
Deepfake Video Detection with Spatiotemporal Dropout
Transformer

Daichi Zhang
Institute of Information Engineering,

Chinese Academy of Science

School of Cyber Security, University

of Chinese Academy of Sciences

zhangdaichi@iie.ac.cn

Fanzhao Lin
Institute of Information Engineering,

Chinese Academy of Science

School of Cyber Security, University

of Chinese Academy of Sciences

linfanzhao@iie.ac.cn

Yingying Hua
Institute of Information Engineering,

Chinese Academy of Science

School of Cyber Security, University

of Chinese Academy of Sciences

huayingying@iie.ac.cn

Pengju Wang
Institute of Information Engineering,

Chinese Academy of Science

School of Cyber Security, University

of Chinese Academy of Sciences

wangpengju@iie.ac.cn

Dan Zeng
School of Communication and

Information Engineering, Shanghai

University

dzeng@shu.edu.cn

Shiming Ge∗

Institute of Information Engineering,

Chinese Academy of Science

School of Cyber Security, University

of Chinese Academy of Sciences

geshiming@iie.ac.cn

ABSTRACT

While the abuse of deepfake technology has caused serious con-

cerns recently, how to detect deepfake videos is still a challenge

due to the high photo-realistic synthesis of each frame. Existing

image-level approaches often focus on single frame and ignore the

spatiotemporal cues hidden in deepfake videos, resulting in poor

generalization and robustness. The key of a video-level detector is

to fully exploit the spatiotemporal inconsistency distributed in local

facial regions across different frames in deepfake videos. Inspired by

that, this paper proposes a simple yet effective patch-level approach

to facilitate deepfake video detection via spatiotemporal dropout

transformer. The approach reorganizes each input video into bag of

patches that is then fed into a vision transformer to achieve robust

representation. Specifically, a spatiotemporal dropout operation

is proposed to fully explore patch-level spatiotemporal cues and

serve as effective data augmentation to further enhance model’s

robustness and generalization ability. The operation is flexible and

can be easily plugged into existing vision transformers. Extensive

experiments demonstrate the effectiveness of our approach against

25 state-of-the-arts with impressive robustness, generalizability,

and representation ability.

CCS CONCEPTS

• Security and privacy→ Social aspects of security and pri-

vacy.
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Figure 1: The detection of deepfake videos is challenging due

to high photo-realistic frame synthesis. Thus, our approach

leverages patch-level spatiotemporal inconsistency in facial

regions across frames to facilitate deepfake video detection.
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1 INTRODUCTION

Deepfake [41] often refers to the technique that generates the im-

ages and videos by swapping the faces of source and target per-

sons [25], manipulating the original face attributes [32], or syn-

thesizing an entire face that does not exist [42]. With the rapid

development of face generation and manipulation methods, espe-

cially after generative adversarial networks (GANs) were proposed

[16], deepfake videos can be easily produced by accessible online

tools, such as FaceSwap1 and Deepfakes2, but can barely be distin-

guished by the human eyes, leading to significant threaten to the

1https://github.com/MarekKowalski/FaceSwap/
2https://github.com/deepfakes/faceswap
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public social, cyber and even political security, such as fabricating

evidence and ruining political discourse [41]. Thus, it is very critical

to develop effective solutions to detect deepfake videos.

Existing approaches usually formulate the deepfake video de-

tection task as a binary classification problem and can be divided

into two major categories: image-level and video-level approaches.

Image-level approaches perform frame-wise detection by mining

the pattern difference between real and fake images [6, 27, 38, 39].

Generally, these approaches can well exploit the spatial cues in the

frames but neglect the temporal cues in the video. Thus, image-

level approaches may be limited when detecting deepfake videos.

Typically, advanced deepfake approaches may generate extremely

genuine facial images without leaving spatial defect but they cannot

properly avoid temporal inconsistency since deepfake videos are

always generated frame-by-frame. Unlike image-level approaches,

recent video-level approaches [2, 17, 50] focus on the sequence

patterns and aim to explore the spatiotemporal inconsistency to

detect. However, this spatiotemporal inconsistency is distributed dy-

namically in different local regions and frames, which is extremely

difficult to be captured, as shown in Fig. 1, only the eye regions in

different frames are visibly inconsistent. Existing video-level ap-

proaches are not specially designed for this inconsistency and can

not properly capture the spatiotemporal cues which hide in deep-

fake videos, which makes these approaches poorly generalized and

vulnerable, even cannot achieve comparable performance to image-

level approaches. Therefore, a key of deepfake video detection

approach is to effectively learn the discriminative representations

to describe the spatiotemporal inconsistency.

Towards this end, this paper proposes an effective patch-level

deepfake video detection framework, named spatiotemporal dropout

transformer to capture the spatiotemporal inconsistency effectively.

In the approach, the input video is first extracted into facial frame se-

quence then each frame is grid-wisely cropped into non-overlapping

facial patches, which are subsequently reorganized into bag of

patches and fed into a vision transformer to learn the discrimina-

tive representations describing the dynamical spatiotemporal cues

in local facial regions across different frames as well as achieving

robust representation capacity.

Specifically, a spatiotemporal dropout (STD) operation is de-

signed to fully explore the spatiotemporal inconsistency at patch-

level. The STD operation performs temporal dropout and spatial

dropout step-wisely. During the temporal dropout, we randomly

drop part of the extracted frames after we obtain the frame sequence

from input video. Then during the spatial dropout, we randomly

drop part of facial patches grid-wisely cropped from each remaining

frame and reorganize the remaining patches as a bag of patches

to train a vision transformer. The bag of patches still contains all

facial regions in the original face to preserve the whole information

but the data to be processed is largely reduced since the dropout

operation. In this way, the inconsistency distributed in local facial

patches across different frames in deepfake video is fully repre-

sented and explored. And since the dropout operation is random,

massive different bag of patches instances can be generated from

the same input video in different training iterations, which also

serves as data augmentation for more generalized and robust detec-

tion. Moreover, the STD operation is flexible and could be plugged

into existing vision transformers (ViTs).

Our main contributions can be summarized as three folds. First,

we propose an effective patch-level deepfake video detection frame-

work, Spatiotemporal Dropout Transformer. In our approach, input

videos are reorganized as bag of patches instances which are then

fed into a vision transformer to achieve strong representation ca-

pacity. Second, we design a simple yet effective spatiotemporal

dropout operation, which can fully explore the patch-level spa-

tiotemporal inconsistency hidden in deepfake videos and also serve

as an effective data augmentation to further improve the model’s

robustness and generalization ability. Besides, our STD operation

can be plugged into existing ViTs. Third, we conduct extensive

experiments on three public benchmarks to demonstrate that our

approach outperforms 25 state-of-the-arts with impressive robust-

ness, generalizablity, and representation ability.

2 RELATEDWORK

Deepfake Generation. Deepfake refers to the techniques of syn-

thesizing or manipulating human face images or videos[44]. Early

deepfake is generated by hand-crafted features designed by re-

searchers such as face landmarks, and some post-processing meth-

ods are utilized to make the generating artifacts invisible. For exam-

ple, [15] designs a face reenactment system based on face matching

and [10] proposes a 3D multilinear model to track the face move-

ment in video and minimize the blending boundaries. Since these

traditional generation methods often suffer from generating arti-

facts and visual quality, deep learning-based deepfake generation

methods are developed for more realistic face synthesis. For ex-

ample, generative adversarial networks (GANs) [16] have enabled

plenty of high-quality face manipulation [26, 43] and face synthe-

sis [8, 22, 23]. Although these methods can achieve high-quality

generation results, they work in a frame-by-frame way to gener-

ate deepfake videos, and the spatiotemporal cues are difficult to

eliminate, which can serve as an effective discriminative clue.

Deepfake Detection. Since deepfake has brought severe threats

to society, a variety of deepfake detection approaches have been

proposed. Early detection approaches focus on hand-crafted fea-

tures which are limited at that time, such as [6, 38] utilize image

statistic features to detect. With the development of deep learning,

researchers begin to utilize DNNs to perform deepfake detection,

which can be further divided into two categories: image-level ap-

proaches and video-level approaches. Image-level approaches focus

on extracting discriminative image-level features for deepfake de-

tection, such as [39] utilizes the XceptionNet to detect deepfakes

and [27] detects the blending boundary of two face images. All

these approaches can achieve impressive performance on image-

level deepfake detection but ignore the temporal cues hidden in

deepfake videos, resulting in poor performance when detecting

deepfake videos. Video-level approaches pay more attention to the

sequence feature and many general video models have been applied

to detect deepfake videos, such as [2, 17, 50]. However, these mod-

els usually are not specially designed for deepfake video detection

task and are not capable to properly capture the spatiotemporal

inconsistency dynamically distributed in local facial regions across

different frames. For example, TD-3DCNN [50] only consider the

inter-frame inconsistency in frame level while ignoring the intra-

frame inconsistency cues in spatial domain.
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Figure 2: The framework of Spatiotemporal Dropout Transformer for deepfake video detection. We first employ frame

extraction, face detection and alignment to get facial image sequence F = {x𝑖 }𝑛𝑖=1. Then each facial image x𝑖 ∈ F is processed by

STD operation to get facial patch set 𝑃𝑖′ = {p𝑖′ , 𝑗 } and further reorganized as a bag of patches instance P which is then fed into

our vision transformer backbone to learn the discriminative representation and detect.

Vision Transformer. Transformers [45] have achieved impressive

performance in natural language processing (NLP) tasks due to

their strong representation capacity, such as BERT [11]. Recently,

researchers have proved that transformers can also achieve excel-

lent performance on a variety of computer vision tasks. Specifically,

vision transformer (ViT) [14] utilizes the same self-attention mecha-

nism and crops an image into a sequence of flattened patches as the

input token sequence used in the NLP task to train the transformer

encoder for different downstream tasks, such as classification and

object detection [4, 14]. Various ViT architectures have been pro-

posed [3, 31, 47] recently and related experiments results further

demonstrate ViT also has remarkable representation capacity when

dealing with images and videos [19]. Many previous video-level

detectors choose traditional CNN as their backbones, which may

restrict their performance since CNN’s limited representation capac-

ity compared to transformer, such as [50]. To enhance the model’s

representation capacity in deepfake video detection, more powerful

backbones are needed. There are also some existing works that

apply ViT to deepfake detection tasks, such as [9, 20, 48], but these

approaches focus more on designing ViT architecture or combining

with other approaches without exploring the intrinsic characteris-

tics of deepfake video detection task, such as the spatiotemporal

cues. Therefore, it is necessary to design an effective and flexible

framework to incorporate ViT in deepfake video detection which

can make full use of the dynamical cues distributed in local regions

across frames (e.g., patch-level spatiotemporal cues in deepfake

videos) to further improve model performance.

3 THE APPROACH

3.1 Problem Formulation

In our approach, the objective of deepfake video detection is to

learn a discriminative binary classifier 𝜙 to identify a video clip

consisting of 𝑛 framesV = {f𝑖 }𝑛𝑖=1 into real or fake. Thus, learning

𝜙 can be formulated as an energy minimization problem that can

be solved by:

W
∗ = argmin

W

∑

V∈D
E(𝜙 (W;V), 𝑙), (1)

whereW∗ is the learned optimal output of the detector parameters,

D is the training set, 𝑙 ∈ {0, 1} is the video label and E is an energy

function to measure detection loss.

Considering that the spatiotemporal inconsistency existing in

deepfake videos is dynamically distributed in different local fa-

cial regions across different frames, a key to be addressed by the

detector is providing a flexible and exhaustive way to fully ex-

plore the spatiotemporal cues and aggregate them to form and

learn a typical discriminative features to detect. To achieve that,

the detector 𝜙 should be able to accept dynamical input instances

containing spatiotemporal cues to learn a powerful backbone with

stronger representation capacity. Towards this end, we take a vision

transformer as the backbone and incorporate a simple yet effective

Spatiotemporal Dropout operation to fully explore the dynamical

spatiotemporal inconsistency across different frames at patch-level,

as presented in Fig. 2 and introduced in the following.
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3.2 Spatiotemporal Dropout

The Spatiotemporal Dropout operation aims to generate the dynam-

ical input instances from input videos, which contain spatiotempo-

ral inconsistency cues distributed in different facial regions across

different frames. Therefore, we perform it in an efficient step-wise

manner, including Temporal Dropout and Spatial Dropout.

Temporal Dropout. For each video, we first randomly sample

𝑛 consistent raw frames {f𝑖 }𝑛𝑖=1 and employ face detection and

alignment to each frame f𝑖 to get a facial image sequence F =
{x𝑖 }𝑛𝑖=1. Then we randomly discard part of facial images following

a uniform distribution, with defined temporal dropout rate 𝛼 and

remaining (1 − 𝛼) × 𝑛 facial images, which can be formulated as:

F𝑇 = ⊆ (F , 𝛼)
= ⊆ ({x1, x2, ..., x𝑛}, 𝛼)
= {x𝑘1 , x𝑘1+1, ..., x𝑘1+(1−𝛼)∗𝑛−1},
𝑘1 ∼ U(1, 𝛼 × 𝑛 + 1), 𝑘1 ∈ Z, 𝛼 ∈ (0, 1)

(2)

where ⊆ means the subset operation, 𝛼 is the temporal dropout rate,

𝑘1 is a random start index following a uniform distribution, and F
is the preprocessed facial image sequence. The uniform distribution

can prevent center bias and we finally get a sparse sequence F𝑇 .
Spatial Dropout. For each remaining facial image x𝑖′ ∈ F𝑇 , we
grid-wisely crop x𝑖′ into𝑚 regular non-overlapping facial patches

𝑃𝑖′ = {p𝑖′ , 𝑗 }𝑚𝑗=1, then randomly discard part of patches following

a uniform distribution, with defined spatial dropout rate 𝛽 and

remaining (1 − 𝛽) ×𝑚 facial patches, which can be formulated as:

𝑃𝑖′ ,𝑆 = ⊆ (𝑃𝑖′ , 𝛽)
= ⊆ ({p𝑖′ ,1, p𝑖′ ,2, ..., p𝑖′ ,𝑚}, 𝛽)
= {p𝑖′ ,𝑘2 , p𝑖′ ,𝑘2+1, ..., p𝑖′ ,𝑘2+(1−𝛽)∗𝑚−1},
𝑖
′ ∈ [𝑘1, 𝑘1 + (1 − 𝛼) × 𝑛 − 1],
𝑘2 ∼ U(1, 𝛽 ×𝑚 + 1), 𝑘2 ∈ Z, 𝛽 ∈ (0, 1)

(3)

where ⊆ means the subset operation, 𝛽 is the spatial dropout rate,

𝑘2 is a random start index following a uniform distribution and 𝑃𝑖′

is the cropped facial patch set of x𝑖′ . The uniform distribution can

prevent center bias and we finally get a sparse patch set 𝑃𝑖′ ,𝑆 .

Bag of Patches.Afterwe get all facial patch sets {𝑃𝑖′ ,𝑆 }
𝑘1+(1−𝛼)∗𝑛−1
𝑖′=𝑘1

,

we can generate our bag of patches instance P by first collecting

all 𝑃𝑖′ ,𝑆 together:

P = ∪{𝑃𝑖′ ,𝑆 }
𝑘1+(1−𝛼)∗𝑛−1
𝑖′=𝑘1

, (4)

where ∪ means the union of sets. To guarantee each bag of patches

contains all facial regions of original face, we ensure the index of

each patch p𝑖′ , 𝑗 ∈ 𝑃𝑖′ ,𝑆 without repetition by controlling 𝑘2 in Eq.(3)

and reorganize the patch order in P in original face patch order.

The whole algorithm of our spatiotemporal dropout can be de-

scribed as follows:

• Step 1: Extract and randomly sample 𝑛 consistent raw frames

from input video V = {f𝑖 }𝑛𝑖=1.
• Step 2: Employ face detection and alignment to each frame

f𝑖 to get facial image sequence F = {x𝑖 }𝑛𝑖=1.
• Step 3: Randomly discard 𝛼 × 𝑛 images from F through

temporal dropout to get F𝑇 .

• Step 4: Grid-wisely crop each remaining facial image x𝑖′ ∈
F𝑇 into𝑚 = 𝑟𝑜𝑤 × 𝑐𝑜𝑙 patches to get facial patch set 𝑃𝑖′ .

• Step 5: Randomly discard 𝛽 ×𝑚 patches from each facial

patch set 𝑃𝑖′ to get 𝑃𝑖′ ,𝑆 .
• Step 6: Collect and reorder all facial patch set 𝑃𝑖′ ,𝑆 to get one

bag of patches instance P.

Different from many existing video-level approaches which fo-

cus on single frames or the general 3D feature of video, our STD is

specially designed to capture the patch-level spatiotemporal cues

hidden in deepfake videos. By applying STD operation during train-

ing, the spatiotemporal inconsistency in facial regions across dif-

ferent frames is fully explored and learned by our ViT backbone.

By introducing the dropout operation, the data to be processed is

largely reduced. Besides, since the dropout operation is random,

we can generate massive different bag of patches instances P from

the same input video V in each different training iteration, ex-

haustively exploiting the dynamical spatiotemporal cues and also

serving as data augmentation to further improve our model’s ro-

bustness and generalization ability. Moreover, the STD operation is

flexible and could be plugged into existing ViTs, which is further

discussed in the Experiments section.

3.3 Overall Architecture

After obtaining massive bag of patches instances P through our

STD operation above, we feed them into our ViT backbone to

optimize the final classifier 𝜙 to perform detection, which turns

Eq.(1) into following formulation:

W
∗ = argmin

W

∑

V∈D

∑

P∈𝑆𝑇𝐷 (V)
E(𝜙 (W;P), 𝑙), (5)

whereW∗ is the learned optimal output of the detector parameters,

V is the video clip in training set 𝐷 , 𝑙 ∈ {0, 1} is the video label

and E is an energy function to measure detection loss.

The overall architecture of our proposed approaches is presented

in Fig. 2. During the training process, we first employ frame extrac-

tion, face detection, and alignment to input videoV to get facial

image sequence F = {x𝑖 }𝑛𝑖=1. Then the facial image sequence F is

processed by our STD operation to generate bag of patches instance

P, which is then linearly projected with positional embedding and

fed into our transformer encoder to achieve a stronger represen-

tation capacity. Since the dropout operation is random, massive

different bag of patches instances are generated in different train-

ing iterations from the same input video, exhaustively mining the

dynamic spatiotemporal cues at patch-level and also serving as data

augmentation. The representations learned by the transformer en-

coder are input to a fully connected layer and output the prediction

of being fake or real. For our ViT backbone, we choose the most

basic ViT-Base-16 model presented in [14] which contains 12 trans-

former blocks consisting of two normalization layers, one multi-

head attention block, and one MLP head. A 𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦
loss function is employed as our criteria and energy function in

Eq.(5). During inference, test videos are processed with the same

procedure in training and the model would output the prediction

of being fake or real.
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4 EXPERIMENTS

We conduct experiments and present a systematic analysis to demon-

strate the effectiveness of our proposed Spatiotemporal Dropout

Transformer (STDT). First, we make comparisons with 25 state-of-

the-arts on three popular benchmarks. Then, we conduct visual-

izations and experiments under different perturbations and across

different datasets to demonstrate its robustness, cross-dataset gen-

eralization and representation ability. Finally, a series of ablation

analysis are performed to investigate the impact of each key com-

ponents of our approach.

4.1 Experimental Settings

Datasets. We evaluate our model on FaceForensics++ (FF++) [39],

DFDC [12] and Celeb-DF(v2) [29] datasets. FF++ contains 1,000 orig-

inal videos and corresponding 5×1,000 manipulated videos by using

five different generation methods (including Deepfakes, Face2Face,

FaceShifter, FaceSwap, and NeuralTextures) with different com-

pression rates (raw, c23, and c40 from no to high compression),

where we choose the raw data and select 1,600 for training, 200

for validation and 200 for testing for each subset. DFDC (the Deep-

fake Detection Challenge dataset) contains original videos recorded

from 430 hired actors and over 400G fake videos are synthesized by

several deepfake generation methods. Among all videos, we ran-

domly select 6,261 for training, 800 validation, and 781 for testing.

Celeb-DF(v2) contains 590 original videos covering different ages,

genders, and ethnics, and 5,639 corresponding synthesized videos

(4,807 for training, 1,203 for validation, and 518 for testing).

Implementation Details.We use FFmpeg3 to extract all frames

of original videos and choose a pre-trained MobileNet4 as the face

detector for all datasets. The extracted face images are then aligned

and resized into 384 × 384 shape. For our vision transformer back-

bone, we choose the most basic ViT-Base-16 model described in [14]

as our backbone. Specifically, our ViT-Base-16 backbone contains

12 layers with the dropout rate set to 0.1 and 12 self-attention

heads with the attention dropout rate set to 0.0. And we choose

𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐵𝐶𝐸) as our loss and energy function in

Eq.(5). The embedded vector dimension of projected flatten tokens

is 768 and the dimension of MLP header is 3072. Our ViT was pre-

trained on ImageNet and we adopt SGD optimizer and OneCylcleLR

strategy. The global learning rate is set to 10−3 and the weight de-

cay is set to 10−4. We set the raw frame sequence length 𝑛 to 24,

temporal dropout rate 𝛼 to 1/4, spatial dropout rate 𝛽 to 17/18 and
each face is grid-wisely cropped into 6 × 6 patches. Furthermore,

no additional augmentation methods are employed during training

for a fair evaluation of our STD operation.

4.2 State-of-the-Art Comparison

To demonstrate the advantage of our approach, we make compar-

isons with 25 state-of-the-art approaches on Celeb-DF(v2), DFDC

and FaceForensics++ Deepfakes subset. These approaches include

image-level detectors which use the average frame-level scores as

the final prediction, video-level detectors such as TD-3DCNN [50]

3https://ffmpeg.org/
4https://github.com/yeephycho/tensorflow-face-detection

Table 1: AUC (%) comparisons with 25 state-of-the-art ap-

proaches on three popular benchmarks.

Approach FF++ DFDC Celeb-DF Year

Two-stream [52] 70.7 61.4 53.8 2017

MesoNet [1] 84.7 75.3 54.8 2018

Head-Pose [49] - 55.9 54.6 2019

Vis-Art [34] 78.0 66.2 55.1 2019

Multi-Task [36] 76.3 53.6 54.3 2019

Warp-Art [28] 93.0 75.5 64.6 2019

XceptionNet [39] 95.5 69.7 65.5 2019

CapsuleNet [37] 96.6 53.3 57.5 2019

CNN-RNN [40] 80.8 68.9 69.8 2019

CNN-Spot [46] 65.7 72.1 75.6 2020

X-Ray [27] 92.8 65.5 79.5 2020

TwoBranch [33] 93.2 - 76.6 2020

PatchBased [5] 57.8 65.6 69.9 2020

AudioVis [35] - 84.4 - 2020

TD-3DCNN [50] 72.2 79.0 88.8 2021

MAT [51] 97.6 - - 2021

Lips [18] 97.1 73.5 82.4 2021

DIANet [21] 90.4 90.5 70.4 2021

SPSL [30] 96.9 66.2 - 2021

FD2Net [53] 99.5 66.1 - 2021

ConvViT [48] - 91.0 - 2021

EffViT [9] - 91.9 - 2021

DistViT [20] - 97.8 - 2021

VFD [7] - 98.5 - 2022

ICT [13] 98.6 - 94.4 2022

STDT (Ours) 99.8 99.1 97.2 2022

Table 2: Intra-datasets results on Celeb-DF(v2), DFDC

and five subsets of FaceForensics++ (Deepfakes, Face2Face,

FaceShifter, FaceSwap and NeuralTextures).

Datasets ACC(%) AUC(%) REC(%) PRE(%) F1(%)

Celeb-DF 91.70 97.21 95.01 92.55 93.76

DFDC 97.44 99.14 98.63 98.33 98.48

Deepfakes 97.97 99.76 95.70 100.0 97.80

Face2Face 98.01 99.09 97.94 97.94 97.94

FaceShifter 98.64 99.88 98.28 99.13 98.70

FaceSwap 98.61 99.89 99.11 98.23 98.67

NeuralTextures 91.88 97.98 97.98 97.50 97.74

and RNN [40], and recent approaches based on ViT [9, 20, 48]. Train-

ing and testing on the same datasets aim to explore the model’s

capacity of capturing the deepfake cues in deepfake videos. The

area under the curve (AUC) score is used as the metric and the

results are presented in Tab. 1.

From the table, we can easily observe that our STDT consistently

achieves the highest AUC score on all three datasets, ie, 99.8%

on FaceForensics++, 99.1% on DFDC and 97.2% on Celeb-DF(v2),

which is at least 0.3%, 0.6% and 2.8% higher than the state-of-the-

arts, demonstrating the effectiveness of our proposed approach.
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Figure 3: ROC curves on Celeb-DF(v2), DFDC and five

subsets of FaceForensics++ datasets (Deepfakes, Face2Face,

FaceShifter, FaceSwap and NeuralTextures).

Table 3: Robustness experiments on Celeb-DF(v2) under five

representative augmentation methods.

Augmentation ACC(%) AUC(%) REC(%) PRE(%) F1(%)

Flip 90.54 96.56 95.01 90.99 92.95

Blur 89.01 94.69 92.94 90.54 91.73

Bright 87.84 94.13 92.06 89.68 90.86

Compress 89.38 95.74 96.76 88.20 92.29

Gaussian Noise 87.45 94.25 96.76 85.90 91.01

Origin 91.70 97.21 95.01 92.55 93.76

Specifically, DFDC and Celeb-DF contain higher quality videos with

a variety of scenarios, people groups and generation methods and

the FF++ contains videos from the Internet, indicating our approach

can still achieve impressive performance in a variety of situations.

The main reason is that our approach focuses on capturing the

patch-level inconsistency from both inter-frame and intra-frames

rather than inter-frame inconsistency like [50] .

Additionally, as the FF++ dataset contains several subsets gen-

erated by different deepfake methods, we conduct intra-dataset

experiments on each subset respectively to further evaluate our

proposed approach. We choose the accuracy (ACC), the area under

the curve (AUC), recall (REC), precision (PRE), and F1 score as our

evaluation metrics. The results are presented in Tab. 2 together

with Celeb-DF(v2) and DFDC. From the table, it can be observed

that our proposed approach achieves impressive performance on all

three datasets with all ACC higher than 90%, AUC higher than 97%,

demonstrating the effectiveness and the ability of our approach on

handling various deepfake generation methods. Especially on the

Deepfakes, Face2Face, FaceShifter, and FaceSwap subset of FF++, we

achieve all AUC higher than 99%. The corresponding ROC curves on

each dataset are also presented in Fig. 3 for better comprehension.

After analyzing some samples from these datasets, we find that

Table 4: Cross-datasets generalization results onCeleb-DF(v2)

(C-DF), DFDC and FaceForensics++ Deepfakes (FF-DF).

Train Test ACC(%) AUC(%) REC(%) PRE(%) F1(%)

C-DF
DFDC 83.87 70.14 100.0 83.87 91.23

FF-DF 74.62 79.26 87.10 62.79 72.97

DFDC
C-DF 71.43 73.60 95.59 70.96 81.45

FF-DF 80.71 87.95 92.47 69.36 79.26

FF-DF
C-DF 68.92 69.78 96.47 68.76 80.29

DFDC 83.87 66.99 100.0 83.87 91.23

all these different generation methods will result in subtle visual

artifacts around some facial regions across frames, which may be

disguised by the video quality or so subtle that could be easily ig-

nored. These spatiotemporal cues are hard to be captured by human

eyes, but the results demonstrate that our approach can effectively

capture these inconsistencies and distinguish the deepfake videos

generated by various methods with impressive performance.

4.3 Performance Analysis

Robustness. To evaluate the robustness of our proposed approach,

we train our model on the original datasets and test them under

several augmentation and perturbation methods. We choose five

representative methods, including Flip, Blur, Bright, Compress, and

Gaussian Noise. Specifically, we utilize 10x10 kernel size in Blur, set

compression ratio to 4 in Compress (where file storage becomes 1/4

after compression), and set themean and variance of GaussianNoise

to 0.1 and 0.01. Besides, we train the models without any additional

augmentation methods. The results are presented in Tab. 3. From

the table, we could observe that the performance under different

augmentationmethods is nearly the same as origin, such as the ACC

and AUC under Flip and Compress. This provides clear evidence for

the impressive robustness of our proposed approach on handling

real-world scenarios such as compressed videos on the Internet.

Two video examples and corresponding output predictions during

testing are presented in Fig. 4 for better comprehension.

Cross-dataset Generalizability. To further demonstrate our ap-

proach’s generalizability, we perform cross-dataset experiments

on three datasets by training on one dataset then testing on the

other two. The results are presented in Tab. 4. From the results,

our approach exhibits competitive AUC scores compared to those

opponents in Tab 1. For example, the model training on DFDC and

testing on Celeb-DF and FF++, and the model training on Celeb-DF

and testing on DFDC both outperform plenty of approaches listed

in Tab. 1. This implies that our approach achieves an impressive

generalization ability by capturing the spatial and temporal incon-

sistency generally existing in deepfake videos instead of focusing

on the specific generation pattern or artifact of certain deepfake

methods. Moreover, in some real-world scenarios where we may

not access to the specific generated data, we can directly utilize

the model trained on other accessible data to perform detection

based on the proven cross-dataset generalizability. Besides, if we

can collect a small amount of data, fine-tuning the trained model

could achieve better performance.
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Origin

Fake Video Prediction

0.9996

Flip 0.9357

Blur 0.9321

Bright 0.9830

Compress 0.9998

0.9828Gaussian
Noise

Real Video Prediction

0.0174

0.0833

0.0513

0.0517

0.0195

0.0586

Figure 4: Two video examples from Celeb-DF(v2) with five augmentation methods and the predicted possibilities of being fake.

FF++ FaceShifter

Celeb-DF(v2) DFDC FF++ Deepfakes

FF++ FaceSwap FF++ Face2Face FF++ NeuralTexture

Figure 5: Visualization of representations on Celeb-DF(v2), DFDC and FF++ (five subsets) via t-SNE. Red: Real, Blue: Fake.

Representation. To further demonstrate the representation ability

of our approach, we utilize t-SNE [24] to visualize the representa-

tions learned from trained transformer encoder on three datasets

and each subsets. The visualization results are presented in Fig. 5,

which shows that the real and fake videos generated by different

methods are distinctly clustered in latent space, proving the strong

representation ability of our approach.

4.4 Ablation Analysis

To systemically evaluate the key components of our approach, we

conduct ablation experiments on Celeb-DF(v2) dataset from three

aspects and present a complete analysis in the following.

Dropout Operation. To check the effect of dropout operation, we

first investigate four variants: 1) no dropout (-), 2) spatial dropout

(S), 3) temporal dropout (T), and 4) spatiotemporal dropout (S+T).

Here, spatial dropout discards random patches in frames but does

not discard frames, while temporal dropout just randomly drops

some frames from extracted sequence. The results are presented

in Tab. 5, and we can observe that the accuracy and AUC can be

improved when applying spatial or temporal dropout. Specially,

combining both spatial and temporal dropout achieves the best

performance due to the consideration of spatiotemporal inconsis-

tency, demonstrating the effectiveness of spatiotemporal dropout.

To further verify that, we conduct an experimental comparison
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Table 5: Ablation analysis on operation effectiveness on

Celeb-DF(v2): no-dropout (-), temporal dropout (T), spatial

dropout (S), and spatiotemporal dropout (S+T).

Dropout ACC(%) AUC(%) REC(%) PRE(%) F1(%)

- 87.65 93.43 94.71 85.70 90.96

S 88.42 95.01 97.94 86.27 91.74

T 89.58 95.56 92.65 91.57 92.11

S+T 91.70 97.21 95.01 92.55 93.76

89.77 

96.25 95.88 

89.32 
92.48 91.70 

97.21 
95.01 

92.55 93.76 
90.73 

96.90 
94.12 

91.95 93.02 

88.80 

95.12 
97.65 

86.91 

91.97 

ACC AUC REC PRE F1

Experiments with different α

α=1/2 α=1/4 α=1/8 α=1/16

Figure 6: Ablation analysis on temporal dropout rate 𝛼 on

Celeb-DF(v2). We set 𝛼 to 1/2, 1/4, 1/8, and 1/16 with other

hyper-parameters fixed.

with TD-3DCNN [50] by using different dropout operations and

network architectures, and report the results in Tab 6 where re-

markable improvement is achieved by our spatiotemporal dropout.

Table 6: The AUC (%) comparisons with [50] under differ-

ent dropout operations and network architectures on Celeb-

DF(v2), DFDC and FaceForensics++(FF++).

Architecture Dropout Celeb-DF DFDC FF++

3DCNN
TD [50] 88.83 78.97 72.22

STD 93.39 85.87 92.70

ViT
TD [50] 95.56 97.39 97.41

STD 97.21 99.14 99.76

Dropout Rate. To further explore the effects of spatial and tem-

poral dropout respectively, we evaluate our approach on Celeb-

DF(v2) by setting different dropout rate 𝛼 and 𝛽 with other hyper-

parameters fixed. We define 𝛽
′
= 1 − 𝛽 for convenience and the

results are presented in Fig. 6 and Fig. 7. From the results, we can

find that different 𝛼 and 𝛽 result in different detection performance

on accuracy and AUC, and the influence is significant, i.e., the AUC

is about 2% higher when 𝛼 set to 1/4 compared to 1/16, and about

1.5% higher when 𝛽
′
set to 1/18 compared to 1/9. Besides, we can

find that the accuracy and AUC decline when setting 𝛼 or 𝛽 too

low or high, i.e., the ACC and AUC both declined when changing 𝛼

from 1/4 to 1/2 and 1/8, or changing 𝛽
′
from 1/18 to 1/9 and 1/36. We

analyze this is because the spatiotemporal inconsistency is crushed

or damaged when setting 𝛼 or 𝛽 too low or high, dropping too

many or few frames and patches. This indicates that the value of 𝛼
and 𝛽 should be carefully considered.

ViT Backbones.We evaluate our model’s performance under four

ViT backbones (ViT-B16, ViT-B32, ViT-L16 and ViT-L32 [14]) on

91.31 

96.93 

92.94 93.77 93.35 
90.54 

95.84 
93.82 

91.93 92.87 91.70 

97.21 
95.01 

92.55 93.76 
90.54 

96.19 97.06 

89.43 

93.09 

ACC AUC REC PRE F1

Experiments with different β'

β'=1/6 β'=1/9 β'=1/18 β'=1/36

Figure 7: Ablation analysis on Spatial Dropout rate 𝛽
′
= 1 − 𝛽

on Celeb-DF(v2). We set 𝛽
′
to 1/6, 1/9, 1/18, and 1/36 with

other hyper-parameters fixed.

Table 7: Ablation analysis of four different ViT backbones

on Celeb-DF(v2) with (
√
) and without (-) STD.

Backbone STD ACC(%) AUC(%) REC(%) PRE(%) F1(%)

ViT-B16
- 82.43 92.63 79.41 92.79 85.58√

91.70 97.21 95.01 92.55 93.76

ViT-B32
- 75.29 87.68 99.71 72.75 84.12√

85.52 95.34 98.53 82.72 89.93

ViT-L16
- 76.83 89.27 97.06 75.01 84.62√

86.87 94.26 91.47 88.57 90.14

ViT-L32
- 71.43 83.13 98.82 70.01 81.95√

86.49 96.95 97.35 84.44 90.44

Celeb-DF(v2) to further demonstrate the effectiveness and flexibility

of our spatiotemporal dropout. The results are presented in Tab. 7.

From the table, we can find that the performance is consistently

improved when incorporating STD, averagely improving ACC by

11.15% and AUC by 7.76%. This conclusively demonstrates the

effectiveness of our STD as well as its flexibility to plug into various

ViT architectures. Besides, the results shown in Tab. 6 also come to

this conclusion when employing in CNN architectures.

5 CONCLUSION

In this paper, we propose a spatiotemporal dropout transformer

to detect deepfake videos at patch-level. In the approach, an input

video is grid-wisely cropped and reorganized as massive bag of

patches instances which are then fed into a vision transformer to

achieve robust representations. A spatiotemporal dropout operation

is designed to fully explore the patch-level spatiotemporal incon-

sistency as well as serving as data augmentation, further improv-

ing model’s robustness and generalizability. The spatiotemporal

dropout operation is flexible and can be plugged into various ViTs.

Extensive experiments clearly shows our approach outperforms 25

state-of-the-arts with impressive robustness, generalizability and

representation ability. In the future, we will extend our approach to

more video understand tasks and also enhance its interpretability

to provide a more human-understandable detection result.
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