T is integrated with other components like FPN and

head, whereas LN is solely employed in the backbone. As a result,

the increase in speed is limited.

5 CONCLUSION
In this paper, we look at how to deploy Transformers efficiently

by replacing LN with an offline method. Previous offline methods

suffer from inferior performance and instability due to the large

fluctuations and extreme outliers in activation statistics. Based on

our analysis, we propose UN that consists of the fluctuation smooth-

ing and the outlier filtration strategies to tackle these challenges.

Extensive experiments on NLP and CV tasks demonstrate that our

method significantly outperforms previous offlinemethods. Further-

more, our method provides comparable performance to LN, with a

speedup of over 31% in inference. We believe our method will be a

general component in Transformers for efficient deployment.
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Figure 7: The probability density map of PNAC in different
layers (depth) over iterations. Left side: visualization at the
beginning of training. Right side: visualization at the end
of training. We collect the samples from 150 time steps. The
kernel density estimate (KDE) is used for visualization. Note
that activation and gradient statistics are plotted in ’aquama-
rine’ and ’gray’, respectively.

A VISUALIZATION
A.1 Large Fluctuations in Activation Statistics
Figure 7 showcases the probability density map of PNAC during

training that illustrates a general trend of statistics for all normal-

ization layers in Transformer. At the beginning of training, most

channels in activation and gradient statistics hold a high PNAC,

which indicates mild fluctuations. After training a couple of epochs,

there is a huge shift in activation statistics that a lot of channels

gain a much lower PNAC, which means large fluctuations emerge in

activation statistics. In this paper, a tailored fluctuation smoothing

strategy is utilized to gain a better representation of these ever-

changing statistics.

B DETAILS FOR EXPERIMENTS
B.1 Setup for Neural Machine Translation
We evaluate our method with Transformer on two datasets: (1)

IWSLT14 De-En (IWSLT14) contains 0.18M sentence pairs; (2)

WMT14 En-Fr (WMT14) [42] contains 36M sentence pairs. The

setup for prepossessing raw data is the same as [28]. For IWSLT14,

we replicate the training and evaluation strategies in [24]. For

WMT14, we follow the training and evaluation setup in [28] and av-

erage the last 5 checkpoints for the test. Here, all experiments

are re-implemented on the code base of Fairseq [30] with pre-

normalization [43] setting.

B.2 Setup for Image Classification
In this section, we conduct image classification on ImageNet-1K [9]

with two state-of-the-art Vision Transformers, T2T-ViT-14 [49] and

Swin-T [26]. ImageNet-1K is a widely-used image classification

dataset, which contains 1000 categories, 1.28M training samples,

and 50K validation samples. Following the setup in [26, 49], all mod-

els are trained from scratch for 300 epochs with a cropped input

size of 224× 224. We replace all LN layers in original architectures

with BN/MABN/PN and our proposed method UN. After pretrain-

ing models on ImageNet, we transfer the models to downstream

Table 9: Ablation of different components of UN evaluated
on IWSLT14 with Transformer.

Exp Method

FP BP IWSLT14

GM AM 𝛼 BLEU Δ

1 UN ! ! ! 35.4

2 ! ! 34.5 -0.9

3 ! ! 35.3 -0.1

4 ! ! 18.3 -17.1

5 ! FAIL /

classification datasets, CIFAR10 and CIFAR100, that focus on gen-

eral object classification. We follow the training recipe in [49]. All

models are fed with a resized 224 × 224 input and finetuned for 60

epochs.

B.3 Setup for Object Detection and Instance
Segmentation

We benchmark our method on COCO [22]. Following the standard

setup in [26], object detection is conducted on Faster R-CNN [32]

with FPN [21]. For instance segmentation, we evaluate our method

with a common frameworkMask R-CNN [16]. The setup for training

and evaluation are following the original configurations on [26], all

models are trained with 36 epochs. The input size is 1333×800 and
the total batch size is set as 16. The backbone (Swin-T) is initialized
with pretrained weights trained on ImageNet-1K. All experiments

are re-implemented based on mmdetection [5].

C EXTRA RESULTS
C.1 Ablation Study on Neural Machine

Translation
Table 9, we ablate UN on IWSLT14 to verify the contribution of

the basic components. Since Geometric Mean (GM), Arithmetic

Mean(AM), and momentum 𝛼 are all used in the fluctuation smooth-

ing, we try to remove the basic components one by one, as shown in

Exp2-5. Without any moving strategies applied in activation statis-

tics, there is a significant drop on BELU. In backward propagation,

we conduct a compound moving strategy for gradient estimation,

which consists of arithmetic mean and momentum 𝛼 . The results

exhibit that each one of them is important for the final performance.

Especially, the momentum 𝛼 is greatly helpful for stabilizing the

training on ISWLT14. In Exp5, once we remove all moving strate-

gies in BP, the model will fail to converge. The result shows the

advantage of the fluctuation smoothing in IWSLT14.

C.2 Effect on 𝛼

In UN, we leverage a momentum 𝛼 for both approximating infer-

ence statistics in forward propagation and estimating gradients in

backward propagation. We investigate the effect of 𝛼 as shown in

Table 10. By tuning 𝛼 within a large range of {0.6, 0.7, 0.8, 0.9}, we
find the models still converge stably on COCO with close perfor-

mance. Choosing 𝛼 from {0.7, 0.8, 0.9} is also fine with IWSLT14.

Once we set it with a small ratio, such as 𝛼 = 0.6, the results are
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Table 10: The effect of 𝛼 in UN is evaluated on COCO val2017
(AP) and IWSLT14 (BELU).

𝛼 0.9 0.8 0.7 0.6

AP
Box

42.8 42.6 42.7 42.8

AP
Mask

39.2 39.1 39.2 39.4

BELU 35.4 35.4 35.3 FAIL

task-specific in that the training collapsed on IWSLT14. To some

degree, that’s similar to what we show in Table 9 (remove the mo-

mentum in BP). As a result, we believe that 𝛼 = 0.9would be a good
choice for various tasks while also allowing for a fair comparison

with other methods.
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