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ABSTRACT
To achieve promising results on blind image super-resolution (SR),
some attempts leveraged the low resolution (LR) images to pre-
dict the kernel and improve the SR performance. However, these
Supervised Kernel Prediction (SKP) methods are impractical due to
the unavailable real-world blur kernels. Although some Unsuper-
vised Degradation Prediction (UDP) methods are proposed to bypass
this problem, the inconsistency between degradation embedding
and SR feature is still challenging. By exploring the correlations
between degradation embedding and SR feature, we observe that
jointly learning the content and degradation aware feature is opti-
mal. Based on this observation, a Content and Degradation aware
SR Network dubbed CDSR is proposed. Specifically, CDSR contains
three newly-established modules: (1) a Lightweight Patch-based
Encoder (LPE) is applied to jointly extract content and degradation
features; (2) a Domain Query Attention based module (DQA) is
employed to adaptively reduce the inconsistency; (3) a Codebook-
based Space Compress module (CSC) that can suppress the redun-
dant information. Extensive experiments on several benchmarks
demonstrate that the proposed CDSR outperforms the existing UDP
models and achieves competitive performance on PSNR and SSIM
even compared with the state-of-the-art SKP methods.

CCS CONCEPTS
• Computing methodologies → Image manipulation; • Net-
works→ Network architectures.
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Figure 1: Some SR results for scale factor of ×4. Existing
methods produce artifacts due to they apply the moderate
receptive field (MANet [26]), implicit content-aware degra-
dation embedding (DASR [42]). We introduce the content
information as the cue to enhance the cooperation between
degradation embedding and the SR network.

Embedding for Blind Super-Resolution. In Proceedings of the 30th ACM In-
ternational Conference on Multimedia (MM ’22), Oct. 10–14, 2022, Lisboa, Por-
tugal. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3503161.
3547907

1 INTRODUCTION
Blind image super-resolution aims to restore high-resolution images
from low resolution inputs with unknown degradation factors. Un-
like single image super-resolution (SISR) methods [8, 9, 33, 43, 51]
which are developed based on a pre-defined degradation process
(e.g., bicubic downsampling). Blind SR towards higher generaliza-
tion and practicability. Usually, blind SR is achieved by two steps:
degradation estimation within the prior encoder, and the fusion
of degradation prior and textural features within the SR network.
Based on the designs of degradation extraction, existing blind SR
approaches can be divided into two groups:

(1) Supervised Kernel Prediction (SKP). Most existing works [11,
17, 23, 26, 37, 47–49] employ the classical degradation model to rep-
resent the degradation. Previous SKP methods leverage explicit [1,
11, 23, 34, 47, 49] or implicit [3, 28] ways to predict blur kernels, and
then employ the kernel stretching strategy to provide the degrada-
tion information for non-blind SR networks. However, SKPmethods
are impractical due to the real-world kernels are unavailable. Once
given complex degradation deviating from their training distribu-
tion, these methods inevitably lead to inferior results. Furthermore,
SKP can only handle the blur kernel-based degradation, and cannot
be extended to other degradation (e.g., noise).

(2) Unsupervised Degradation Prediction (UDP). Unlike the SKP
methods that only consider kernel degradation, UDP [42, 46] has
developed a more suitable manner for real-world applications with
unknown degradation. Instead of requiring supervision from the
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ground-truth kernel label, UDP leverages the degradation embed-
ding which can naturally avoid the drawback of SKP. Besides, the
degradation embedding learned in UDP can be applied to represent
not only the blur kernel but also other degradations (e.g., noise).
As the most representative approach, DASR [42] investigates the
degradation representation in an unsupervised manner through
contrastive learning. Although DASR has outperformed some SKP
methods [3, 11] within the easy degradation, there is still a gap be-
tween DASR and the latest SKP [26, 28] in more complex scenarios.

Towards achieving a more effective and competitive UDP, we
firstly investigate the key point on:What kind of degradation embed-
ding is really needed for SR networks? Surprisingly, we observed that
using a degradation-oriented embedding will fail to improve the
network performance or even end up with poor results, more details
in Sec. 3. Based on the inverse-U relationship between classification
accuracy and content information claimed in [24], a reasonable
explanation is that in order to classify the degradation, the en-
coder only preserves the degradation-related feature and ignores
the content information. As mentioned in [11, 42], the straightfor-
ward interaction between degradation space and content space will
introduce interference. Without explicitly considering the content
information, the degradation-oriented embedding is agnostic to the
textural information which serves the SR network and then results
in the artifacts, shown in Fig. 1.

In this work, we polish the UDP method through three aspects,
and then produce more promising results: (1) Since the content
information can serve as the cue for the SR network, we derive that
content-aware degradation helps address the interference from the
domain gap between degradation and content spaces. The previ-
ous methods which only employ a small receptive field or naive
encoder may be stumbled by the inconsistency between the above
two spaces because these embeddings do not make full use of the
content information. Inspired by the recent patch-based transform-
ers [10, 40], we propose a Lightweight Patch-based Encoder (LPE)
to extract both the content and degradation aware features. The
LPE not only promotes the extraction of content information but
also introduces the patch degradation consistency, thus being more
competitive to model the global degradation. (2) To adaptively fuse
the predicted embedding into the SR network, we propose Domain
Query Attention based module (DQA) to achieve the content-aware
fusion. (3) Moreover, as claimed in [11], using PCA to project the
kernel representation to low-dimension can make the network eas-
ier to learn the relationship between degradation and SR. However,
PCA can not be trained end-to-end with SR network, thus failing
to learn the adaptive degradation embedding. We extend this and
introduce a Codebook-based Space Compress module (CSC) to limit
the basis of feature space, thus reducing redundancy.

Specifically, we propose a Content and Degradation Aware SR
Network, termed CDSR, which enhances the UDP based blind SR by
narrowing the domain gap between degradation embedding and
SR content feature. Extensive experiments show that the proposed
CDSR outperforms the existing UDP models and achieves competi-
tive performance on PSNR and SSIM even compared with the SOTA
SKP methods. The main contributions of this paper are as follows:

• We first analyze the relation between content information
and degradation embedding. Based on this, we proposed a

lightweight patch-based encoder (LPE) to extract content-
aware degradation embedding features.

• We present a Domain Query Attention based module (DQA)
to adaptively fuse the predicted content and degradation
aware embedding into the SR network.

• Inspired by PCA, we introduce a Codebook-based Space
Compress module (CSC) to limit the basis of feature space.

2 RELATEDWORK
2.1 Non-blind SR
Since SRCNN [8] was first proposed to learn the mapping from
LR to HR, the booming deep learning techniques are widely ap-
plied to SISR. Various elaborate network architectures [7, 9, 12,
21, 22, 25, 35, 36, 43, 52] and complex loss functions [20, 27, 50]
are then proposed. Following the residual design, Kim et al. [21]
propose a deep residual SR network. Besides the residual learning
strategy, Zhang et al. [52] apply the channel-wise attention. Dai et
al. [7] introduce the second-order version to achieve promising
results. Kim et al. [22] employ the DRCN to recursively refine the
extraction feature. However, these approaches are developed based
on a pre-defined degradation process (e.g., bicubic downsampling),
which can hardly hold true when applied to real-world images.
Given more complex degradation deviating from their assumed
type, these methods inevitably lead to inferior results. To be more
flexible, some SR networks are designed to address different degra-
dations with given corresponding priority. Specifically, Wang et
al. [43] achieve impressive results by considering the textural in-
formation in the SR network and introducing the SFT layer. Later,
SRMD [49] takes the degradation as the additional input to super-
resolve LR images under different kernels. Xu et al. [44] incorporate
dynamic convolution to achieve more flexible alternative. Although
the above approaches achieve promising results, the kernels (i.e.,
priorities) are not available when extended to real-world images.

2.2 Blind SR
Supervised Kernel Prediction. In order to polish the non-blind
SR networks, some attempts are leveraged to estimate the kernels,
then employing some adaptive fusion strategies (e.g., AdaIN [16, 43],
kernel stretching [49], dynamic blocks [19]). The non-blind SR net-
works are sensitive to the kernel information consequently the opti-
mal kernel estimation is important. Gu et al. [11] proposed iterative
kernel correction (IKC) to refine the predicted kernel progressively
by observing the previous SR results. Furthermore, DAN [29] has
unfolded the previous iterating process into an end-to-end man-
ner by corporately using the Restorer and Estimator and yields
better results. MANet [26] leverages moderate receptive field and
exploits channel interdependence to conduct the kernel estima-
tion. KOALANet [23] employs the pixel-wised local kernels and
dynamic filter to integrate kernel information for SR. Later, Luo et
al. [28] propose DCLS module to generate clean features based on
the reformulation and estimated kernel. These methods can achieve
remarkable performance when given the ground-truth blur ker-
nel. However, in the real-world images, the blur kernels predicted
by kernel-estimating methods deviate from those of the ground-
truth. SKP methods are sensitive to kernel estimation and cannot
be extended to other degradations.
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Table 1: Classification accuracy of degradation embedding
and PSNR of ×4 SR. We choose the positive sample in three
different ways. ‘C&D’: cropped from the same image with
the same degradation (used in DASR). ‘D’: cropped from dif-
ferent images with the same degradation. ‘C’: cropped from
the same image but with different degradation. More dis-
criminative embedding fails to achieve higher PSNR.

Positive Acc. Set5 Set14 B100 U100
C&D 75.40% 31.45 dB 28.12 dB 27.24 dB 25.28 dB
D 80.80% 31.36 dB 28.03 dB 27.20 dB 25.12 dB
C 12.00% 31.32 dB 28.06 dB 27.24 dB 25.26 dB

Unsupervised Degradation Prediction. UDP has developed a
more suitable manner for real-world applications with unknown
degradation. Instead of requiring the supervision from the ground-
truth kernel label, UDP leverages the degradation embedding which
can naturally avoid the drawback of SKP. Wang et al. firstly pro-
pose DASR [42] to achieve unsupervised degradation prediction,
using contrastive loss for unsupervised degradation representation
learning. In order to improve the contrastive learning procedure,
Zhang et al. [46] introduce CRL-SR to extract refined contrastive
features via a bidirectional contrastive loss. However, previous
UDP approaches pay little attention to what kind of degradation
embedding is really needed for blind SR. In fact, they ignore that
discriminative embedding which lacks content features will cause
the problem of domain gap [11]. Instead, our proposed LPE jointly
learns the content and degradation aware embedding, thus achiev-
ing promising results. Besides, DQA can leverage the content fea-
ture to query the adaptive embedding feature for the SR network.

2.3 Contrastive Learning
Contrastive learning is prevalently studied for unsupervised rep-
resentation learning. Several recent studies [5, 13, 32, 38] present
promising results by minimizing the distance of similar tokens
meanwhile maximizing that of dissimilar ones. Specifically, some of
the UDP methods leverage the contrastive learning approaches to
distinguish the latent degradation from other ones. However, to clas-
sify the degradation, the encoder only preserves the degradation-
related feature and ignores the content information therefore intro-
ducing the problem of domain gap. Although, previous methods
have applied the effective contrastive learning approaches [13] to
enrich the learning samples, there is also the redundancy between
different degradations. The proposed CSC can alleviate this by
limiting the basis of feature space.

3 ANALYSIS ON DEGRADATION EMBEDDING
The Higher Degradation Accuracy the Better? We firstly in-
vestigate the key point on: What kind of degradation embedding is
really needed for SR networks? As shown in Table 1, we conduct
three experiments based on the SOTA DASR [42] to further investi-
gate the learned degradation representation. In Table 1, we show
the effect of content information by only changing the positive
selection strategy during contrastive learning.

Given 100 images from B100 [30] and the pre-trained encoder
𝐸 (·). Each HR is degraded by 10 different degradations to obtain
the LR, using Anisotropic Gaussian kernels with 𝜎1 = 𝜎2 ∈ [1, 10]
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Figure 2: Top: Representations for embedding with differ-
ent blur kernels (denoted in colors). Bottom: SR Feature vi-
sualization. DASR pays more attention to local degradation.
However, CDSR jointly learns the content and degradation
aware embedding to achieve better results. 0 ∼ 255 denotes
the active intensity of the feature map.

and 𝜃 as 0. The scale factor is ×4. The average of 50 sampled LR
embedding from the same degradation is regarded as the cluster
center 𝐷 . The rest of 50 LR images 𝐼 are utilized to test the accuracy
of classification, which can be mathematically calculated by:

𝐴𝑐𝑐. =

∑
𝑖, 𝑗 𝑆𝑖𝑔𝑛{argmax𝑘 (𝑆𝑖𝑚(𝐸 (𝐼 𝑗

𝑖
), 𝐷𝑘 )), 𝑗}

𝑁
, (1)

where 𝑖 ∈ [1, 50], 𝑗, 𝑘 ∈ [1, 10], 𝑁 = 500, 𝐼 𝑗
𝑖
denotes 𝑖𝑡ℎ image

which is degraded by 𝜎1 = 𝜎2 = 𝑗 , 𝐷𝑘 denotes the 𝑘𝑡ℎ cluster cen-
ter, and 𝑆𝑖𝑔𝑛(𝑥,𝑦) = 1 when 𝑥 = 𝑦; 𝑆𝑖𝑔𝑛(𝑥,𝑦) = 0 when 𝑥 ≠ 𝑦, the
𝑆𝑖𝑚(𝑥,𝑦) calculates the cosine similarity of 𝑥 and 𝑦. The accuracy
denotes the encoder’s capability of degradation classification. In
DASR [42], patches from the same image with the same degradation
are considered as positive samples, while different degradations as
negative counterparts, as shown in the first row of Table 1. Based
on contrastive learning, the encoder in DASR can capture the degra-
dation information and implicitly learn the content information.

To enhance the capability of degradation classify (second row of
Table 1), the network is constrained to focus on the degradation by
discarding the implicit content information within patches from a
single image. Although it can achieve higher classification accuracy,
the PSNR drops. The reason may be the encoder only preserves the
degradation-related feature and ignores the content information,
as demonstrated in [24] that there exists an inverse-U relationship
between classify accuracy and content information. Lacking content
information introduces the domain gap between embedding and
textural spaces, resulting in poor SR performance.
Effect of Content-aware Embedding. We then conduct the ex-
periment where patches from the same image but different degrada-
tions are regarded as positive counterparts, the third row of Table 1.
Surprisingly, although the classification accuracy only occupies 12%,
it can achieve promising PSNR results, especially in the tough test
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Figure 3: Top: Lightweight Patch-based Encoder (LPE) and Codebook-based Space Compression module (CSC). LPE includes
patch-wise feature extraction and pixel-wise feature extraction. Bottom: SR network composed of proposed DQAs. The output
content and degradation aware embedding 𝑬𝒂 is utilized in each DQA to adaptively produce dynamic filters. Self-attention and
channel attention modules (CA) are also applied in DQA to help improve performance.

sets i.e., B100 and U100. Conclusively, the content information can
narrow the domain gap between degradation and textural spaces.
When the encoder is guided to extract the degradation embedding
meanwhile preserving the content information, it can produce the
most suitable embedding for the SR network. We use the t-SNE [14]
to visualize the embedding space (see Fig. 2). DASR produces bet-
ter degradation classification results with larger inter distance but
finally gets blurry results compared to our CDSR, which pays more
attention on content information (e.g., pyramid and sand). It in-
dicates that more explicit content features might slightly disturb
degradation classification. However, it can serve as a cue to recover
complex textures and boost SR performance.

4 PROPOSED METHOD
4.1 Lightweight Patch-based Encoder
Unlike previous approaches [26, 42] that employ the naive or small
receptive field encoder, we introduce the Lightweight Patch-based
Encoder (LPE) to produce the content and degradation aware em-
bedding. LPE has two sub-modules which are designed to extract
corresponded content and local degradation-aware features:
Patch-wise Feature Extraction. Inspired by the patch-based vi-
sion transformers [10, 40], a simple lightweight patch-based en-
coder is designed to fast expand the receptive field of convolution
and extract the content information. Specifically, the patch em-
bedding layer is utilized to replace the first standard convolution
layer. Then, the output patch feature 𝐹𝑝 ∈ R

𝐻
𝑃
×𝑊

𝑃
×𝐶 is processed

by several standard convolution layers. Finally, we average the 𝐹𝑝
within the spatial dimension to get 𝐸𝑝 .
Pixel-wise Feature Extraction. As claimed in [26], a moderate
receptive field can help the network to estimate the blur kernel.
Hence, the receptive field of this sub-module is fixed to a moderate
range and then extracts the local degradation-related information.
Finally, the output is averaged to obtain 𝐸𝑙 .

4.2 Codebook-based Space Compression
The previous SKP usually employs PCA for the reduction of feature
space. More experiments results [11, 49] demonstrated that instead

of directly using the kernel, the stretched kernel representation
can make it easier for the network to learn the relationship be-
tween degradation and SR. To extend this advantage in UDP, we
propose the Codebook-based Space Compression module (CSC).
The inclusion relationship in degradation introduces redundancy
and expands the domain gap between degradation and SR feature
space. After feature extraction, the CSC is utilized to constrict the
basis of embedding space. Mathematically, this procedure can be
described as:

𝑸𝒆 = 𝑀𝐿𝑃 (𝐶𝑎𝑡 (𝑬𝒑, 𝑬𝒍 )),
𝑲𝒆 = 𝑀𝐿𝑃 (𝑪𝒃),

𝑬𝒂 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑸𝒆 · 𝑲𝑇
𝒆 ) · 𝑪𝒃,

(2)

where 𝑪𝒃 ∈ R𝐿×𝐶 denotes the codebook, 𝐿 denotes the length of
codebook, and 𝐶 is the channel number of embedding.

4.3 Domain Query Attention based Module
Existing methods usually fuse embeddings into non-blind SR net-
works without considering the domain gap. The degradation fea-
tures are different from the textural features which propagate in the
SR network. Therefore, we propose the Domain Query Attention
based module to mitigate the domain gap. Since 𝑬𝒂 contains the
content information, an intuitive solution is to leverage content
cue to query the target value in 𝑬𝒂 . Generally, each DQA employs
the self-attention module to attend the embedding based on the
current input feature 𝑭𝒊 . Specifically, we first average the 𝑭𝒊 within
the spatial dimension to get 𝑭𝒂𝒊 ∈ R𝐶×1. Then, the channel-wise
mutual self-attention is conducted in the DQA:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸𝒅 ,𝑲 , 𝑽 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑸𝒅𝑲
𝑇√︁

𝑑𝑘

)𝑽 , (3)

where𝑸𝒅 is the query vector computed by 𝑭𝒂𝒊 ,𝑲 ∈ R𝐶×1, 𝑽 ∈ R𝐶×1
are projections of 𝑬𝒂 with several linear layers, and 𝑑𝑘 denotes the
dimension of keys. Next, the output 𝑬𝒅 is utilized to produce the
weight of convolution filters. Because 𝑬𝒅 includes degradation and
content information, therefore the generated filters can provide SR
network the adaptive features 𝑭𝒊 with degradation prior. We also
employ the channel-wise attention layer (CA) in each DQA module.
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Table 2: Quantitative comparison on different test sets with anisotropic Gaussian kernels. The best two results are highlighted
in red and blue colors, respectively. The supervised tag denotes whether the corresponding method belongs to SKP or UDP.

Method Scale Factor Noise Level Supervised Set5 Set14 BSD100 Urban100
SRSVD [6] ×2 0 ! 34.51/0.8787 31.10.0.8581 29.71/0.7993 28.08/0.7965
IKC [11] ×2 0 ! 35.30/0.9381 31.48/0.8797 30.50/0.8545 28.62/0.8689

MANet [26] ×2 0 ! 35.98/0.9420 31.95/0.8845 30.97/0.8651 29.61/0.8880
HAN [31] ×2 0 # 26.83/0.7919 23.21/0.6888 25.11/0.6613 22.42/0.6571
DIP [41] ×2 0 # 28.19/0.7939 25.66/0.6999 25.03/0.6762 22.97/0.6737

KernelGAN + ZSSR [3] ×2 0 # - 23.92/0.6898 25.28/0.6395 21.97/0.6582
HAN + Correction [18] ×2 0 # 28.61/0.8013 26.22/0.7292 26.88/0.7116 25.31/0.7109

DASR [42] ×2 0 # 35.30/0.9360 31.30/0.8683 30.46/0.8507 28.66/0.8654
Ours ×2 0 # 36.17/0.9428 32.14/0.8841 31.02/0.8643 29.57/0.8851

IKC [11] ×3 0 ! 32.94/0.9104 29.14/0.8162 28.36/0.7814 26.34/0.8049
MANet [26] ×3 0 ! 33.69/0.9184 29.81/0.8270 28.81/0.7932 27.39/0.8331
HAN [31] ×3 0 # 23.71/0.6171 22.31/0.5878 23.21/0.5653 20.34/0.5311
DIP [41] ×3 0 # 27.51/0.7740 25.03/0.6674 24.60/0.6499 22.23/0.6450
DASR [42] ×3 0 # 33.43/0.9151 29.57/0.8187 28.58/0.7846 26.83/0.8174

Ours ×3 0 # 33.81/0.9192 29.95/0.8275 28.81/0.7922 27.44/0.8329

IKC [11] ×4 0 ! 31.08/0.8781 27.83/0.7663 27.12/0.7233 25.16/0.7609
MANet [26] ×4 0 ! 31.54/0.8876 28.28/0.7727 27.36/0.7307 25.66/0.7760
HAN [31] ×4 0 # 21.71/0.5941 20.42/0.4937 21.48/0.4901 19.01/0.4676
DIP [41] ×4 0 # 26.71/0.7417 24.52/0.6360 24.34/0.6160 21.85/0.6155

KernelGAN + ZSSR [3] ×4 0 # - - 18.24/0.3689 16.80/0.3960
HAN + Correction [18] ×4 0 # 24.31/0.6357 24.44/0.6341 24.01/0.6005 22.32/0.6368

DASR [42] ×4 0 # 31.45/0.8859 28.12/0.7703 27.24/0.7284 25.28/0.7636
Ours ×4 0 # 31.63/0.8885 28.31/0.7746 27.38/0.7311 25.75/0.7783

IKC [11] ×4 15 ! 27.23/0.7877 25.55/0.6717 25.15/0.6236 23.31/0.6697
MANet [26] ×4 15 ! 27.58/0.7915 25.75/0.6744 25.30/0.6262 23.57/0.6760
HAN [31] ×4 15 # 20.88/0.4245 18.91/0.2901 21.01/0.4881 19.31/0.3552
DIP [41] ×4 15 # 18.60/0.2695 18.14/0.2392 17.90/0.2073 18.82/0.3476

KernelGAN + ZSSR [3] ×4 15 # - - 19.56/0.4582 13.65/0.1136
HAN + Correction [18] ×4 15 # 19.21/0.2281 18.21/0.2478 19.25/0.4231 19.01/0.3500

DASR [42] ×4 15 # 27.48/0.7907 25.56/0.6723 25.25/0.6261 23.30/0.6663
Ours ×4 15 # 27.70/0.7947 25.81/0.6757 25.33/0.6277 23.60/0.6761

𝑬𝒅 is fed into the MLP to produce the channel-wise coefficients
𝒄𝒇 ∈ R𝑪 , then, convoluted feature 𝑭𝒊 is multiplied by 𝒄𝒇 ∈ R𝑪 to
rescale different channel components.

4.4 Degradation Representation Learning
To conduct the degradation representation learning in an unsuper-
vised manner, followed by [42], we employ MoCo [13] to conduct
the constrictive learning. Specifically, given a batch of HR images
{𝑰 0𝑯 , 𝑰 1𝑯 , · · · , 𝑰𝒃𝑯 }, we first randomly crop two patches from each im-
age and blur down-scale them to get patch list 𝑷 = {𝑷0, 𝑷1, · · · , 𝑷𝒃 }.
Each 𝑷𝒊 includes two patches {𝒑0

𝒊 ,𝒑
1
𝒊 } which are processed by

the same degradation factor. Note that the degradation factors
between 𝑷𝒊 are different. Conclusively, {𝒑0

𝒊 ,𝒑
1
𝒊 } share the same

content feature due to they are cropped from the same image, while
{𝒑𝒎

𝒊 ,𝒑𝒏
𝒋 ; 𝑗 ≠ 𝑖,𝑚, 𝑛 ∈ [0, 1]} with 𝐵 different degradations are

utilized to contrastively learn the degradation embedding. As for
building the large and consistent dictionaries for unsupervised
learning, followed by MoCo [13], the encoded representation of the
current mini-batch is enqueued as the negative samples and the old-
est are dequeued. Moreover, this momentum-based procedure can

Table 5: Comparison of different fusion methods for ×2 SR.
Method ×2 Set5 Set14 BSD100 Urban100
AdaIN 35.76/0.9396 31.67/0.8778 30.79/0.8600 29.20/0.8800

DynConv 36.04/0.9427 31.71/0.8842 30.85/0.8678 29.32/0.8889
DQA 36.17/0.9428 32.14/0.8841 31.02/0.8643 29.57/0.8851

progressively optimize the encoder reducing the influence of the
domain gap between degradation space and content space. Finally,
the InfoNCE loss is used to conduct the contrastive learning:

L𝑐𝑙 =

𝐵∑︁
𝑖

− log
exp(𝐸 (𝒑1

𝒊 ) · 𝐸 (𝒑
2
𝒊 )/𝜏)∑𝑁𝑞𝑢𝑒

𝑗=1 exp(𝐸 (𝒑1
𝒊 ) · 𝐸 (𝒑

𝒋
𝒒𝒖𝒆)/𝜏)

, (4)

where 𝐸 (·) denotes the encoder, 𝑁𝑞𝑢𝑒 denotes the length of queue,
𝒑𝒋𝒒𝒖𝒆 is the 𝑗𝑡ℎ negative sample, 𝜏 is a temperature hyper-parameter,
and 𝐵 is the batch size. After computingL𝑐𝑙 , the whole loss function
is defined as L = L𝑐𝑙 + L1, where L1 denotes the 𝐿1 distance
between SR result and the HR ground-truth.
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HR Bicubic HAN DASR MANet Ours

Image 23 in Urban - 18.90 dB 18.42 dB 27.32 dB 27.84 dB 29.25 dB

‘ppt3’ in Set14 - 17.07 dB 16.90 dB 26.04 dB 26.19 dB 26.76 dB

Figure 4: Visual results of different methods in Urban100 for scale factor of 4. HAN uses a different down-sample manner
causing the pixel-shifting, therefore the PSNR is low.
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Figure 5: Quantitative comparison on DIV2KRK. More de-
tails are provided in the supplementary material. The trian-
gles represent UDPmethods, while the circles for SKPmeth-
ods.

5 EXPERIMENT
5.1 Experimental Setup
Implementation Details. Following existing methods [11, 26, 42],
800 images in DIV2K [2] and 2, 650 images in Flickr2K [39] are
collected for training. The training degradation default uses 21× 21
anisotropic Gaussian kernels and the noise level is 0 except for the
noisy ×4 experiment which is set to U(0, 15). During the training
stage, kernel width 𝜎1, 𝜎2 ∼ U(0.175𝑠, 2.5𝑠) for scale factor 𝑠 , and
the rotation angle 𝜃 ∼ U(0, 𝜋). The size of LR patch 𝑷 is set to
48 × 48 for all experiments (×2,×3,×4), therefore, the size of HR
patch cropped fromHR image is 96, 144, 192, respectively. The batch
size 𝐵 is 32, i.e., 32 Gaussian kernels from the above ranges are

randomly selected to generate LR images. The CDSR is trained end-
to-end. The SR network employs 10 RRDB block and DQA layers.
The length of codebook 𝐿 is set to 1, 024. The channel number
of embedding 𝐶 is 256. As for MoCo, the 𝜏 and 𝑁𝑞𝑢𝑒 in Eq. 4 is
set to 0.07 and 8, 192, respectively. The Adam optimizer with the
momentum of 𝛽1 = 0.9 , 𝛽2 = 0.999 is adopted to train our network
with the learning rate being initially set to 1𝑒 − 4. the learning
rate will decay by half after every 125 epochs by the multi-step
decreasing strategy. The training process takes 500 epoch.
Performance Evaluation. Five benchmark datasets are used for
evaluation: Set5 [4], Set14 [45], BSD100 [30], Urban100 [15], and
DIV2KRK [3]. Followed by previous work [26, 28], Set5, Set14, B100
and Urban100 are degraded by 9 different kernels: for ×4 kernels
are sampled from 𝜎1, 𝜎2 ∈ {1, 5, 9} and 𝜃 ∈ {0, 𝑝𝑖4 }; for ×2 and
×3, the kernels set varies to 𝜎1, 𝜎2 ∈ {1, 3, 5} and 𝜎1, 𝜎2 ∈ {1, 4, 7},
respectively. The proposed model is evaluated by PSNR and SSIM
on the Y channel of the SR in YCbCr space.

5.2 Comparison with State-of-the-Art Methods
We conduct experiments on degradations with anisotropic Gauss-
ian kernels and noise. We compare CDSR with baseline models
and existing blind SR models. The results are shown in Table 2
and Fig. 4. For fair comparisons, we retrained some of the methods
under the same experimental setting. As shown in Table 2, the
proposed CDSR outperforms the existing UDP models (e.g., ×2 0.8
dB better than DASR) and achieves competitive performance on
PSNR and SSIM when compared with the SKP methods (MANet).
Although IKC and SRSVD struggle to estimate the accurate kernel
prior by introducing the iteration kernel refinement and the adver-
sarial network, respectively, they achieve poor performance when
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Table 3: Ablation study in the proposedmain components on
the Urban100 dataset for ×2 SR. LPEL and LPEP denote the
pixel-wise and patch-wise subnet, respectively.

Model LPEL LPEP DQA CSC Urban100
Model 1 ! ! ! ! 29.57/0.8851
Model 2 ! ! ! # 29.36/0.8828
Model 3 ! ! # ! 29.32/0.8889
Model 4 ! # ! ! 29.16/0.8775
Model 5 # ! ! ! 29.44/0.8827

Table 4: Further analysis. SRdasr, SROurs denotes the non-blind
SR network used in DASR and our methods, respectively.
Edasr, Emanet denotes the encoder used in DASR, MANet.

Model Set14 BSD100 Urban100
SRdasr + Edasr 31.30/0.8683 30.46/0.8507 28.66/0.8654
SRdasr + LPEP 31.65/0.8796 30.73/0.8603 29.10/0.8796
SROurs + Edasr 31.77/0.8777 30.81/0.8590 28.96/0.8738
SROurs + Emanet 32.08/0.8825 30.94/0.8624 29.44/0.8829
SROurs+LPEL 31.86/0.8787 30.80/0.8594 29.16/0.8775
SROurs+LPE 32.14/0.8841 31.02/0.8643 29.57/0.8851

compared to MANet. In particular, MANet achieves the dominant
results among the SKP-based methods. By restricting the receptive
field within a moderate range, MANet can capture the locality of
degradation features without distributing.

However, these approaches occupy a large computational cost
due to the iteration (IKC) and the full-size kernel maps (MANet).
Moreover, the SKP methods only consider the blur kernel, there-
fore, these methods suffer from severe performance drop when
degradation is composed of multiple degradations (i.e., noise). On
the contrary, UDP methods are not limited to learning the kernel
and attempting to represent the degradation. KernelGAN gets the
worst performance comparedwith other UDPmethods. The implicit
kernel prediction fails to capture accurate information when ap-
plied in severe degradation. HAN employs the attention mechanism
to extract the refinement feature in the SR network, the degrada-
tion prior is ignored in this method resulting in poor performance.
DIP leverages the network prior to generate the SR images and
largely improves the results. However, DIP suffers from multiple
degradations and fails to produce a suitable prior. DASR employs a
discriminative degradation encoder by unsupervised contrastive
learning and largely improves the performance. However, the do-
main gap between degradation space and textual space limits the
results thus performing inferior to our method. It is worth noting
that our method achieves superior performance compared with
other models on multiple degradations (i.e., ×4 with noise level 15).

In addition, we retrain our model with the same experimental
setting as previous methods on DIV2KRK [3]. The quantitative
comparisons are shown in Fig. 5. It can be found that our proposed
method can significantly outperform existing UDP methods and
even shows the competitive results comparedwith the SKPmethods.
As an improved version of IKC, DAN has achieved remarkable
performance using the iteration kernel refinement. In addition,
DCLS largely improves the results by accurate estimation of kernel
information. CDSR achieves the second-best of all the methods
including SKP and UDP methods by taking 13.23 M while DCLS
takes 19.05 M parameter’s amount. For SKP methods, CDSR is
almost 2× faster than DCLS (Test on a single V100) and achieves
the competitive results compared with it. For UDP methods, CDSR
outperforms the AdaTarget and the DASR by 0.36 dB on PSNR with
similar computational cost. To show the variable trend with the
change of 𝜎 we also provide the various curves on Set5 and Set14,
as shown in Fig. 6.
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Figure 6: The PSNR curves on Set5 (left) and Set14 (right) of
scale factor 4. The kernel width 𝜎1 = 𝜎2 = [1 : 10 : 1].

Bicubic Model 2 Model 3
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22.24 dB 22.57 dB 23.21 dB

Figure 7: Different Visualized SR results (×2 ) for ablation
study models on Urban100 Img 67.

5.3 Ablation Study
We conduct ablation studies to validate the effect of each compo-
nent in our proposed method. The quantity results are shown in
Table 3, and the quality visualizations are shown in Fig. 7. All the
experiments are conducted on the scale factor of ×2 setting.
Effect of Patch-wise Subnet. The patch-wise subnet in LPE is
designed to extract the content information. Based on the content
information, we can close the domain gap between the degradation
embedding space and the texture space used in the SR network. To
demonstrate its effect, we discard the patch-wise subnet and only
apply the pixel-wise sub-net to extract the embedding. In addition,
other components are maintained. Shown in Table 3 "Model 4", the
performance significantly drops from 29.57 to 29.16.
Effect of Pixel-wise Subnet.We also test LPE without the pixel-
wise subnet, denoted as Model 5. From the quantity results, we can
find that pixel-wise subnet has a moderate effect. In other words,
models with patch-wise subnet can preserve mainly SR capability.
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A reasonable explanation is the 𝑬𝒑 is able to produce a promising
embedding and 𝑬𝒍 serves as the supplementary feature. This is also
coherent with results in Table 1: the model which only focuses on
local degradation features is inferior to that on content features.
Effect of DQAModule. In order to adaptively fuse the embedding
prior to the SR network, the DQA module is proposed to reduce
the domain gap. To study the effect of DQA, we conduct the experi-
ment without it, which is denoted as Model 3. The self-attention
mechanism applied in DQA can leverage the content cue to query
the suitable embedding features, therefore there are fewer arti-
facts in the produced SR results. As shown in Fig. 7, the output of
Model 4 suffers from the ghost artifacts, which are caused by the
inconsistency of degradation embedding and SR feature.

Moreover, to demonstrate the effect of DQA, we compare this
module with other fusion modules, as shown in Table 5. We first
test the AdaIN approach. Specifically, instead of using Eq. 3, the
embedding 𝑬𝒂 is fed to MLP layers to produce the scale 𝛽𝑎 ∈ R𝐶×1
and the bias 𝛾𝑎 ∈ R𝐶×1. The 𝛽𝑎 and 𝛾𝑎 are used to refine the input
features 𝑭𝑖 by 𝑭𝒊 = 𝛽𝑎 ∗ 𝑭𝑖 + 𝛾𝑎 , where the 𝛽𝑎 and 𝛾𝑎 are expanded
along the spatial dimension. In addition, we also compared DQA
with the standard dynamic convolution layer, shown in Table 5.
Effect of Codebook. Intuitively, an unconstrained embedding
space prefers to preserve the redundant information. To enhance
the robustness of LPE, the codebook is used to constrict the basis
of embedding space. We conduct the experiment without the code-
book in LPE denoted as "Model 2". As demonstrated in Table 3 and
Fig. 7, the codebook can boost the performance of SR results.

5.4 Further Analysis
Our proposed method employs a prevalent framework of blind
SR, which can be summered as two steps: (1) Degradation feature
extraction; (2) embedding prior fusion in the non-blind SR network.
Therefore, the encoder and non-blind SR network are more likely
to have a win-win cooperation. CDSR takes the content informa-
tion as the cue to connect them and achieve superior results. The
experiments are conducted on the scale factor of ×2 setting.
Is Content-aware Important? DASR employs a naive encoder
and estimates the degradation-aware embedding by contrastive
learning, and the content information is learned implicitly, as shown
in Table 4. We replace the encoder of DASR Edasr by the patch-wise
subnet LPEP to show the effect of content information (average
increase of 0.33 dB). Besides, we replace LPE with Edasr to validate
the effect of LPE. Compared with DASR, the SR network with DQA
can improve the output quality but is still inferior to our result. The
reason may be Edasr introduces the perturbation to the SR network,
and destroy the cooperative relationship between LPE and DQA.
Is Local-aware Enough? For the elaborate design of channel-wise
relation extraction in MANet, it achieves more promising results
than Edasr because of the moderate receptive field. In order to study
whether the performance is improved by the channel-wise mutual
computation or the local receptive field, we conduct the experi-
ments with the LPEL (i.e., MANet vs LPEL). LPEL only applies several
convolution layers while MANet suffers from huge computational
costs. The result shows that simply fixing the small receptive field
does not share the competitive performance of MANet, but is bet-
ter than Edasr, especially in the tough case (e.g., 29.16 dB vs 28.96

Table 6: Performance and complexity for 48×48 image.

Model Gflops (G) Param. (M) BSD100
DASR 5.97 5.82 30.46/0.8507
MANet 21.39 9.9 30.97/0.8651

Ours (Blks=2) 4.93 5.24 30.72/0.8600
Ours (Blks=5) 10.47 8.24 30.86/0.8605
Ours (Blks=10) 19.72 13.23 31.02/0.8643

DASR HAN

real image MANet Ours
Figure 8: Visual results of different methods on real image
for ×4 SR. Ours provides more clear results.

dB in Urban100). It is worth noting that the performance can be
significantly improved when combining the LPEL and LPEP.
Computation Cost and Parameters. For the computational cost,
we study the capability of our model with different numbers of
blocks in the SR network. The inference Giga Floating-point Op-
erations Per Second (GFlops) and the total amount of parameters
are used to evaluate the computational cost. As shown in Table 6,
DASR takes fewer GFlops and parameters to achieve moderate per-
formance. To prove the superiority is caused by the effective design
rather than the computation increasing, we shrink our model by
modifying the numbers of blocks used in our SR network. When
the computational cost is restricted to the same level, our proposed
method is still able to outperform DASR. In addition, the model
utilizes similar computational cost to MANet and can achieve com-
petitive performance when compared with the SOTA SKP methods.
Performance on Real Degradation. To further demonstrate the
effectiveness of our method, following [42], we test our model on
the real images. Visualization results are shown in Fig. 8, compared
with the SOTA methods, CDSR can provide more clear results,
especially for the edge.

6 CONCLUSION
In this paper, we study the problem of what kind of embedding is
needed for blind SR. By deriving the truth that content information
can serve as the cue for SR feature, we propose CDSR that jointly
learns the content and degradation aware embedding feature for
blind SR. Specifically, the LPE is exploited to produce the degra-
dation meanwhile preserving the content information. Then, the
proposed DQA module can leverage the content information to
adaptively query the degradation information. Furthermore, we
introduce the CSC to limit the basis of feature space and achieve
end-to-end training. Extensive experiments demonstrate that the
proposed CDSR is able to achieve competitive results.
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Here we provide more details for the proposed CDSR. We first
give the architecture of the LPE and the DQA based non-blind SR
model. Then we provide more experiments results for CDSR. Last,
we report more quantity and quality results of CDSR.

A TRAINING DETAILS OF CDSR
TheCDSR is trained end-to-end, different from theDASR [42]which
requires to pretrain the encoder for 100 epoch, CDSR jointly train
the encoder and non-blind SR in order to product more adaptive
feature. Besides, different from the MANet [26] which employs
complex multi-training stages, CDSR is easy to be trained. The
Adam optimizer with the momentum of 𝛽1 = 0.9 , 𝛽2 = 0.999 is
adopted to train our network with the learning rate being initially
set to 1𝑒 − 4. the learning rate will decay by half after every 125
epochs by the multi-step decreasing strategy. The training process
takes 500 epoch. The training time is about 2 days on a Tesla V100
GPU.

A.1 Framework
The framework details of CDSR is shown in Fig. 9. CDSR is com-
posed of two parts: (1) degradation prior encoder; (2) DQA based
non-blind SR network.
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Figure 9: The framework of proposed CDSR. The basic block
is composed by convolutional layer, batch normalization
layer, leaky relu. ‘#’ denotes the number of filters, ‘k’ denotes
the kernel size and ‘p’ denotes the padding size. The 𝑜𝑡𝑖𝑚𝑒𝑠

denotes the matrix multiplication.

Table 7: Quantitative comparison on DIV2KRK. The best re-
sult is marked in red. The ‘SK’ denotes whether correspond
method belongs to SKP or UDP.

Method SK DIV2KRK
×2 ×4

IKC [11] ! - 27.70/0.7668
DANv1 [17] ! 32.56/0.8997 27.55/0.7582
DANv2 [29] ! 32.58/0.9048 28.74/0.7893
KOALAnet [23] ! 31.89/0.8852 27.77/0.7637
DCLS [28] ! 32.75/0.9094 28.99/0.7946
Ours-SKP ! 32.76/0.9050 28.87/0.7923
DBPN + Correction # 30.38/0.8717 26.79/0.7426
KernelGAN + ZSSR # 30.36/0.8669 26.81/0.7316
AdaTarget # - 28.42/0.7854
DASR # 32.24/0.8960 28.41/0.7813
Ours # 32.68/0.9039 28.85/0.7901

B MORE EXPERIMENTS
B.1 More details of DIV2KRK.
Here we provide more quality comparison results for SOTA meth-
ods on DIV2KRK test set. CDSR achieves the second-best of all
the methods including SKP and UDP methods by taking 13.23 M
while DCLS takes 19.05 M parameter’s amount. We also experi-
ment CDSR in a SKP manner (Ours-SKP), specifically, we add a
MLP with 5 layers taking the embedding as input and predict the
kernel value. Specifically, the mean absolute error (MAE) is used
as the loss function to measure the difference between estimated
kernels and ground-truth kernels. Then the embedding are used in
the DQA based non-blind SR. The results are shown in Table 7.

B.2 More details for experiments
In supplementary we report the whole results for the models in
our ablation study on Set5, Set14, BSD100, and Uraban100 test sets
(Table 8). In addition, we also provide the whole results for the
models in Sec 5.4 in Table 9 and Table 10.

B.3 About the length of codebook.
We also conduct the experiments of different length of codebook.
As shown in Table 11, the larger codebook can not produce the
competitive results with that of original length. The Codebook-
based Space Compress module (CSC) is designed to limit the basis of
feature space, thus reducing redundancy and mitigating the domain
gap between degradation and content spaces. Once enlarging the
codebook, the redundancy can not be suppressed and the larger
codebook will reduce the constraint of space basis.

B.4 Pretrained encoder.
Both DASR and MANet employ a complex training strategies to
train their models: pretrain the encoders (DASR); pretrain the kernel
predictor (MANet). However, CDSR is trained end-to-end and we
find that the pretrain encoder will drops the performance of CDSR.
We conduct the experiment that firstly pretrain 100 epoch of the
encoder and then train the encoder and SR network together, the
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Table 8: More details of ablation study for ×2 SR .

Model LPEL LPEP DQA CSC Set5 Set14 BSD100 Urban100
Model 1 ! ! ! ! 36.17/0.9428 32.14/0.8841 31.02/0.8643 29.57/0.8851
Model 2 ! ! ! # 36.01/0.9416 32.03/0.8811 30.90/0.8611 29.36/0.8828
Model 3 ! ! # ! 36.04/0.9427 31.71/0.8842 30.85/0.8678 29.32/0.8889
Model 4 ! # ! ! 35.84/0.9400 31.86/0.8787 30.80/0.8594 29.16/0.8775
Model 5 # ! ! ! 35.98/0.9414 32.07/0.8819 30.89/0.8609 29.44/0.8827

Table 9: More details of further analysis for ×2 SR.

Model Set5 Set14 BSD100 Urban100
SRdasr + Edasr 35.30/0.9360 31.30/0.8683 30.46/0.8507 28.66/0.8654
SRdasr + LPEP 35.55/0.9290 31.65/0.8796 30.73/0.8603 29.10/0.8796
SROurs + Edasr 35.90/0.9406 31.77/0.8777 30.81/0.8590 28.96/0.8738
SROurs + Emanet 35.94/0.9409 32.08/0.8825 30.94/0.8624 29.44/0.8829
SROurs+LPEL 35.84/0.9400 31.86/0.8787 30.80/0.8594 29.16/0.8775
SROurs+LPE 36.17/0.9428 32.14/0.8841 31.02/0.8643 29.57/0.8851

Table 10: More details of computational cost for ×2 SR.

Model Gflops (G) Param. (M) Set5 Set14 BSD100 Urban100
DASR 5.97 5.82 35.30/0.9360 31.30/0.8683 30.46/0.8507 28.66/0.8654
MANet 21.39 9.9 35.98/0.9420 31.95/0.8845 30.97/0.8651 29.61/0.8880

Ours (Blks=2) 4.93 5.24 35.60/0.9401 31.69/0.8812 30.72/0.8600 28.91/0.8737
Ours (Blks=5) 10.47 8.24 35.92/0.9407 31.90/0.8809 30.86/0.8605 29.18/0.8784
Ours (Blks=10) 19.72 13.23 36.17/0.9428 32.14/0.8841 31.02/0.8643 29.57/0.8851

Table 11: The effect of codebook with different length for ×2 SR.

CodeBook Length Set5 Set14 BSD100 Urban100
1024 36.17/0.9428 32.14/0.8841 31.02/0.8643 29.57/0.8851
2048 36.11/0.9424 32.14/0.8844 30.96/0.8631 29.59/0.8865

Table 12: The impact of pretraining the encoder for ×2 SR.

Pretrain Encoder Set5 Set14 BSD100 Urban100
100 epcoh 36.08/0.9417 32.05/0.8822 30.91/0.8611 29.44/0.8826
0 epoch 36.17/0.9428 32.14/0.8841 31.02/0.8643 29.57/0.8851

results is shown in Table 12. An explanation is that, the joint training let the encoder to produce a more adaptive embedding and easy to
learn the content and degradation aware embedding.
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