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ABSTRACT

In this paper, we focus on unsupervised learning for Video Ob-
ject Segmentation (VOS) which learns visual correspondence (i.e.,
the similarity between pixel-level features) from unlabeled videos.
Previous methods are mainly based on the contrastive learning par-
adigm, which optimize either in image level or pixel level. Image-
level optimization (e.g., the spatially pooled feature of ResNet) learns
robust high-level semantics but is sub-optimal since the pixel-level
features are optimized implicitly. By contrast, pixel-level optimiza-
tion is more explicit, however, it is sensitive to the visual quality
of training data and is not robust to object deformation. To com-
plementarily perform these two levels of optimization in a unified
framework, we propose the In-aNd-Out (INO) generative learning
from a purely generative perspective with the help of naturally de-
signed class tokens and patch tokens in Vision Transformer (ViT).
Specifically, for image-level optimization, we force the out-view
imagination from local to global views on class tokens, which helps
capture high-level semantics, and we name it as out-generative
learning. As to pixel-level optimization, we perform in-view masked
image modeling on patch tokens, which recovers the corrupted
parts of an image via inferring its fine-grained structure, and we
term it as in-generative learning. To discover the temporal informa-
tion better, we additionally force the inter-frame consistency from
both feature and affinity matrix levels. Extensive experiments on
DAVIS-2017 val and YouTube-VOS 2018 val show that our INO out-
performs previous state-of-the-art methods by significant margins.
Code: https://github.com/pansanity666/INO_VOS
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1 INTRODUCTION

Video Object Segmentation [1, 22, 24, 32, 38, 40] (VOS) is a funda-
mental video understanding task having a wide range of real-world
applications, e.g., augmented reality [35], and video editing [18]. In
this task, we aim to segment a specified object instance through-
out the entire video sequence, given only the ground-truth object
mask on the first frame. Although the development of convolu-
tional neural networks (CNNs) [11] has significantly advanced the
VOS task, the success of these approaches highly relies on the cost-
intensive and time-consuming dense mask annotations to train the
networks. Moreover, the fully-supervised VOS is also largely lim-
ited by the diversity and scale of the annotated datasets. To relieve
such limitations, recently unsupervised/self-supervised methods
for VOS [1, 12, 15] have drawn considerable attention, which can
completely liberate the request for mask annotations.

However, the previous approaches still suffer from the following
perspectives: (i)Image-level vs. pixel-level. Several existing meth-
ods [12, 36] perform self-supervised learning on the image-level
features, e.g., the spatially pooled feature of ResNet [11]. Such op-
timization can learn robust high-level semantics, however, it is
sub-optimal since the pixel-level features used for calculating the
final correspondence are learned implicitly. Another line of works
[1, 15, 33] explicitly optimize on the pixel-level features, however,
such paradigm may be sensitive to the visual quality of training
data and is lack of the high-level semantic scope which may re-
duce the robustness toward deformation. We believe that these two
levels of optimization are complementary to each other and can
be integrated into a unified framework; (ii) CNN vs. ViT. Previous
unsupervised methods [1, 12, 36] for VOS adopt the convolutional
networks (CNNs) [11] as the backbone model. However, we propose
that Vision Transformer (ViT) [6, 28] is a better choice for unify-
ing these two levels of optimization. Specifically, different from
the CNNs which obtain the image-level features via the average
pooling of pixel-level features, the naturally designed class tokens
and patch tokens of ViT have their own semantic meanings, i.e.,
class tokens capture the high-level semantics which are suitable
for image-level optimization, while patch tokens represent fine-
grained details, which are appropriate for pixel-level optimization.
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Figure 1: Idea illustration for In-N-Out generative learning,.
In-generative learning is the in-view recovery of masked
patches, while out-generative learning is the out-view imag-
ination from local to global views.

(iil) Contrastive vs. generative. Previous self-supervised methods for
VOS [1, 12, 36] employ a self-training objective mainly based on
contrastive formulation [10]. However, their experimental results
show unsatisfactory scalability toward the training data scales, espe-
cially for the pixel-level methods [1]. On the other hand, the recent
success of the generative learning paradigm [9] shows its better
scalability and robustness. Therefore, we propose that solving the
VOS task from the generative learning perspective is promising,
yet unexplored.

To tackle the aforementioned issues, we present a simple yet
effective framework called In-aNd-Out (INO) generative learning
from a novel fully generative learning perspective. As opposed to
the previous methods [1, 12, 36] (detailed in Table 1), INO integrates
image-level and pixel-level optimization in a unified framework
with the help of naturally designed high-level class tokens and
fine-grained patch tokens in ViT.

More concretely, as illustrated in Fig. 1, our INO framework
contains two generative objectives, i.e., in-generative learning and
out-generative learning. (i) Out-generative learning is the out-view
imagination from local views to global views on class tokens, which
corresponds to the image-level optimization. We aim to learn high-
level visual semantics via imagining the global visual information
given only a portion of the local visual part, which may improve
the robustness toward deformation and occlusion. (ii) In-generative
learning is the in-view recovery of randomly masked patch tokens
in the feature embedding space, which belongs to the pixel-level
optimization. The goal of in-generative learning is to capture fine-
grained structural information, which is beneficial for recognizing
the gradually appearing parts of a semantic object given incomplete
labels in the first frame. In this way, both in-and-out generative
objectives complement each other towards better visual represen-
tation learning. To better discover the temporal information, we
additionally equip INO with temporally-persistent constraints, by
forcing the inter-frame consistency from both feature level and
affinity matrix level. Extensive experiments on DAVIS-2017 val
and YouTube-VOS 2018 val show that our INO outperforms previ-
ous methods by significant margins. Our main contributions are
summarized as follows,

e We propose a simple yet effective framework INO to tackle
the challenging unsupervised learning for VOS, which inte-
grates image-level and pixel-level optimization in a unified
framework by leveraging the structural superiority of ViT.

o To the best of our knowledge, we make the first attempt to
conduct unsupervised learning for VOS from a novel fully
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Table 1: Comparisons between different state-of-the-art VOS
methods.

Self- Transformer- Unified Generative
Method . L .
supervised based optimization | learning
AOT (NIPS 2021) [41] X v X X
CRW (NIPS 2020) [12] v X X X
VES (ICCV 2021) [36] v X X X
DUL (NIPS 2021) [1] v X X X
INO (Ours) v v v v

generative learning perspective based on the idea of masked
image modeling.

e We attain a new state-of-the-art performance on unsuper-
vised learning for VOS.

2 RELATED WORK

Vision Transformers for Dense Prediction. Most previous VOS
methods [1, 12, 15, 33, 36] adopt convolutional neural networks
(CNNs) as the architectures to learn the visual representations.
Recently, the development [6, 28] of Vision Transformer (ViT) ar-
chitecture shows overwhelming success over CNNs. Beyond the
simple image classification tasks [19], researchers have success-
fully adopted the ViT architecture in several dense prediction tasks,
e.g., object detection [3], semantic segmentation [34], etc. How-
ever, these works mainly focus on still images and study the fully-
supervised settings. In contrast, our INO is specially designed to
solve the video object segmentation via self-supervised training.
We exploit the architecture privilege of ViT by using the naturally
designed high-level class tokens and fine-grained patch tokens.
VOS via Self-supervised Learning. Some previous approaches [17,
22, 24, 39, 42] learn visual representation fully supervised by anno-
tated datasets with pixel-wise labels. However, these fully-supervised
VOS methods are highly restricted by the diversity of annotated
categories and the scale of the annotated dataset. In this work, we
explore a more promising and efficient way which is to leverage self-
supervised learning [4, 10] to conduct VOS. Previous self-supervised
works either only consider the high-level global representations
[12, 36], or directly perform the contrastive learning on the fine-
grained pixel-wise features [1]. Benefiting from the flexibility of
vision transformer-based architecture, we optimize both high-level
semantics on class tokens and fine-grained semantics on patch
tokens, which brings better correspondence learning.

From Contrastive Learning to Generative Learning. Recently,
contrastive learning [8, 10] has been popular for self-supervised
learning, which models image similarity and dissimilarity between
different views. Although migrating these methods on VOS tasks [1,
12, 13, 36, 43] has achieved a preliminary success, the contrastive-
based methods strongly depend on data augmentation [12], and
may also suffer the scalability problem [1, 12]. Inspired by masked
language modeling [5] in NLP, recent attempts [2, 9] learn repre-
sentations by masked image modeling. However, these methods
either reconstruct the original images in original pixels [9], or pre-
dict the quantized discrete tokens [2]. As illustrated in Fig. 1, we
discover more abundant supervised signals directly in feature em-
bedding space, by recovering masked patch tokens (in-generative)
and imagining global information (out-generative). To the best of
our knowledge, we make the first attempt to address self-supervised
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Figure 2: Overview of INO framework. For illustration, we assume that the video length L = 2, and for each frame we crop
1 global crop and 2 local crops. (i) Out-generative learning is the out-view mapping between high-level class tokens, which is
composed of Loys_g2g and Loy j34- Concisely, Lour_g2g is cross-frame calculated between global crop outputs, while £, 13
is all the possible local-to-global mappings. (ii) In-generative learning is the in-view recovery on fine-grained patch tokens
of global crops, which is composed of Lin_mim and L;, 4 - In detail, L5, mim is the mapping between mask tokens and the
corresponding teacher patch tokens, while £;,, ,¢r improves the inter-frame correspondence via bootstrapping.

learning for VOS from a fully generative learning perspective based
on the idea of masked image modeling.

3 METHOD

Overview. Unsupervised learning for video object segmentation
targets on achieving semantically discriminative representations
via training on unlabeled videos. During the inference stage, given
the mask annotation of the first frame, the label propagation is per-
formed via the correspondence (similarity) between the extracted
feature maps [1, 12, 15, 36]. As illustrated in Fig. 2, we introduce
the proposed In-N-Out generative learning framework for the un-
supervised learning for VOS, which is composed of out-generative
learning on high-level class tokens and in-generative learning on
fine-grained patch tokens. In § 3.1 we first introduce the generic
teacher-student framework. § 3.2 demonstrates the proposed out-
generative learning targets on mining high-level semantic con-
sistency via the imagination between augmented crops. § 3.3 in-
troduces the proposed in-generative learning which focuses on
achieving fine-grained semantics via the recovery of the corrupted

semantic structure. We present the brief training and inference
pipeline of the proposed INO in § 3.4.

3.1 Generative Learning Framework

We use the commonly used teacher-student framework [4, 44] for
self-supervised learning. The teacher 7~ and student S share the
same architecture which includes a backbone (e.g., ViT [6, 28]) and
a projection head. Without loss of generality, we directly adopt the
original ViT implementation. The improvement of the backbone
model is not the focus of this paper. The teacher parameters are
the Exponentially Moving Average (EMA) of the student parame-
ters. To avoid collapse, a stop-gradient operator is applied to the
teacher, and the teacher output is centered by the computed batch
mean [4]. Then, each network outputs (including both class tokens
and patch tokens) are normalized with a temperature softmax to
get the final categorical distributions [44]. The output categorical
distributions of the teacher are taken as the generation target of
the student output and their similarity is measured with a standard
cross-entropy loss. Notably, the class tokens mainly capture the
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high-level semantic information, while the patch tokens focus more
on the fine-grained details. Therefore, we choose class tokens for
out-generative learning and patch tokens for in-generative learning,
respectively.

3.2 Out-generative Learning

Given the i-th frame in a video clip of length L, we first achieve one
global crop g' and M local crops {1V }]A’i 1 via random resized cropping
under different scales. Then, flipping and color jitter are randomly
applied for each crop. The augmented crops from frames of the
same video clip may be quite different in low-level vision due to the
performed augmentation and the motion nature of videos. However,
since they are from the same semantic scene, they share similar
high-level semantic meaning. We intend to leverage such high-level
semantic consistency as the supervision signal for out-generative
learning, which can be further divided into global-to-global and
local-to-global generation, as illustrated in the lower-left part of
Fig. 2.
Temporal Consistency via Global-to-global Generation. Con-
sidering the consecutive nature of video sequences, the global crops
from different frames of a certain sequence may share most of the
semantic objects when the scale range for cropping is large. In
this case, the most salient difference may come from the motion of
objects, which should be recognized for better segmentation label
propagation, e.g., the person with different poses in different frames
should be recognized as the same person. Therefore, we propose
to perform generation between these inter-frame global crops to
capture such temporal semantic consistency in the presence of
motion.

Specifically, for a sequence of length L, we empirically split
the sequence into halves and then zip them as frame pairs P =

{(n,L/2 + n) }ﬁizl Taking L = 6 as an example, the formulated
pairs are {(1,4),(2,5), (3,6)}. Given a frame pair (i1, iz) € P, all
the global crops {g', g’} are sent to the student together with
the teacher, and the global-to-global out-generative learning is
performed as:

1
Lout_g2g = W . Z Z _qglels] (t)TlogSlclsJ(s),
1i2) EP teT seB\{t}
o 0

where T' = {g", g2}, $ = {g", g"}.
Semantic Correlation via Local-to-global Generation. Com-
pared with the global-to-global generation, local-to-global genera-
tion solves a harder task, which is to imagine the complete scene
given limited information from random semantic fragments. In this
scenario, not only motion consistency, but also the inference of the
high-level semantic correlation is required. For example, given the
fragment of a motorcross and a part of the human leg, the model is
required to infer that “a rider is riding a motorcross”, as illustrated
in Fig. 1. Such high-level inference helps the model to capture more
robust and complete semantics, which is beneficial to the stable
propagation of masks.

Specifically, for frame pair (i1, iz) € P, all the local crops are sent
to the student and calculated with the previous teacher outputs of
global crops. Similar to Eq 1, the local-to-global generative learning
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is performed as:

1
Lout 129 = W Z Z Z _q-lels] (t)TlogS[dS](S), @)

(iy,is) eP teT sel

where T = {g1, g}, 8 = {lilj,lizj}ﬁ-w:y

3.3 In-generative Learning

The out-generative learning leverages the class tokens to capture
the high-level semantic consistency, however, the dense segmen-
tation task requires more fine-grained semantic information to
precisely capture the correspondence. Therefore, we introduce the
in-generative learning on patch tokens of global crops, which is
composed of intra-frame masked image modeling and inter-frame
affinity consistency, as shown in the lower-right part of Fig. 2.
Intra-frame Masked Image Modeling. Inspired by [2, 44], we
first perform blockwise masking on the input global crops of the
student module (as illustrated in Fig. 2). Specifically, assuming that a
global crop from the i-th frame g’ is split into P tokens g’ = {93'. }le,
we then randomly choose a ratio r as the proportion of masked
tokens and get a random mask m € {0,1}F. According to m, the
picked K = P - r tokens {g;|m; = 1} are replaced with a global
learnable mask token and get a corrupted token sequence g'. After
that, gi is sent to the following attention module and prediction
head for categorical distributions output. For the teacher module,
the original unmasked token sequence g’ is kept as input. Finally,
similar as Eq. 2, we take the corresponding teacher outputs of the
masked tokens as the generation target and calculate the cross-
entropy between them for each global crop in a video clip:

1
Linimim = Z .

1

Dm0 (g Tlogs P ). (3

Jj=1

M=

1l
—_

Intuitively, with Eq. 3, we force the model to generate the cor-
rupted patches based on the limited semantic information from
the reserved patches. Such supervision forces the model to achieve
the complete and fine-grained semantics, which is important for
recognizing the gradually appearing parts given incomplete labels
in the first frame. For example, the figure of the person may be
incomplete (i.e., corrupted) at the first time of appearance due to the
occlusion or limited shooting angle. The model should possess the
ability to recognize the rest part of a person which may gradually
appear in the following frames, and this is in line with the target of
-Ein_mim~
Inter-frame Affinity Consistency. L;; mim explores the fine-
grained semantic information spatially for each global crop, how-
ever, the temporal fine-grained semantic consistency between frames
should also be considered, therefore, we propose the affinity con-
sistency constrain as follows.

Given the i-th global crop in a video sequence of length L, we rep-
resent the ly-normalized d-dimensional distribution matrix of the
masked tokens from the teacher module as Q,’; € RKxd, Similarly,
the corresponding distribution matrix for the student module is
represented as Q) € RK *d Then, the affinity matrix from timestep
i to i+ 1 for the teacher outputs is calculated as:

A= 5o ftmax((QLQ) /), (@)
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Table 2: Comparisons with state-of-the-art methods on DAVIS-2017 val. RN-18 and ViT-S/8 represent for ResNet-18 and Vit-
Small with a patch size of 8, separately. “}” means using 2 times larger resolution for inference. We also report the number of
video sequences (N) and the total video duration (T) for each dataset.

Method ] Arch Dataset N/T ‘ JE&Fm Im Ir Fm Fr
TimeCycle [33] RN-18 VLOG 114K / 344h - 40.1 - 38.3 -

TimeCycle [33] RN-50 VLOG 114K / 344h - 419 - 39.4 -

CorrFlow[16] RN-18 Kinetics 300K / 833h 49.5 47.7 53.2 51.3 56.5
CorrFlow[16] RN-18 OxUvA 366 / 14h 50.3 48.4 53.2 52.2 56.0
ContCorr [31] RN-18 TrackingNet 30K / 140h 63.0 60.5 - 65.5 -

MASTT[15] RN-18 OxUvA 366 / 14h 63.7 61.2 73.2 66.3 78.3
MAST#[15] RN-18 YT-VOS 45K / 5h 65.5 633 73.2 67.6 77.7
CRW [12] RN-18 Kinetics 300K / 833h 67.6 64.8 76.1 70.2 82.1
JSTG [43] RN-18 Kinetics 300K / 833h 68.7 65.8 77.7 71.6 84.3
DUL [1] RN-18 OxUvA 366 / 14h 65.3 63.4 76.1 67.2 79.7
DUL [1] RN-18 Kinetics 300K / 833h 68.7 66.7 81.4 70.7 84.1
DUL [1] RN-18 YT-VOS 4.5K / 5h 69.3 67.1 81.2 71.6 84.9
DUL [1] RN-18 TrackingNet 30K / 140h 69.4 67.1 80.9 71.7 84.8
VFS [36] RN-18 Kinetics 300K / 833h 67.6 64.8 - 70.2 -

VFS [36] RN-50 Kinetics 300K / 833h 69.4 66.7 - 72.0 -

INO (Ours) ViT-S/8 Charades 10K / 82h 67.0 63.7 72.7 70.4 82.9
INO (Ours) ViT-S/8 Kinetics 300K / 833h 72.5 68.7 82.0 76.3 89.0

Table 3: Comparisons with state-of-the-art methods on
YouTube-VOS 2018 val benchmark. The object classes in the
val set are partly overlapped with the training set, therefore
the performance is distinguished as “seen” and “unseen” cat-
egories. All results are evaluated and reported through the
online testing server [37].

Seen Unseen
Method Dataset Mean Ton T 7
Colorize [30] Kinetics 38.9 431 38,6 36.6 374
CorrFlowt[16] OxUVA 46.6 50.6 46.6 438 456
MAST*[15] YT-VOS 642 632 649 603 677
CRW [12] Kinetics 69.9 68.7 702 654 752
DUL [1] YT-VOS 69.9 69.6 71.3 65.0 73.5
DUL [1] Kinetics 70.6 699 713 66.5 748
DUL [1] TrackingNet 70.7 70.2 71.9 66.3 74.5
INO (Ours) Kinetics 71.3 70.7 73.2 656 75.6

where A?Hl € RKXK and 7; is the temperature. Similarly, the cor-
responding affinity matrix and temperature for the student outputs
are Ai’iﬂ and g, respectively. Then, we calculate the cross-entropy
between these two affinity matrices as follows:

L-1 K
1 . T .. .
Linapr = 77 20 2, A Ul logaAT™ 1), (9)
i=1 j=1

where Aé’iﬂ [J, :] represents for the j-th row vector of the matrix,
which is the softmax normalized cosine similarity between the j-th
mask token of frame i and all the K masked tokens of frame i+1, i.e.,
the correspondence. Intuitively, we intend to learn the fine-grained
temporal correspondence via bootstrapping, which is beneficial for
the ultimate goal of propagating segmentation labels.

3.4 Training & Inference Pipeline

In this subsection, we introduce the whole pipeline for INO to
achieve unsupervised learning for VOS.

During the training stage, we start by training the ViT backbone
with the raw data from video recognition datasets Kinetics-400
[14] and Charades [27] without using any human annotation labels.
Our network is trained in a self-supervised manner with learning
objectives:

Lino = Lout_ng + LoutJZg + Lin_mim + Liniaff' (6)

To maintain simplicity, here we treat all these terms with equal
contributions. Once the backbone model is trained, we can evaluate
directly on the DAVIS-2017 val [26] and YouTube-VOS 2018 val
[37] without fine-tuning.

During inference, the segmentation label of the first frame is
provided and then propagated toward the following frames based on
the similarity between extracted feature maps. For fair comparison,
we use the same label propagation strategy as [1, 4, 12, 36], detailed
in the supplementary material.

4 EXPERIMENT

4.1 Experimental Settings

Datasets. In order to validate the scalability of the proposed INO,
we conduct experiments on two large-scale datasets, including Cha-
rades [27] and Kinetics-400 [14]. Charades [27] dataset spans 9848
videos with an average length of 30s and records the causal every-
day activities at home. Kinetics [14] dataset contains significantly
more video sequences (around 230K videos with 10s per video on
average). Note that we directly use raw data from the video dataset,
no human annotations are involved during the training process.
Evaluation Metrics. To verify the generalization ability of INO,
we benchmark on two challenging video object segmentation bench-
marks: DAVIS-2017 val [26] and YouTube-VOS 2018 val [37]. DAVIS-
2017 val contains 30 videos in 480p, and YouTube-VOS 2018 val
spans 474 videos, and over 90% of them are in 720p. Following pre-
vious works [1, 12, 36], we use region similarity () and contour
accuracy (¥) as the evaluation metric [25].
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Figure 3: Qualitative comparisons on DAVIS-2017 val. We also display the examples of DUL [1] and CRW [12]. The frame
number is illustrated in the upper-right corner. We mark the salient parts where our method performs better with red dotted

boxes.

CRW

Figure 4: Qualitative comparisons on YouTube-VOS 2018 val. Notably, in the second “hat-trick” case, we illustrate a hard
scenario where the hat is rapidly moving with highly blurry. CRW [12] lost the hat gradually, while DUL [1] mistracks toward
the human face. Only our INO succeeds to track the hat in motion, which shows that our method can precisely capture the

fine-grained correspondence.

Implementation Details. Our INO framework adopts ViT as the
backbone model. For fair comparison with the competing methods
[1, 12, 36] that downsample the input resolution for 8 times during
inference, we use the ViT-S/8 configuration by default, which pos-
sesses comparable parameters as ResNet-50 [11]. For each iteration,
we do in-generative learning with a random probability of 0.5, and
r is randomly sampled from a uniform distribution from 0.1 to 0.5.
The temperature is set as 7g = 0.1 and 7; = 0.04, separately. The
scale range for global and local crops are (0.05,0.8) and (0.8, 0.95),
respectively. The global crops are resized to 224 x 224 while the
local crops are resized to 64 X 64. The number of local crops M is set
as 8, and the video length L is set as 4. We train INO for 25 epochs
on both Charades and Kinetics-400 with 4 and 8 V100 (16GB) GPUs,
respectively. Previous works [1, 12, 36] use the last-block output
of ResNet for training, while the middle-block output (e.g., res 3
block in [12]) for inference. Similarly, we use the output of the last
layer (i.e., the 12-th layer) of ViT for training and empirically use

the output of the 7-th layer for inference. More implementation
details can be found in the supplementary material.

4.2 Quantitative Comparisons with
State-of-the-art

Results on DAVIS-2017 benchmark. In Table 2, we report the
performance comparisons between our INO and other competing
state-of-the-art methods on DAVIS-2017 val benchmark. In a fair
comparison where all the methods use the large-scale Kinetics
dataset for training, our INO significantly outperforms other state-
of-the-art methods by a large margin. For instance, we outperform
the second best VFS [36] by 3.1% in terms of J&Fm( 72.5% vs.
69.4%). Notably, MAST [15] and CorrFlow [16] adopt 2 times larger
image resolution than ours during inference, which leads to larger
memory footprint. However, our INO still outperforms MAST [15]
by 7% on J &Fm(72.5% vs. 65.5%).

Better Scalability. Scalability is an important criterion for self-
supervised learning methods. However, as shown in Table 2, the
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performance of CorrFlow, MAST, and DUL is not positively cor-
related with the scale of the training dataset. And the best perfor-
mance is not achieved on the largest dataset. For instance, even
though the dataset size is two orders of magnitude smaller (300k
vs. 4.5k), the performance of DUL trained with YouTube-VOS is
still higher than Kinetics by 0.6% in J &Fmscore (68.7 % vs. 69.3 %).
Actually, for such methods, the best performance are achieved on
the datasets with higher visual quality and cleaner background, e.g.,
YouTube-VOS [37], TrackingNet [23], and OxUvA [29]. This demon-
strates that the previous methods are sensitive to the dataset quality
and lack of scalability. In contrast, our INO exhibits strong scalabil-
ity and robustness owing to the generative learning paradigm, e.g.,
the performance boosts by 5.5% from Charades to Kinetics.
Results on YouTube-VOS 2018 benchmark. Following [1, 15],
we additionally evaluate INO on YouTube-VOS 2018 val dataset in
Table 3, which is a more challenging benchmark. Our INO reaches
a new state-of-the-art which improves over DUL [1] by 1.3% in
Fmof the “seen” category and 0.6% in mean score. Compared with
CRW [12] which is also trained on Kinetics, our INO outperforms
by 1.4% in the mean score. As to MAST [15] which adopts 2 times
larger resolution and a more advanced two-stage inference pipeline,
i.e, detecting a ROI first and then considering the correspondence
bounded by the ROI, our INO still outperforms by a significant
margin (71.3% vs. 64.2%).

4.3 Qualitative Analysis

We visualize the mask propagation results in Fig. 3 and Fig. 4 for
DAVIS-2017 val and YouTube-VOS 2018 val, respectively. For bet-
ter comparison, we also illustrate the results for DUL [1] and CRW
[12]. We observe that our INO achieves better qualitative results
and is superior in the following aspects:

Robust to Unseen Parts. As illustrated in the first “motorcross-
jump” scenario of Fig. 3, the right leg and back view of the rider
is unseen in the given label of the first frame. The contrastive
learning based methods CRW [12] and DUL [1] fail to track such
unseen parts in the following sequences, while our INO tracks them
successfully (see frame 15 and 35). We attribute this superiority
mainly to the in-generative learning objective, which helps capture
the complete semantic structure of the corrupted parts.

Robust to Deformation. Our INO shows better robustness to
deformation compared with previous methods. For instance, in
the “motorcross-jump” scenario of Fig. 3, the back wheel deforms
significantly during the motion process, while only our INO can
consistently identify the entire back wheel. The out-generative
learning process fully exploits the semantic consistency between
deformed objects from different frames during training. Intuitively,
this supervised signal improves the robustness of features toward
the deformation.

Less Artifacts. During the mask propagation process, the label
may shift toward the background which shares a similar pattern
with the target object, and this is termed as the “bleeding” artifacts
in [1]. As illustrated in the first “motorcycle” case in Fig. 4, both
CRW [12] and DUL [1] suffer this issue in frame 65 and 85, while
our INO gives a more complete and stable mask even under a noisy
background.

Fine-grained Correspondence. In the second “hat-trick” case of
Fig. 4, we illustrate an extremely hard scenario that requires the

MM °22, October 10-14, 2022, Lisboa, Portugal.

Table 4: Effectiveness of In-N-Out generative learning ob-
jectives. All results are evaluated on DAVIS-2017 val bench-
mark.

Objective IJ&Fm Im Ir Fm T
= Lout_g2g 45.6 43.4 46.3 47.7 54.8
C | +Low 12g 54.2 510 561 574 640
o +Lin_mim 65.4 62.4 71.6 68.3 80.1
B +Lin_aff 67.0 63.7 72.7 704 829
s=04
66.1
M=6 7 = 0.06
5=06 k
65.6 66.4 63.4
L=2(657 664 | =6
63.6 64.9
7 = 0.02 M =10

Figure 5: Ablation study of training parameters. We report
the J &Fscore evaluated on DAVIS-2017 val. Our baseline
configuration (the centered one) is: M = 8, L = 4,7; = 0.04,s =
0.8.

ability to precisely capture the fine-grained details. Specifically,
a small hat in high motion is thrown by the actor. As the label
propagates, CRW [12] lost the hat gradually, and DUL [1] shifts
to the actor’s face immediately, while only our INO tracks the hat
consistently and precisely.

4.4 Ablation Studies

We investigate the effectiveness of learning objectives in Table 4,
and the influence of training parameters in Fig. 5. The performance
trained on Charades and evaluated on DAVIS-2017 val is reported.
Effectiveness of In-N-Out Generative Learning. In Table 4, we
investigate the effectiveness of In-N-Out generative learning objec-
tives. We set the out-generative learning between global crops as
the baseline configuration and then add each term gradually. With
only out-generative learning between global crops (Lout_g24), the
model can achieve 45.6% in J &, After adding the out-generative
learning between local and global crops (Lo j24), the J &Fmscore
boosts for 8.6%, which shows that the high-level semantic infer-
ence from local to global crops can significantly help to improve
the performance. With out-generative learning only, the model
achieves a performance of 54.2%. Notably, the performance is fur-
ther improved significantly by 11.2% in J &Fm,score after including
the in-generative learning via masked image modeling (Lin_mim)
which shows the importance of fine-grained structural semantic. Fi-
nally, the best performance is achieved after L;;, 45 is introduced,
which improves the temporal correspondence via bootstrapping.

Temperature of Affinity Constrain. In £L;;, ,rr, we use 75 and
7; as the temperature for student and teacher affinity matrix, sep-
arately. We fix the student temperature 75 as 0.1 and change 7;
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Table 5: Influence of different configurations of operating
flipping and color jitter (F&C).

Global? | Local? | 9&Fm Im IJr Fm Fr
- - 66.6 63.5 74.7 69.7 82.4
F&C v - 63.6 60.8 69.5 66.5 77.9
- v 67.0 63.7 72.7 70.4 82.9
v v 66.2 63.3 73.3 69.1 82.1

as {0.02,0.04,0.06}, where smaller 7; gives sharper target distribu-
tions. As illustrated by the yellow one in Fig. 5, 7; = 0.04 gives a
moderate sharpness and performs best.

Sequence Length. We increase the sequence length L as {2,4, 6},
and find that L = 4 performs best, as illustrated by the orange
one in Fig. 5. Longer sequence length brings larger difference be-
tween the paired frames, however, too much difference (e.g., the
object may disappear in the later frames) incurs the mismatch be-
tween the source and target views, which increases the training
noise. Therefore, a moderate sequence length (L = 4) gives the best
performance.

Number of Local Crops. We vary the local crops number M as
{6,8,10}. More local crops bring more radical high-level semantic
inference. As illustrated by the green one in Fig. 5, M = 8 gives the
best performance, which is tangibly better than M = 6 and M = 10,
e.g., M = 10 leads to a drop in J &Fmscore by 2.1%. We infer that
too many local crops may lead to overfitting toward the noise, and
a moderate M = 8 is sufficient.

Scale Threshold for Random Resized Cropping. We use the
random resized cropping which first samples views with scale range
(0.05,s) for local crops and (s, 0.95) for global crops, and then
resized them to 64 X 64 and 224 X 224, respectively. We vary the
threshold s as {0.4,0.6,0.8}. Larger s leads to more diverse local
crops and more stable global crops containing richer information
about the scene. By observing the gray one in Fig. 5, we find that
the performance becomes better as s increases from 0.4 to 0.8. We
infer that the global crops with rich global information are more
helpful to the semantic inference from local to global.

Flipping and Color Jitter. After obtaining global and local crops
via random resized cropping, we empirically perform flipping and
color jitter (F&C) randomly only for local crops. We investigate 4
configurations in Table 5. We observe that operating F&C on global
crops will reduce the performance. For instance, compared with not
using F&C, the J &, score drops by 3.0% from 66.6% to 63.6% after
performing F&C on global crops. We infer that more stable global
crops are preferred for the generation process. Performing F&C
only on local crops provides the best performance on average (67.0%
in J &Fmscore), therefore we take it as the default configuration.

4.5 Limitation

We provide failure cases on DAVIS-2017 val and YouTube-VOS
2018 val in Fig. 6. We observe that the performance tends to be un-
satisfactory under the following challenging scenarios: (i) Multiple
extremely similar instances. For instance, the two dogs in case 1 of
Fig. 6 are very similar in low-level vision, therefore the labels are
confused during the later time steps. (ii) Long-term and large-area
occlusion. As illustrated by case 2 of Fig. 6, the labels tend to lose the
object after the long-term and large-area occlusion. We can observe
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Figure 6: Failure cases on DAVIS-2017 val (upper) and
YouTube-VOS 2018 val (bottom).

that there is still room for improvement in the aforementioned
challenging cases.

5 CONCLUSION

In this paper, to tackle the challenging unsupervised learning for
VOS, we proposed a simple yet effective framework called In-N-
Out (INO) generative learning. The proposed INO is a novel fully-
generative learning framework via in-view image recovery and
out-view image imagination, which integrates both pixel-level and
image-level optimization in a unified framework. Without any an-
notation data, we effectively learn robust visual representations in a
self-supervised manner and achieve the new state-of-the-art perfor-
mance among unsupervised learning methods for VOS. However,
there is still a long way to go considering the analyzed limitations
in § 4.5 and the performance gap between the unsupervised and
the supervised methods. Thus, more effective algorithms are still
required to alleviate this gap. We hope that our efforts will motivate
more researchers and ease future research.
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A ADDITIONAL IMPLEMENTATION DETAILS

We provide more training and inference details in this section. The
code will be released upon acceptance.

A.1 Training Details

After achieving global and local views via random resized cropping,
we empirically perform random flip and random color jitter only
for local crops, which leads to more stable global crops. Learnable
position embedding is initialized with the resolution of 64 X 64 and
resized to the needed resolution (determined by the input resolu-
tion) with bicubic interpolation. The architecture of the projection
head is the same as [4] and its layer number and output dimen-
sion are set as 3 and 4096, respectively. We train our network with
adamw optimizer [21] and the weight decay follows the cosine
schedule [20] from 0.04 to 0.4. The momentum of EMA is set as
0.996. We use the same video data loader as the released code of
[12] and set the frameskip interval for each clip as 8. Considering
the significant scale difference between these two datasets, we em-
ploy different learning rate schedules. Specifically, for Charades, we
linearly warmup the learning rate for the first 5 epochs till the base
value before decaying with a cosine schedule. The base value is de-
termined by the linear scaling rule [7]: Ir = 0.003xbatchsizexL/1024.
While for Kinetics-400, we reduce the linear warmup epochs to 2
and the learning rate is reduced to Ir = 0.0003 * batchsize = L1024
since it has significantly more iterations. By default, we train on
4 V100 (16GB) GPUs with a batchsize of 16 (4 clips per GPU) for
Charades, and a batchsize of 32 on 8 V100 (16GB) GPUs for Kinetics-
400.

A.2 Inference Details

During inference, the given segmentation labels of the first frame
are propagated toward the following frames via the label prop-
agation algorithm. For fair comparison, we employ the same al-
gorithm as previous methods [1, 4, 12, 36]. Specifically, given a
d-dimensional feature embedding of the target pixel in the current
frame, its cosine similarity w.r.t the first frame and the N, previous
context frames is calculated. For each frame, restrict attention [15],
which means to only consider the pixels around the target pixel
location with a radius of Ny, is applied. Then, for all the included
reference pixels, the most similar N pixels are normalized with
a temperature softmax. The final propagated label for the target
pixel is the weighted combination of the reference pixel labels.

Same as previous works [1, 15, 36], the original image size is kept
for inference. The label propagation is calculated via the patch to-
kens. The parameters of the label propagation algorithm on DAVIS-
2017 val are Ny = 5, N, = 10, N, = 40. As to YouTube-VOS 2018
val, we adopt longer context (N, = 20) and larger radius (N, = 50)
considering its longer video length in average and larger resolution
(720p vs. 480p).

B ADDITIONAL ABLATION STUDIES

We supplement more detailed ablation studies in this section. The
performance trained on Charades and benchmarked on DAVIS-2017
val is reported.
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B.1 Ablation of Training Parameters

N =1
62.8
k = 2048 rp = 0.75
N =2
61.5 66.7 65.5
m = 0.9995 m PE =224
N =4
66.5 65.3
66.7
ry = 0.25 k= 8192

Figure 7: Additional ablation studies of training parameters.
We report the 7 &F,score evaluated on DAVIS-2017 val. Our
baseline configuration (the centered one) is: m = 0.996,k =
4096, N; = 3,r), = 0.5, PE = 64.

B.1.1  Mask Ratio. We perform masked image modeling at ratio r.
Similar as [44], we randomly sample r from a uniform distribution
from rj to ry, at each iteration. We empirically fix r; as 0.1 and vary
ry as {0.25,0.5,0.75}. As illustrated by the yellow one in Fig. 7,
ry, = 0.5 performs better than the rest ones. Larger r;, makes the
recovery task harder, but may also include more noise. Therefore a
moderate ry, = 0.5 is sufficient.

B.1.2  Position Embedding Resolution. As in [4], the learnable po-
sition embedding (PE) is initialized with a fixed resolution, and
interpolated to the target input resolutions. We tried two initial res-
olutions based on the used global and local crop size, i.e., 224 X 224
and 64 X 64. As shown by the blue one in Fig. 7, we find that 64 X 64
gives better performance. This is reasonable considering that there
are much more local crops (8 per frame) than global clops (1 per
frame) during training. Initializing with 64 X 64 resolution ensures
that all the parameters in position embedding are fully optimized,
while initializing with 224 X 224 leads to the downsampling of po-
sition embedding in most cases (i.e., when forwarding local crops),
therefore the initialized parameters may be optimized in bias.

B.1.3  EMA Momentum. In the generic student-teacher framework,
the teacher parameter is the Exponentially Moving Average (EMA)
of the student parameters. We investigate the influence of the mo-
mentum m by varying it as {0.996,0.9995}. As illustrated by the
purple one in Fig. 7, we find that m = 0.996 performs significantly
better.

B.1.4  Projection Head Layer Number. We employ the same pro-
jection head architecture as [4], which is composed of a Nj-layer
multi-layer perceptron (MLP) and a final fully connected layer with
k dimensions output. We test the influence of the layer number
N via changing it as {1, 2,3, 4}. We empirically find that N; = 1
gives significantly lower performance, while N; = 2, 3,4 performs
similarly, and N; = 3 provides the best performance, as shown by
the gray one in Fig. 7.
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B.1.5 Projection Head Output Dimension. We investigate the in-
fluence of projection head output dimension k via varying it as
{2048,4096, 8192} (the orange one in Fig. 7). We observe that k =
4096 performs best.

B.2 Ablation of Backbone Architecture

Table 6: Influence of backbone architectures. All results are
evaluated on DAVIS-2017 val benchmark.

Arch T&Fm T I Fom i
ViT-T/8 65.7 62.8 73.0 68.7 81.6
ViT-S/8 67.0 63.7 72.7 70.4 82.9

We investigate the influence of backbones in Table 6. We addition-
ally test ViT-T/8, which shares comparable parameters as ResNet-18
[11]. We observe that the performance can benefit from the increase
of backbone parameters, e.g., (67.0% vs. 65.7% in J &Fmscore).
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C ANALYSIS OF EFFICIENCY

Table 7: Comparison of efficiency when training on Kinetics-
400.

Method Arch Param GPUs Time
VFS [36] RN-50 23M 8 x 24GB 1week
INO (ours) ViT-S/8 21M 8 X 16GB 1week

In Table 7, we compare the efficiency of our INO with the second
best method VFS [36], which belongs to the image-level optimiza-
tion using contrastive learning. As illustrated, with the similar
training time, our INO employs a more light-weight backbone (21M
vs. 24M) and requires less GPU memories (8 X 16GB vs. 8 X 24GB),
while achieves significantly better performance, e.g., 72.5% vs. 69.4%
in J &Fmscore (see Table 2).

D ADDITIONAL VISUALIZATION EXAMPLES

We provide more visualization examples of our INO on DAVIS-2017
val and YouTube-VOS 2018 val in Fig. 8 and Fig. 9, respectively.
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Figure 8: Supplemented visualization examples of our INO on DAVIS-2017 val.
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Figure 9: Supplemented visualization examples of our INO on YouTube-VOS 2018 val.
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