
Real-time Streaming Video Denoising with Bidirectional Buffers
Chenyang Qi∗

HKUST
Junming Chen∗

HKUST

Xin Yang
HKUST

Qifeng Chen
HKUST

ABSTRACT
Video streams are delivered continuously to save the cost of storage
and device memory. Real-time denoising algorithms are typically
adopted on the user device to remove the noise involved during
the shooting and transmission of video streams. However, sliding-
window-based methods feed multiple input frames for a single
output and lack computation efficiency. Recent multi-output in-
ference works propagate the bidirectional temporal feature with
a parallel or recurrent framework, which either suffers from per-
formance drops on the temporal edges of clips or can not achieve
online inference. In this paper, we propose a Bidirectional Stream-
ing Video Denoising (BSVD) framework, to achieve high-fidelity
real-time denoising for streaming videos with both past and fu-
ture temporal receptive fields. The bidirectional temporal fusion
for online inference is considered not applicable in the MoViNet.
However, we introduce a novel Bidirectional Buffer Block as the
core module of our BSVD, which makes it possible during our
pipeline-style inference. In addition, our method is concise and flex-
ible to be utilized in both non-blind and blind video denoising. We
compare our model with various state-of-the-art video denoising
models qualitatively and quantitatively on synthetic and real noise.
Our method outperforms previous methods in terms of restora-
tion fidelity and runtime. Our source code is publicly available at
https://github.com/ChenyangQiQi/BSVD

CCS CONCEPTS
•Computingmethodologies→Computational photography.

KEYWORDS
Video Denoising, Efficient Inference, Online Inference.

ACM Reference Format:
Chenyang Qi, Junming Chen, Xin Yang, and Qifeng Chen. 2022. Real-time
Streaming Video Denoising with Bidirectional Buffers. In Proceedings of
the 30th ACM International Conference on Multimedia (MM ’22), October
10–14, 2022, Lisboa, Portugal. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3503161.3547934

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’22, October 10–14, 2022, Lisboa, Portugal
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9203-7/22/10. . . $15.00
https://doi.org/10.1145/3503161.3547934

10 2 10 1 100 101 102

Runtime (s)

29

30

31

32

33

PS
NR

 (d
B)

VNLB

V-BM4D

VNLNet(ICIP2019)

DVDNet(ICIP2019)FastDVDNet(CVPR2020)

PaCNet(ICCV2021)

BSVD-64(ours)

BSVD-32(ours)

Figure 1: Comparison of PSNR and runtime on DAVIS test
set with noise level 𝜎 = 50. Our BSVD-64 outperforms state-
of-the-art PaCNet [24] with 700× speedup. It takes BSVD-64
33.7ms per frame to process a video with resolution of 960×
540. Green: CPUmethod. Blue: Learning-basedGPUmethod.
Red: Ours.

1 INTRODUCTION
With the explosive growth of social media, there is an increasing
need for video streaming applications on the user’s device, such as
live streaming on YouTube, TikTok, and video meetings on Zoom.
Since the noise from video capturing and compression degrades the
quality of videos, noise reduction plays a vital role in improving
video fidelity. Although offline video processing [3, 10, 22, 24] has
been an active research topic in recent years, few works [15, 23,
27, 28] are feasible for online streaming video denoising, which
is more challenging. Streaming video denoising is featured in the
following two points compared with offline video denoising. First,
since streaming video denoising is primarily applied to sports games
and other live streaming media, a real-time inference speed should
be satisfied. Second, the frames should be processed online in a
continuous frame-by-frame way because there is no explicit end
for streaming video. To fulfill the above requirements, we propose
a real-time high-quality streaming denoising framework.

To the best of our knowledge, the existing works can be cate-
gorized into three classes: sliding-window-based methods [23, 24]
(Fig. 2(a)), recurrent methods [15, 31] (Fig. 2(b,c)) and multi-input
multi-output (MIMO) methods [10, 31] (Fig. 2(d)). The sliding-
window-based methods [23, 24] (Figure 2(a)) restore each frame
by feeding the degraded one with its neighbours. However, such
sliding-window strategy has unnecessary, redundant computation:

ar
X

iv
:2

20
7.

06
93

7v
1

 [
cs

.C
V

]
 1

4
Ju

l 2
02

2

https://github.com/ChenyangQiQi/BSVD
https://doi.org/10.1145/3503161.3547934
https://doi.org/10.1145/3503161.3547934
https://doi.org/10.1145/3503161.3547934

MM ’22, October 10–14, 2022, Lisboa, Portugal Chenyang Qi, Junming Chen, Xin Yang, and Qifeng Chen

Method (a) Sliding-window (b) Uni-RNN (c) Bi-RNN (d) MIMO (e) Ours

Time

Conv

Input
𝑥𝑥

Output
𝑦𝑦

Visualization

Deleted Feature

Memory

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑁𝑁 𝑁𝑁

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑁𝑁

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑁𝑁
𝑁𝑁

Input 𝑥𝑖−𝑇𝑐𝑙𝑖𝑝/2, . . . , 𝑥𝑖+𝑇𝑐𝑙𝑖𝑝/2 𝑥𝑖 𝑥1, 𝑥2, . . . , 𝑥𝑇𝑐𝑙𝑖𝑝 𝑥1, 𝑥2, . . . , 𝑥𝑇𝑐𝑙𝑖𝑝 𝑥𝑖

Buffered Feature Index - 𝑖 − 1 1, 2, . . . ,𝑇𝑐𝑙𝑖𝑝 - 𝑖 − 𝑁, . . . , 𝑖 − 1

Output 𝑦𝑖 𝑦𝑖 𝑦1, 𝑦2, . . . 𝑦𝑇𝑐𝑙𝑖𝑝 𝑦1, 𝑦2, . . . 𝑦𝑇𝑐𝑙𝑖𝑝 𝑦𝑖−𝑁

Memory Complexity 𝑂 (𝑇𝑐𝑙𝑖𝑝) 𝑂 (𝑁) 𝑂 (𝑇𝑐𝑙𝑖𝑝) 𝑂 (𝑇𝑐𝑙𝑖𝑝) 𝑂 (𝑁)
Time Per Frame 𝑂 (𝑇𝑐𝑙𝑖𝑝𝑁) 𝑂 (𝑁) 𝑂 (𝑁) 𝑂 (𝑁) 𝑂 (𝑁)
Bidirectional Fusion ! % ! ! !
Clip-edge Fidelity ! ! % % !

Figure 2: The comparison of computation graph and complexity for different methods. For an input clip with length 𝑇𝑐𝑙𝑖𝑝 ,
we assume all methods use same 𝑁 convolution blocks for temporal fusion. Blue, green, and red features represent the past,
present, and future features from three adjacent frames. Solid features are cached in the GPU memory, while dotted features
have been deleted. Compared with sliding-windowmethods (a), our inference time is shorter. For unidirectional-RNN (b), our
framework utilize bidirectional temporal fusion, and achieve better fidelity. In addition, bidirectional-RNN (c) and MIMO (d)
framework suffer from𝑂 (𝑇𝑐𝑙𝑖𝑝)memory andfidelity degradation on the clip edges, which is solved in our inference framework.

each frame is fed into the network multiple times. For instance, to
restore a video with resolution of 960 × 540, it takes PaCNet [24]
about 24 seconds per frame, which impedes this method to real-
time application. Meanwhile, such methods only fuse the temporal
information in pixel-level [23] or neighbor patch-level [24], while
the intermediate multi-scale features are also important for the
denoising performance, as shown in (Sec. 5.2).

Different from sliding-window-based methods, recurrent works
[3, 15] use previous reconstructed results as a reference for next
restoration. Such recurrent methods can be further divided into
unidirectional [15, 31] (Fig. 2(b)) and bidirectional [3] (Fig. 2(c))
propagation. Although unidirectional recurrent methods can ex-
ploit past information for streaming processing, their denoising
performance degrades by ignoring future information. To utilize
both past and future information, bidirectional recurrent methods
are proposed to propagate the temporal information in both for-
ward and backward directions. For best results from a bidirectional
recurrent network, users must prepare the entire video in advance,
which means they cannot realize streaming video denoising [3].

Most recently, MIMO frameworks [10, 31] have been introduced
for efficient processing a clip of video frames in one-forward-
pass(Fig. 2(d)). The inference schema can be implemented as a
channel shift [13] or a local window [10] in temporal dimension.
However, with the growth of clip size𝑇𝑐𝑙𝑖𝑝 , the inference-timemem-
ory consumption also increases linearly in O

(
𝑇𝑐𝑙𝑖𝑝

)
. Thus, such

methods suffer from heavy memory consumption [10], and the long
input video must be segmented into short clips. Moreover, similar
to bidirectional recurrent methods [3], MIMO also has performance
degradation on the edges of clips (Sec. 5.1).

In this work, we propose the Bidirectional Streaming Video
Denoising framework (BSVD). Bidirectional temporal fusion is crit-
ical for low-level video processing since it fully utilizes the infor-
mation of both past and future frames, which is demonstrated in

our experiment (Sec. 5.2). Thus, we train our model as a MIMO
framework using bidirectional Temporal Shift Modules (TSM) [13],
which is also more efficient than sliding-window. To address the
clip-edges-drop problem [3, 10] and enable the bidirectional fusion
for streaming videos, which is regarded as not applicable in pre-
vious works [8, 13], we propose a Bidirectional Buffer Block that
can cache and reuse the features for both past and future propa-
gation during pipeline-style inference. Thus, our BSVD featured
with the pipeline-style buffer block can achieve a constant mem-
ory complexity of O (1), in contrast with O

(
𝑇𝑐𝑙𝑖𝑝

)
in other MIMO

methods [3, 10]. Extensive evaluations on datasets with synthetic
and real noise show that the proposedmethod outperforms previous
methods in denoising performance and runtime.

Our contributions can be summarized as follows:
(a) We propose a pipeline-style buffer-based video denoising

framework, named BSVD, which processes the video streams of
resolution 960 × 540 in real-time.

(b) The proposed novel Bidirectional Buffer Block and pipeline-
style inference framework enable bidirectional temporal fusion for
online streaming video processing.

(c) In addition, we address the fidelity degradation on the clip
edges in the MIMO framework [3] by utilizing buffered features.
Our proposed computation graph is general and applicable for
pre-trained checkpoints of the existing method FastDVDNet [23].

(d) Our succinct BSVD framework achieves SOTA performance
on Gaussian noise [23, 24], real noise [15], and blind denoising [21,
31]. Figure 1 provides a comparison of PSNR and runtime on DAVIS
test set with noise level 𝜎 = 50. BSVD outperforms the previous
most efficient baseline FastDVDnet [23] withmore than 2× speedup
and improves average PSNR by 0.57dB on DAVIS dataset. Moreover,
it surpasses the best fidelity work PaCNet [24] while being 700×
faster.

Real-time Streaming Video Denoising with Bidirectional Buffers MM ’22, October 10–14, 2022, Lisboa, Portugal

Slice

Past Buffer 𝑩𝑩−𝟏𝟏,𝒍𝒍 = 𝒁𝒁[0:𝒇𝒇]
𝒊𝒊−𝒍𝒍−𝟐𝟐,𝒍𝒍

Input 𝒁𝒁𝒊𝒊−𝒍𝒍,𝒍𝒍

Current Buffer 𝑩𝑩𝟎𝟎,𝒍𝒍 = 𝒁𝒁𝒊𝒊−𝒍𝒍−𝟏𝟏,𝒍𝒍

Concatenation

Conv

𝒁𝒁𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇
𝒊𝒊−𝒍𝒍−𝟏𝟏,𝒍𝒍 Output 𝒁𝒁𝒊𝒊−𝒍𝒍−𝟏𝟏,𝒍𝒍+𝟏𝟏

Updated 𝑩𝑩−𝟏𝟏,𝒍𝒍 = 𝑩𝑩[𝟎𝟎:𝒇𝒇]
𝟎𝟎,𝒍𝒍

Updated 𝑩𝑩𝟎𝟎,𝒍𝒍 = 𝒁𝒁𝒊𝒊−𝒍𝒍,𝒍𝒍

(a) Temporal Fusion (b) 2D Convolution (c) Update Buffer

Figure 3: The forward operation of 𝑙 th Bidirectional Buffer Block at time step 𝑖. This block aggregates input feature 𝑍 𝑖−𝑙,𝑙 with
buffered features 𝐵−1,𝑙 , 𝐵0,𝑙 , to output 𝑍 𝑖−𝑙−1,𝑙+1, which is the input for the (𝑙 + 1)th temporal buffer block. After convolution
operation, the buffered feature are updated using input 𝑍 𝑖−𝑙,𝑙 .

Bidirectional Buffer Block

Input Sequence
𝒙𝒙𝒊𝒊 Denoised Sequence

𝒚𝒚𝒊𝒊−𝑵𝑵

2D Convolution

𝒙𝒙𝒊𝒊−𝑵𝑵

Figure 4: An overview of our framework. The backbone of our network is two light-weight U-Nets [20] with temporal fusion
operation inserted between convolution layers. At time step 𝑖 during inference, one noisy frame 𝑥𝑖 and its noise map are fed
into the neural network. Then, our network outputs another clean frame 𝑦𝑖−𝑁 .

2 RELATEDWORK
Image denoising. Single image denoising has been a long-standing
problem as one of the most fundamental image restoration tasks.
Some traditional and representative methods [2, 4, 9, 16] typically
exploit the texture similarity in non-local image patches to achieve
satisfying denoising performance. However, such methods suffer
from time-consuming patch searching. Recently, deep learning has
made great progress for single image denoising tasks. Zhang et
al. [35] propose a deep CNN using residual learning, which outper-
forms the traditional methods by a large margin. They present an
efficient model using downsampled sub-images and a non-uniform
noise level map. Meanwhile, some other works attempt to predict
pixel-wise kernels [18, 30, 32] firstly and then apply these spatial-
variant kernels as convolutional weights in the main denoising net-
work branch. Recently, Transformer-based architectures [11, 34]
achieve state-of-the-art performance on single image denoising
tasks. While single-image methods can restore each frame online,
they also discard the information in adjacent frames, which should
be considered in the streaming denoising task.

Video denoising. In the video, pixels in adjacent frames can
be very similar. The temporal correlation can be utilized by de-
formable convolution [25], kernel prediction [18, 30], block match-
ing [14, 24], optical flow [22] and attention [10] which typically
improve the image fidelity at the cost of expensive computation.
Meanwhile, various works focus on the reduction of computa-
tion in video denoising [15, 23]. FastDVDnet [23] is composed

of two lightweight U-Nets [20] without explicit motion estimation.
It works in a multiple-to-single manner, while ours adopt an effi-
cient buffer-based inference pipeline without redundancy. More
recently, EMVD [15] presents a unidirectional recurrent solution,
which reuses the previous predicted clean frame. Compared with
EMVD [15], our buffer-based bidirectional fusion fully utilized the
feature from neighboring frames. Meanwhile, we solve the prob-
lem of high memory consumption and performance drop on the
temporal edges of clips, which widely exist in MIMO frameworks
[3, 10, 31].

3 METHOD
Given a stream of noisy frames without an explicit ending frame
{𝑥0, 𝑥1, . . . , 𝑥𝑖 , . . .}, where 𝑥𝑖 ∈ R𝐶×𝐻×𝑊 with input channel 𝐶 ,
height𝐻 andwidth𝑊 , we restore the clean frames {𝑦0, 𝑦1, . . . , 𝑦𝑖 , . . .}
in a continuous pipeline. Our method is suitable for both non-blind
and blind denoising. For non-blind denoising, we set 𝐶 = 4 [23, 24]
or 𝐶 = 5 [15] in input frames following previous works. For blind
denoising, we only input the RGB channels and thus 𝐶 = 3.

We train our model in MIMO framework using Temporal Shift
Module(TSM) [13] for distributed parallelism (Sec. 3.1). During in-
ference, we replace TSM with Bidirectional Buffer Block (Sec. 3.2),
and our framework processes the video in a pipeline (Sec. 3.3). Fig-
ure 2 demonstrates the difference between our method and previous
inference frameworks. Figure 4 gives an overview of our inference
algorithm with Bidirectional Buffer Block (Figure 3). Specifically, at

MM ’22, October 10–14, 2022, Lisboa, Portugal Chenyang Qi, Junming Chen, Xin Yang, and Qifeng Chen

Forward Shift

Backward Shift

(b) Temporal Shift(a) Bidirectional Buffer

Zero Padding

Time

Channel

H,W

𝑩𝑩−𝟏𝟏,𝒍𝒍𝑩𝑩𝟎𝟎,𝒍𝒍𝒁𝒁𝒊𝒊−𝒍𝒍,𝒍𝒍

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Figure 5: Illustration of the difference between a single block
of our pipeline-style inference method and TSM. We set the
ratio 𝑟 = 4 in visualization. TSM uses zero paddings to fill
the slots produced by shift operation, while we use buffered
feature without zero padding at the temporal boundaries.

time step 𝑖 ∈ {0, 1, 2, . . .}, we feed a noisy frame 𝑥𝑖 . Then, the input
is fused with previous features buffered in 𝑁 Bidirectional Buffer
Blocks. Finally, the model produces a single clean frame 𝑦𝑖−𝑁 for
the noisy input at time step 𝑖 − 𝑁 at the end of the time step 𝑖 .

3.1 Training with Temporal Shift Module
During the training stage, we utilize TSM [13] as the temporal
fusion operation in our convolution backbone. We randomly crop
𝑇𝑐𝑙𝑖𝑝 -frame clips from videos as input and use the pixel loss (e.g.,
L1 or L2) between {𝑥𝑡 }

𝑇𝑐𝑙𝑖𝑝
𝑡=1 and {𝑦𝑡 }

𝑇𝑐𝑙𝑖𝑝
𝑡=1 as the training objective.

Assume a feature clip 𝑍 ∈ R𝑇𝑐𝑙𝑖𝑝×𝐶𝑓 ×𝐻𝑓 ×𝑊𝑓 is the stack of 𝑇𝑐𝑙𝑖𝑝
continuous frame features, with feature channel 𝐶𝑓 , height 𝐻𝑓

and width𝑊𝑓 . Then, the temporal shift can be represented as the
concatenation (⊕) of features channels:

𝑍0
𝑓 𝑢𝑠𝑒𝑑

= 𝑍−1
[0:𝑓] ⊕ 𝑍0

[𝑓 :−𝑓] ⊕ 𝑍+1
[−𝑓 :] , (1)

where superscript −1 and +1 represent one-frame forward and
backward shift, respectively. 𝑓 = ⌊𝐶𝑓 /𝑟⌋ is the number of shifted
channels, and the ratio of channels shifted in each direction is em-
pirically set as 𝑟 = 8 following TSM [13]. As shown in Figure 5(b),
TSM is a MIMO framework, which generates blank slots and humps
on the boundaries of the clip. The original TSM [13] directly trun-
cates the humps and fills the blank slots with zero paddings, which
degrades the image fidelity. Thus, it is not an optimal inference
framework for processing video streams.

Backbone network. We utilize two enhanced lightweight U-
Nets [20, 29] as our base model W-Net [29]. Such a two-step denois-
ing architecture has proven to be effective in previous works [21, 23,
29]. Batch normalization (BN) layer is observed to decrease image
fidelity in super-resolution [12, 26] and deblurring [19], but it still
exists in current SOTA video denoising methods [23, 24]. Thus, we
remove BN layers in the W-Net. Besides, we replace ReLU activa-
tion with ReLU6 to alleviate artifacts during FP16 inference. In the
following, “BSVD-32” denotes our model whose smallest feature
channel is “32”. We adjust our backbone by multiplying or dividing

Algorithm 1 Pseudo code of a single Bidirectional Buffer Block.
class BidirectionBufferedBlock(nn.Module):

def __init__(self, in_channels, out_channels, r=8):
self.conv = nn.Conv2d(in_channels, out_channels)
self.f = in_channels//r

self.𝐵−1,𝑙 = torch.zeros(n, self.f, h, w)

self.𝐵0,𝑙 = torch.zeros(n, in_channels, h, w)

def forward(self, 𝑍 𝑖−𝑙,𝑙):
Activate the block

if self.𝐵0,𝑙 is None:

self.𝐵0,𝑙 = 𝑍 𝑖−𝑙,𝑙

return None
Fuse the temporal adjacent features
fusion = torch.cat([

self.𝐵−1,𝑙,

self.𝐵0,𝑙[:,self.f:-self.f, :, :]

𝑍 𝑖−𝑙,𝑙[:, -self.f:, :, :], dim=1)
2D Convolution for output

𝑍 𝑖−𝑙−1,𝑙+1 = self.conv(fusion)
Update the buffer

self.𝐵−1,𝑙 = self.𝐵0,𝑙[:, :self.f, :, :]

self.𝐵0,𝑙 = 𝑍 𝑖−𝑙,𝑙

return 𝑍 𝑖−𝑙−1,𝑙+1

all channel numbers by a scale. Please refer to the supplement for
more details about our implementation.

3.2 Inference with Bidirectional Buffer Block
During the inference stage, we replace the temporal shift operation
with the designed Bidirectional Buffer Block, while keeping the
weights of the convolution backbone unchanged. As shown in Fig-
ure 5(a), our buffer blocks serve as a bridge to transfer the feature of
neighboring frames, which can enlarge the temporal receptive field
as well as make bidirectional temporal fusion possible for streaming
video, which is regarded not applicable in previous works [8, 13].
Therefore, we solve the fidelity degradation at two clip boundaries
in such a MIMO system.

The pseudo code shown in Alg. 1 and Figure 3 delineate the
computation steps of a single Bidirectional Propagation Block. Each
block is initialized with two buffers, which will be filled with inter-
mediate features. For 𝑙 th block, we denote them as current buffer
𝐵0,𝑙 ∈ R𝐶𝑓 ×𝐻𝑓 ×𝑊𝑓 and past buffer 𝐵−1,𝑙 ∈ R𝑓 ×𝐻𝑓 ×𝑊𝑓 . We denote
the relative temporal index as the superscript 0,−1.

During the forward inference at time step 𝑖 ≥ 𝑁 , a future feature
𝑍 𝑖−𝑙,𝑙 ∈ R𝐶𝑓 ×𝐻𝑓 ×𝑊𝑓 is fed into 𝑙 th buffered block. The superscript
index 𝑖 − 𝑙 denotes latency of 𝑙 frames caused by 𝑙 blocks. More
details about latency and the operation for 𝑖 < 𝑁 at will be discussed
later in Sec.3.3. As shown in Figure 3, The forward operation is
composed of three steps:

(a) Fusion of new input and buffered features. The temporal
fusion can be represented as

𝑍
𝑖−𝑙−1,𝑙
𝑓 𝑢𝑠𝑒𝑑

= 𝐵−1,𝑙 ⊕ 𝐵
0,𝑙
[𝑓 :−𝑓] ⊕ 𝑍

𝑖−𝑙,𝑙
[−𝑓 :] , (2)

where two buffers are filled with features 𝐵−1,𝑙 = 𝑍
𝑖−𝑙−2,𝑙
[0:𝑓] , 𝐵0,𝑙 =

𝑍 𝑖−𝑙−1,𝑙 , which are cached in the last time step 𝑖−1. We will discuss
the features in buffers in (c).

(b) Feature extraction. The feature extraction operation can be
any general 2d operator, which is implemented as 2d convolution:

𝑍 𝑖−𝑙−1,𝑙+1 = 𝐶𝑜𝑛𝑣 (𝑍 𝑖−𝑙−1,𝑙
𝑓 𝑢𝑠𝑒𝑑

), (3)

Real-time Streaming Video Denoising with Bidirectional Buffers MM ’22, October 10–14, 2022, Lisboa, Portugal

Table 1: Pipeline-Style inference at different time step.

Time step Input Buffered features Output

0 𝑥0 None
1 𝑥1 𝑍0,1 None
2 𝑥2 𝑍1,1, 𝑍0,2 None
. . .

𝑁 𝑥𝑁 𝑍𝑁−1,1, 𝑍𝑁−2,2 . . . , 𝑍1,𝑁−1 𝑍0,𝑁 = 𝑦0

𝑖 ≥ 𝑁 𝑥𝑖 𝑍 𝑖−1,1, 𝑍 𝑖−2,2, . . . , 𝑍 𝑖−𝑁 +1,𝑁−1 𝑍 𝑖−𝑁,𝑁 = 𝑦𝑖−𝑁

where 𝑍 𝑖−𝑙−1,𝑙+1 is the input for the next (𝑙 + 1)th Bidirectional
Buffer Block.

(c) Update the buffered feature in the memory. At the end
of timestep 𝑖 for 𝑙 th block, we update the intermediate feature in
the fixed buffer to reuse the previous computation.

𝐵−1,𝑙 = 𝐵
0,𝑙
[0:𝑓] (4)

𝐵0,𝑙 = 𝑍 𝑖−𝑙,𝑙 (5)
After the above three steps, the temporal index of output (𝑖−𝑙 −1

for 𝑍 𝑖−𝑙−1,𝑙+1) has moved backward by 1 frame compared with the
original input (𝑖 − 𝑙 for 𝑍 𝑖−𝑙,𝑙), since most of 𝑍 𝑖−𝑙−1,𝑙

𝑓 𝑢𝑠𝑒𝑑
’s channels are

from 𝐵0,𝑙 = 𝑍 𝑖−𝑙−1,𝑙 .

3.3 Pipeline-style Inference
A single Bidirectional Buffer Block can be seen as a sliding window
with size 3, which has 1 frame temporal latency. We consider the
first Bidirectional Buffer Block for ease of description. At time step
𝑖 = 0, both buffers (𝐵−1,1 and 𝐵0,1) in 1st block are empty, which
means this block does not have enough information for temporal
fusion. Thus, it caches the input𝑍0,1 to 𝐵0,1, and the whole pipeline
exits. At time step 𝑖 = 1, together with the new input, the block
is activated by information from two time steps. It fills 𝐵−1,𝑙 with
zeros and conduct forward temporal fusion to extract feature 𝑍0,1

for 𝑥0. Table 1 shows the operation and intermediate feature at
each time step. For time step 𝑖 < 𝑁 , each input frame activates one
deeper Bidirectional Buffer Block 𝐵0,𝑖 in our network. Therefore,
when the first denoised frame 𝑦0 comes out, there are already 𝑁 +1
frames fed into our inference block. At a general time step 𝑖 ≥ 𝑁 ,
the network takes 𝑥𝑖 as input. 𝑙 th block takes 𝑍 𝑖−𝑙,𝑙 as input and
produce 𝑍 𝑖−𝑙−1,𝑙+1. The whole pipeline generates and caches 𝑁
features. Finally, the network produces a clean frame output 𝑦𝑖−𝑁
at the end of the time step 𝑖 . For the last 𝑁 frames in the entire video
sequence, we feed dummy zero tensors into the pipeline to get the
clean output of the last few frames. Our supplement provides more
details about the inference pipeline.

3.4 Analysis
Running time. FastDVDnet [23] is a sliding-window-based frame-
work with a window size of 5, which is composed of 2 U-Nets with
the smallest channel 32. FastDVDnet fuses the three adjacent noisy
frames at each U-Net’s input layer. Thus, the computation cost for
each output is 3 + 1 = 4 times that of a single U-Net. In our work,
BSVD-32 uses two similar U-Nets with the same channel setting as
the convolution backbone. Instead of feeding a clip of frames, we
feed in a single frame at any time step. Therefore, the computation

cost of our method for each frame is 1 + 1 = 2 times of U-Net. As
shown in Table 2, our BSVD-32 reduces more than 50% of runtime
compared with FastDVDnet.

Memory. In bidirectional-RNN and MIMO frameworks [3, 10,
31], memory consumption is typically proportional to the clip
length 𝑇𝑐𝑙𝑖𝑝 at inference time, which impedes the processing of
the long video on devices with limited resources. Thus, the whole
video is divided into multiple short sequences to fit the memory
size on the user device. However, for low-level denoising tasks,
this will lead to a quality drop on the boundary frames in a video
clip due to the loss of the marginal feature (Sec. 5.1). Unlike MIMO
frameworks, our buffers work in a pipeline that consumes frames
one by one. Therefore, our method can keep a constant run-time
memory, which depends only on the number of Bidirectional Buffer
Blocks 𝑁 .

Temporal receptive field. The temporal receptive field of a
single Bidirectional Propagation Block is 3. During the inference
of the neural network, the receptive field of temporal shift will
be accumulated like 1-D convolution. In our framework, we apply
𝑁 = 16 layers of Bidirectional Propagation Block in the network.
Therefore, the accumulated temporal receptive field of our BSVD is
33, which is larger than previous window-based methods (e.g., 7
for PaCNet [24] and 5 for FastDVDnet [23]) by a large margin.

4 EXPERIMENTS
4.1 Datasets and Settings
To evaluate our method, we use both RGB images with synthetic
noise [6] and raw images with real-world noise [33].

DAVIS and Set8 datasets. For RGB images with synthetic noise,
we follow the data preparation of FastDVDnet [23]. The clean
patches are randomly sampled from the training set of the DAVIS [6].
The noisy patches are generated by adding additional white Gauss-
ian noise (AWGN) of 𝜎 ∈ [5, 50] to clean patches. For models
trained on the DAVIS train set, we evaluate them on both Set8 and
DAVIS test sets [23]. We follow the FastDVDnet to limit all test
video sequences to the first 85 frames.

CRVD dataset. For real-world raw images, we use the dataset
collected by Yue et al. [33]. It is composed of one synthetic dataset
(SRVD) generated fromMOT [17] and one captured dataset (CRVD).
The real raw noise is often assumed to conform to a heteroskedastic
Gaussian distribution with signal-dependent variance:

𝜎2 (x) = 𝑎x + 𝑏, (6)

where 𝑎, 𝑏 ∈ R are parameters for shot and read noise respec-
tively [15]. 5 possible pairs of (𝑎, 𝑏) map to 5 different ISO settings.
Following previous works [15, 33], we train our model with SRVD
and CRVD scenes 1 to 6, and test on CRVD scenes 7 to 11.

4.2 Baselines
We compare our method with state-of-the-art methods, including
raw data baselines [15, 23, 33], and RGB image baselines [1, 14, 21–
24, 31]. For evaluation on RGB images with Gaussian noise, we train
our model with the same L2 loss as FastDVDnet [23], and compare
it with the quantitative results of [1, 14, 22, 23] in the FastDVDnet
paper. For experiments on raw images with real-world noise, we
use the evaluation metric from RViDeNet [33] and train with L1

MM ’22, October 10–14, 2022, Lisboa, Portugal Chenyang Qi, Junming Chen, Xin Yang, and Qifeng Chen

Noisy input, 𝝈𝝈 = 𝟓𝟓𝟓𝟓 PSNR / SSIM
Runtime

31.36 / 0.791
41.9ms

31.24 / 0.780
23.75s

31.62 / 0.801
33.7ms

33.02 / 0.899 33.47 / 0.907 33.96 / 0.919 PSNR / SSIM

Ground TruthFastDVDnet PaCNet Ours

Figure 6: Qualitative comparison on Set8 dataset. Ours reconstructs more high-frequency details in shorter running time.

Table 2: Quantitative comparisons of PSNR (dB) and runtime on the test set of DAVIS and Set8. C and G represent CPU and
GPU time cost, respectively. 10, 20, 30, 40, 50 represents the 𝜎 of test data. We show the averaged inference time per frame with
the resolution of 960 × 540 in PyTorch frameworkwith FP16 precision. Ourmethod outperforms previousmethods on average
PSNR and runtime.

DAVIS Set8
Model Runtime(s) 10 20 30 40 50 Average 10 20 30 40 50 Average
VNLB [1] 420.0 (C) 38.85 35.68 33.73 32.32 31.13 34.34 37.26 33.72 31.74 30.39 29.24 32.47
V-BM4D [14] 156.0 (C) 37.58 33.88 31.65 30.05 28.80 32.39 36.05 32.19 30.00 28.48 27.33 30.81
VNLnet [5] 1.104 (G) 35.83 34.49 - 32.32 31.43 - 37.10 33.88 - 30.55 29.47 -
DVDnet [22] 4.731 (C+G) 38.13 35.70 34.08 32.86 31.85 34.52 36.08 33.49 31.79 30.55 29.56 32.29
FastDVDnet [23] 0.0419 (G) 38.71 35.77 34.04 32.82 31.86 34.64 36.44 33.43 31.68 30.46 29.53 32.31
PaCNet [24] 23.75 (G) 39.97 36.82 34.79 33.34 32.20 35.42 37.06 33.94 32.05 30.70 29.66 32.68
BSVD-32 (ours) 0.0163 (G) 39.47 36.36 34.57 33.31 32.34 35.21 36.49 33.56 31.85 30.65 29.74 32.46
BSVD-64 (ours) 0.0337 (G) 39.81 36.82 35.09 33.86 32.91 35.70 36.74 33.83 32.14 30.97 30.06 32.75

loss, following EMVD [15]. In Table 4, we quantitatively compare
with the results of all baselines from the EMVD [15] paper. Since
the code of EMVD is not open-sourced, we test the efficiency of
EMVD using an unofficial implementation1.

4.3 Results
Non-blind denoising on RGB images. Table 2 shows the quan-
titative comparison of our method with baselines on the DAVIS and
Set8 datasets. The inference time of VNLB, V-BM4D is obtained
from the FastDVDnet paper. These CPU-based baselines are ex-
tremely slower than GPU-based methods. For fairness, we test the
inference time of the most related baselines [5, 22–24] and our
method in PyTorch framwork on the same NVIDIA RTX3090 GPU
with FP16 precision.

1https://github.com/Baymax-chen/EMVD

The results in Table 2 indicates that our model surpasses all
previous methods in terms of overall denoising performance with a
much lower runtime. Compared with the best fidelity baseline PaC-
Net [24], our BSVD-64 achieve a 0.28dB improvement in average
PSNR on the DAVIS dataset and 0.13dB on Set8 with 700× speedup
during inference. In addition, our GPU memory cost (3.09GB) is
much lower than the cost of PaCNet (10.58GB). Specifically, our
method has significant advantages at 𝜎 = 50 (e.g., 0.71dB improve-
ment on DAVIS, 0.4dB on Set8). PaCNet exploits explicit search
and fusion of nearest neighbor patches in the RGB pixel domain,
which consumes an extremely long runtime and lacks matching
of deep features. In contrast, our method implicitly conducts the
alignment and fusion through convolution on multi-scale features,
which proves to be more efficient with better fidelity. Figure 6 also
demonstrates that our method restores more high-frequency details
on the characters and the roof. Our BSVD-64 processes the video

https://github.com/Baymax-chen/EMVD

Real-time Streaming Video Denoising with Bidirectional Buffers MM ’22, October 10–14, 2022, Lisboa, Portugal

Ground TruthFastDVDnet RViDeNet Ours
PSNR / SSIM / Runtime38.82/ 0.954 / 44.3ms 38.98 / 0.954 / - 39.09 / 0.955 / 14.2msNoisy input ISO=25600

Figure 7: Qualitative Comparison of real noisy frames from CRVD dataset.

Table 3: Quantitative comparisons of PSNR for blind denoising.

DAVIS Set8
Model Runtime(s) 10 20 30 40 50 Average 10 20 30 40 50 Average
ReMoNet [31] - 38.97 35.77 33.93 32.64 31.65 34.59 36.29 33.34 31.59 30.37 29.44 32.21
UDVD [21] 0.9561 - 34.99 33.86 32.61 31.63 - - 33.25 31.86 30.62 29.63 -
BSVD-32-blind (ours) 0.0162 39.31 36.23 34.46 33.21 32.25 35.09 36.23 33.40 31.71 30.53 29.62 32.30
BSVD-64-blind (ours) 0.0335 39.68 36.66 34.91 33.68 32.72 35.53 36.54 33.70 32.02 30.85 29.95 32.61

Table 4: Quantitative comparisons of PSNR and SSIM on the
CRVD test set. We test the averaged computation cost per
frame on RGGB raw data with resolution 960 × 540.

Model Time(ms) GFLOPs raw sRGB

RViDeNet [33] - 1965.0 44.08 / 0.9881 40.03 / 0.9802
FastDVDnet [23] 44.3 665.0 44.30 / 0.9891 39.91 / 0.9812
EMVD [15] 24.0 79.5 44.05 / 0.9890 39.53 / 0.9796

BSVD-16 (ours) 9.9 78.76 44.10 / 0.9884 40.17 / 0.9804
BSVD-24 (ours) 14.2 175.46 44.39 / 0.9894 40.48 / 0.9820

streams of resolution 960 × 540 at 30Hz framerate, which achieves
real-time performance.

Furthermore, we half the channels in BSVD-64 to BSVD-32 as
a lightweight version. Compared with real-time SOTA FastDVD-
net [23], our BSVD-32 has more than 60% reduction in runtime,
with a 0.57dB increase of average PSNR on the DAVIS test set and
0.15dB on the Set8.

Blind denoising on DAVIS and Set8 datasets. Our method is
also applicable for blind video denoising without the noise map
as input. We compare ours with previous blind denoising SOTA
UDVD [21], and a concurrent work [31]. As shown in Table 3, our
BSVD-64-blind shows better fidelity.

Non-blind denoising on CRVD dataset. In Table 4, we com-
pare with baselines on real-world raw data. Since the real-time
baseline EMVD [15] has a very low computation cost, we shrink
the channel of our model and train BSVD-24 and BSVD-16. Com-
pared with FastDvDnet, our BSVD-24 produces better images with
3× speedup. Compared with EMVD, our BSVD-16 has 58.3% shorter
inference time, and achieves better image fidelity in both raw and
sRGB domains. Our model consists of only 2d convolutions, without
special designs for raw data prior, such as attention, depth-wise sep-
arable convolution in EMVD. Thus, BSVD-16 has shorter runtime

Table 5: Quantitative ablation study based on our BSVD-64.
The “Ave” denotes the average PSNR of 𝜎 ∈ {10, 20, 30, 40, 50}.
Due to the space limit, we omit the results for 𝜎 ∈ {20, 40}.

DAVIS Set8
Model 10 30 50 Ave 10 30 50 Ave
Ours-Uni [8] 39.40 34.40 32.14 35.06 36.51 31.70 29.54 32.34
Ours-BN 39.14 34.57 32.33 35.13 36.50 31.86 29.72 32.46
Ours-U-Net [20] 39.54 34.66 32.44 35.30 36.56 31.87 29.76 32.49
Ours-MIMO [13] 39.68 34.83 32.61 35.46 36.68 31.98 29.86 32.60
Ours 39.81 35.09 32.91 35.70 36.74 32.14 30.06 32.75

with similar GFLOPs as EMVD. As shown in Figure 7, our results
have sharper edges on CRVD dataset. More results are shown in
the supplement.

4.4 Application of Buffer in FastDVDnet.
Our buffer-based pipeline-style inference can be applied to the ex-
isting method. FastDVDnet is a two-stage sliding-window-based
method that conducts temporal fusion at the input layer of each
U-Net. We utilize the pre-trained checkpoint and buffer the inter-
mediate feature during each forward inference, which modifies the
original computation graph into pipeline style. As a result, we half
the runtime from 42ms to 23ms with the same image fidelity as the
original implementation. More details are in the supplement.

5 ABLATION STUDIES
5.1 Pipeline Inference vs MIMO
We modify our BSVD-64 into a MIMO framework using temporal
shift operation [13] with the same model parameters. We set the
clip size 𝑇𝑐𝑙𝑖𝑝 = 8, which is close to previous works (e.g., 5 for
FastDVDnet [23] and ReMoNet [31], 7 for PaCNet [24]).

As shown in table 5, our buffer-based pipeline inference frame-
work brings 0.24dB improvement in average PSNR on DAVIS test

MM ’22, October 10–14, 2022, Lisboa, Portugal Chenyang Qi, Junming Chen, Xin Yang, and Qifeng Chen

0 20 40 60 80
Frame Index

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

PS
NR

 D
iff

er
en

ce
 (d

B)

T=4
T=8
T=32
Ours

2 4 6 8 10 12 14
Memory (GB)

32.50

32.75

33.00

33.25

33.50

33.75

34.00

34.25

Av
er

ag
e

PS
NR

 (d
B)

T=2

T=4

T=8

T=16 T=32
Ours

MIMO
Ours

(a) PSNR difference at each temporal index (b) Average PSNR and memory consumption

Figure 8: Fidelity and memory comparison between our pipeline framework and MIMO for a denoised video sequence
𝑠𝑢𝑛𝑓 𝑙𝑜𝑤𝑒𝑟 from Set8 at 𝜎 = 50. (a) Our inference method solves the PSNR drop on the two edges of the clips with up to 1dB
improvement. (b) Our framework consumes lower memory than 𝑇𝑐𝑙𝑖𝑝 = 8 with a 0.45dB improvement at average PSNR.

Ground Truth Ours w/o buffer Ours
29.94 / 0.879 31.76 / 0.924PSNR / SSIM

Figure 9: Qualitative ablation study of inference method.

set. To further analyze our image fidelity, we demonstrate the PSNR
difference at each frame index with clip size 𝑇𝑐𝑙𝑖𝑝 = 4, 8, 32 on the
video 𝑠𝑢𝑛𝑓 𝑙𝑜𝑤𝑒𝑟 from Set8 dataset in Figure 8(a). The MIMO frame-
work suffers significant fidelity degradation (up to 1 dB in PSNR) at
the boundary of clips (e.g., 32nd frame). Although increasing 𝑇𝑐𝑙𝑖𝑝
improves the fidelity of the middle frames in the clip, it can not
achieve obvious improvement on the two temporal edges of the clip.
As shown in Figure 8(b), increasing the 𝑇𝑐𝑙𝑖𝑝 of MIMO framework
results in linear growth of memory consumption. In contrast, our
framework processes the video continuously in the constant mem-
ory. Figure 9 provides another qualitative comparisonwith𝑇𝑐𝑙𝑖𝑝 = 8

MIMO framework at 32th frame of the “skate-jump” sequence from
DAVIS. Our bidirectional buffer improves the sharpness of the tree,
especially in areas close to the moving player.

5.2 Bidirectional Feature Propagation
Bidirectional vs unidirectional temporal fusion. MoViNet [8]
propose a buffer-based unidirectional temporal fusion for video
steam recognition. In Table 5, we modify our bidirectional fusion
to unidirectional temporal fusion with stream buffer [8]:

𝑍
𝑖,𝑙+1
𝑓 𝑢𝑠𝑒𝑑

= 𝐶𝑜𝑛𝑣 (𝐵−1,𝑙 ⊕ 𝑍
𝑖,𝑙

[2𝑓 :]) . (7)

Then, update the buffer 𝐵−1,𝑙 with 𝑍
𝑖,𝑙

[0:2𝑓] . The unidirectional ver-
sion of our method "Ours-Uni" does not need future frames and
thus does not have frame latency. However, the results in table 5
show a large gap of 0.64dB between bidirectional and unidirectional
fusion. For low-level video tasks, the bidirectional fusion can be

Table 6: Ablation study for the number of buffer blocks 𝑁 .

Model 𝑁 RF Scale DAVIS-Ave Set8-Ave
Ours-w/o fusion 0 1 - 34.01 31.63
Ours-only Pixel 2 5 pixel 34.03 31.66
Ours-with Pixel 24 49 Down + pixel 35.12 32.35
BSVD-64 (ours) 16 33 Down 35.70 32.75

more advantageous since the future frames also have similar and
helpful features to be utilized by each frame.

Number of buffer blocks N. In Table 6, we add buffer blocks at
pixel resolution or remove them at downsampled resolution, using
the same backbone. Larger 𝑁 brings a larger receptive field (RF)
at the cost of longer latency during online inference. The result
shows that pixel-level fusion is not necessary. Thus, we only fuse
the downsampled features, which can be more robust against noise.

5.3 Backbone
Batch normalization. We train a W-Net with BN layers and tune
other hyperparameters. BN layers decreases the average PSNR by
0.57dB on the DAVIS test set, as shown in Table 5.

W-Net vs U-Net.We replace our backbone with a U-Net with
increased channels, such that the new model has similar FLOPs and
runtime as W-Net. As shown in Table 5, W-Net outperforms U-Net
by 0.40dB. This result indicates that a second U-Net for refinement
may help to remove the remaining noise.

6 CONCLUSION
We propose a SOTA streaming video denoising method BSVD that
outperforms existing methods on videos with synthetic and real
noise in both inference speed and image fidelity. Our pipeline-style
inference with Bidirectional Buffer Blocks allows bidirectional tem-
poral fusion for online streaming video processing, which is proved
to be more effective than unidirectional fusion. In addition, we solve
the degradation of clip edges, which exists in MIMO frameworks.
Our method is effective for both non-blind and blind denoising, and
is also general for similar architectures. Extensive experiments on
public datasets have demonstrated the effectiveness of our method.

Real-time Streaming Video Denoising with Bidirectional Buffers MM ’22, October 10–14, 2022, Lisboa, Portugal

REFERENCES
[1] Pablo Arias and Jean-Michel Morel. 2018. Video Denoising via Empirical Bayesian

Estimation of Space-Time Patches. J. Math. Imaging Vis. (2018).
[2] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. 2011. Non-Local Means

Denoising. Image Process. Line 1 (2011).
[3] Kelvin C.K. Chan, Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. 2021.

BasicVSR: The Search for Essential Components in Video Super-Resolution and
Beyond. In CVPR.

[4] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. 2007.
Image denoising by sparse 3D transform-domain collaborative filtering. IEEE
Transactions on Image Processing (2007).

[5] Axel Davy, Thibaud Ehret, Jean Michel Morel, Pablo Arias, and Gabriele Facciolo.
2018. Non-Local Video Denoising by CNN. arXiv abs/1811.12758 (2018).

[6] Anna Khoreva, Anna Rohrbach, and Brent Schiele. 2018. Video Object Segmen-
tation with Referring Expressions. In ECCV.

[7] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[8] Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew
Brown, and Boqing Gong. 2021. MoViNets: Mobile Video Networks for Efficient
Video Recognition. In CVPR.

[9] Marc Lebrun, Antoni Buades, and Jean-Michel Morel. 2013. A Nonlocal Bayesian
Image Denoising Algorithm. SIAM J. Imaging Sci. (2013).

[10] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li,
Radu Timofte, and Luc Van Gool. 2022. VRT: A Video Restoration Transformer.
arXiv:2201.12288 (2022).

[11] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu
Timofte. 2021. SwinIR: Image Restoration Using Swin Transformer. In ICCV
Workshops.

[12] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. 2017.
Enhanced Deep Residual Networks for Single Image Super-Resolution. In CVPR
Workshops.

[13] Ji Lin, Chuang Gan, and Song Han. 2019. TSM: Temporal Shift Module for
Efficient Video Understanding. In ICCV.

[14] Matteo Maggioni, Giacomo Boracchi, Alessandro Foi, and Karen O. Egiazarian.
2012. Video Denoising, Deblocking, and Enhancement Through Separable 4-D
Nonlocal Spatiotemporal Transforms. IEEE Transactions on Image Processing
(2012).

[15] Matteo Maggioni, Yibin Huang, Cheng Li, Shuai Xiao, Zhongqian Fu, and Feng-
long Song. 2021. Efficient Multi-Stage Video Denoising With Recurrent Spatio-
Temporal Fusion. In CVPR.

[16] Matteo Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi. 2013. Nonlocal
Transform-Domain Filter for Volumetric Data Denoising and Reconstruction.
IEEE Transactions on Image Processing (2013).

[17] Anton Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. 2016. MOT16: A
Benchmark for Multi-Object Tracking. ArXiv abs/1603.00831 (2016).

[18] Ben Mildenhall, Jonathan T. Barron, Jiawen Chen, Dillon Sharlet, Ren Ng, and
Robert Carroll. 2018. Burst Denoising With Kernel Prediction Networks. In
CVPR.

[19] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. 2017. Deep Multi-scale
Convolutional Neural Network for Dynamic Scene Deblurring. In CVPR.

[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In MICCAI.

[21] Dev Yashpal Sheth, Sreyas Mohan, Joshua L. Vincent, Ramon Manzorro, Peter A.
Crozier, Mitesh M. Khapra, Eero P. Simoncelli, and Carlos Fernandez-Granda.
2021. Unsupervised Deep Video Denoising. In ICCV.

[22] Matias Tassano, Julie Delon, and Thomas Veit. 2019. Dvdnet: A fast network for
deep video denoising. In ICIP.

[23] Matias Tassano, Julie Delon, and Thomas Veit. 2020. FastDVDNet: Towards
real-time deep video denoising without flow estimation. In CVPR.

[24] Gregory Vaksman, Michael Elad, and Peyman Milanfar. 2021. Patch Craft: Video
Denoising by Deep Modeling and Patch Matching. In ICCV.

[25] Xintao Wang, Kelvin C. K. Chan, Ke Yu, Chao Dong, and Chen Change Loy. 2019.
EDVR: Video Restoration With Enhanced Deformable Convolutional Networks.
In CVPR Workshops.

[26] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. 2018. ESRGAN: Enhanced super-resolution generative
adversarial networks. In ECCV Workshops.

[27] Bihan Wen, Yanjun Li, Luke Pfister, and Yoram Bresler. 2017. Joint Adaptive
Sparsity and Low-Rankness on the Fly: An Online Tensor Reconstruction Scheme
for Video Denoising. In ICCV.

[28] Bihan Wen, Saiprasad Ravishankar, and Yoram Bresler. 2019. VIDOSAT: High-
Dimensional Sparsifying Transform Learning for Online Video Denoising. IEEE
Transactions on Image Processing (2019).

[29] Xide Xia and B. Kulis. 2017. W-Net: A Deep Model for Fully Unsupervised Image
Segmentation. ArXiv abs/1711.08506 (2017).

[30] Zhihao Xia, Federico Perazzi, Michaël Gharbi, Kalyan Sunkavalli, and Ayan
Chakrabarti. 2020. Basis prediction networks for effective burst denoising with

large kernels. In CVPR.
[31] Liuyu Xiang, Jundong Zhou, Jirui Liu, Zerun Wang, Haidong Huang, Jie Hu,

Jungong Han, Yuchen Guo, and Guiguang Ding. 2022. ReMoNet: Recurrent
Multi-output Network for Efficient Video Denoising. In AAAI.

[32] Lu Xu, Jiawei Zhang, Xuanye Cheng, Feng Zhang, Xing Wei, and Jimmy S. J. Ren.
2021. Efficient Deep Image Denoising via Class Specific Convolution. In AAAI.

[33] Huanjing Yue, Cong Cao, Lei Liao, Ronghe Chu, and Jingyu Yang. 2020. Super-
vised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes. In
CVPR.

[34] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz
Khan, and Ming-Hsuan Yang. 2022. Restormer: Efficient Transformer for High-
Resolution Image Restoration. In CVPR.

[35] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. 2017.
Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising.
IEEE Transactions on Image Processing (2017).

MM ’22, October 10–14, 2022, Lisboa, Portugal Chenyang Qi, Junming Chen, Xin Yang, and Qifeng Chen

A IMPLEMENTATION DETAILS
A.1 Backbone Details
Table 7 shows details of a single U-Net in our BSVD-64 model.
TSM denotes Temporal Shift Module during training, while BBB
stands for Bidirectional Buffer Block during inference. “3×3, 64”
denotes a 2d convolution with kernel size 3 and output channel 64.
“ReLU6” denotes ReLU6 activation, whose output is clipped to be
between 0 to 6. Building blocks are shown in brackets, with the
numbers of blocks stacked. Downsampling is performed using a
convolution of stride 2 at the beginning of the downsampling block.
After the last convolution in the upsampling block, we upsample the
decoder feature using Pixel Shuffling. Then, skip-connections with
intermediate features are conducted after upsampling. We stack
two U-Nets as a W-Net for our backbone architecture. The output
channel of the first U-Net and the input channel of the second U-
Net are 64. During the training stage, we insert 16 Temporal Shift
Module in our W-Net. During the inference stage, we replace each
TSM with a Bidirectional Buffer Block.

Table 7: Architecture of our U-Net backbone in BSVD-64.

Stage Building Block Output Size

Input Layer
[
3 × 3, 64

ReLU6

]
× 2 𝐻 ×𝑊 × 64

Downsampling Block1

3 × 3, 128, stride=2
ReLU6

TSM / BBB
3 × 3, 128
ReLU6

 × 2

1
2𝐻 × 1

2𝑊 × 128

Downsampling Block2

3 × 3, 256, stride=2
ReLU6

TSM / BBB
3 × 3, 256

ReLU6

 × 2

1
4𝐻 × 1

4𝑊 × 256

Upsampling Block1


TSM / BBB
3 × 3, 256
ReLU6

 × 2

3 × 3, 512

PixelShuffle 2x

1
2𝐻 × 1

2𝑊 × 128

Upsampling Block2


TSM / BBB
3 × 3, 128
ReLU6

 × 2

3 × 3, 256
PixelShuffle 2x

𝐻 ×𝑊 × 64

Output Layer
3 × 3, 64
ReLU6
3 × 3, 64 or 3 × 3, 3

𝐻 ×𝑊 × 64 or 𝐻 ×𝑊 × 3

A.2 Edges of the Stream
Fig. 10 gives a visualization of our implementation at two edges of
a long 𝑇 -frame stream. We denote the temporal fusion equation as:

𝑍
𝑖−𝑙−1,𝑙
𝑓 𝑢𝑠𝑒𝑑

= 𝐵−1,𝑙 ⊕ 𝐵
0,𝑙
[𝑓 :−𝑓] ⊕ 𝑍

𝑖−𝑙,𝑙
[−𝑓 :] , (8)

We fill past buffer 𝐵−1,𝑙 with zero paddings at the temporal index
1 ≤ 𝑖 < 𝑁 (Fig. 10(b)). At the temporal index 𝑇 ≤ 𝑖 ≤ 𝑇 + 𝑁 − 1,
we feed dummy zero tensor 𝑍 𝑖−𝑙,𝑙 into the pipeline for the last N
frames. (Fig. 10(d,e)).

A.3 Implementation of Skip-Connection
Each skip-connection is conducted between two Bidirectional Buffer
Blocks at different layers. Thus, there is a temporal latency between
input and output during pipeline-style inference. We implement
skip-connection as a first-in-first-out queue. The memory cost is
proportional to the number of skipped layers, which is 𝑂 (𝑁).

A.4 Implementation of Buffer in FastDVDnet.
We provide a supplementary description for the Sec. 4.4 in the main
paper. FastDVDnet [23] conducts temporal fusion at the input layer
of each U-Net:

𝑍0
𝑓 𝑢𝑠𝑒𝑑

= 𝑍−1 ⊕ 𝑍0 ⊕ 𝑍+1, (9)

which is similar to the temporal shift operation Equation. (1) in
the main paper. We modify the original computation graph into
pipeline style using a similar representation in Equation. (2-5) of
the main paper:

𝑍
𝑖−𝑙−1,𝑙
𝑓 𝑢𝑠𝑒𝑑

= 𝐵−1,𝑙 ⊕ 𝐵0,𝑙 ⊕ 𝑍 𝑖−𝑙,𝑙 (10)

𝑍 𝑖−𝑙−1,𝑙+1 = U-Net(𝑍 𝑖−𝑙−1,𝑙
𝑓 𝑢𝑠𝑒𝑑

) (11)

𝐵−1,𝑙 = 𝐵0,𝑙 (12)
𝐵0,𝑙 = 𝑍 𝑖−𝑙,𝑙 , (13)

where 𝑙 ∈ {1, 2}. As summarized in the Fig. 2 of themain paper, Fast-
DVDNet is a sliding-window method without clip-edge-drop prob-
lem. However, its time complexity is 𝑂 (𝑇𝑐𝑙𝑖𝑝𝑁), which is higher
than 𝑂 (𝑁) in our pipeline-style inference. Using a pipeline-syle
inference framework, we half the runtime from 42ms to 23ms with
the same image fidelity as the original implementation.

A.5 Training Details
The model is trained with clips of batch size 16, temporal length
𝑇𝑐𝑙𝑖𝑝 = 11 and spatial patch size 96 × 96 in each iteration. For each
clip, We sample a random noise level 𝜎 from the uniform distribu-
tion𝑈 (5, 55) and augment the data with flipping and rotation. The
training objective is optimized for 700, 000 iterations with Adam
optimizer [7] of initial learning rate 1𝑒 − 3. The learning rate is
decayed by a factor of 0.7 for every 50, 000 iterations.

B MORE RESULTS
Fig. 13 and Fig. 14 provide more qualitative comparison on DAVIS
and CRVD dataset, respectively. Our method reconstructs more re-
alistic high-frequency details (e.g., horsetail, snow on pine branches,
spots on pumpkins). The source code and results of EMVD [15]
and the concurrent work ReMoNet [31] are not available. We only
do quantitative comparisons with them. Since the source code of
RViDeNet [33] is not compatible with CUDA version of our RTX
3090 GPU, we do not compare running time with RViDeNet. There
is another supplementary video for visualization of our algorithm
and more results.

C MORE ABLATION STUDY
Table 8 provides a supplement of all noise levels for the quantitative
ablation study (Table 5) in the main paper. Bidirectional temporal
fusion substantially improves the reconstructed quality. Moreover, a

Real-time Streaming Video Denoising with Bidirectional Buffers MM ’22, October 10–14, 2022, Lisboa, Portugal

𝒙𝒙𝟎𝟎

(a) 𝒕𝒕 = 𝟎𝟎

Input Sequence Input Sequence 𝒙𝒙𝟏𝟏

(b) 𝒕𝒕 = 1

Input Sequence
𝒙𝒙𝒊𝒊 Denoised Sequence

𝒚𝒚𝒊𝒊−𝑵𝑵𝒙𝒙𝒊𝒊−𝑵𝑵

(c) 𝒕𝒕 = i ≥ N
N

Denoised Sequence
𝒚𝒚𝑻𝑻−2

(d) 𝒕𝒕 = 𝑻𝑻 + 𝑵𝑵− 2

Denoised Sequence
𝒚𝒚𝑻𝑻−𝟏𝟏

(e) 𝒕𝒕 = 𝑻𝑻 + 𝑵𝑵− 𝟏𝟏

𝒚𝒚𝟎𝟎𝒚𝒚𝟎𝟎

Bidirectional Buffer Block

2D Convolution

Buffered Feature

Zero Padding

Figure 10: Implementation of start and end in our pipeline. For a long streamwith𝑇 frames, we use zero paddings at temporal
index 𝑡 < 𝑁 and 𝑇 ≤ 𝑡 ≤ 𝑇 + 𝑁 − 1

Table 8: Quantitative ablation study of framework

DAVIS Set8
Model 10 20 30 40 50 Average 10 20 30 40 50 Average

Ours-Unidirectional [8] 39.40 36.22 34.40 33.12 32.14 35.06 36.51 33.47 31.70 30.48 29.54 32.34
Ours-BN 39.14 36.33 34.57 33.31 32.33 35.13 36.50 33.57 31.86 30.65 29.72 32.46
Ours-U-Net [20] 39.54 36.45 34.66 33.41 32.44 35.30 36.56 33.59 31.87 30.68 29.76 32.49
Ours-MIMO [13] 39.68 36.61 34.83 33.58 32.61 35.46 36.68 33.71 31.98 30.78 29.86 32.60
BSVD-64(Ours) 39.81 36.82 35.09 33.86 32.91 35.70 36.74 33.83 32.14 30.97 30.06 32.75

W-Net without batch normalization contributes to the performance.
In addition, the designed pipeline-style inference also demonstrates
better image quality than original MIMO framework.

For a TSM or Bidirectional Buffer Block with input feature chan-
nel𝐶𝑓 , we shift 𝑓 = ⌊𝐶𝑓 /𝑟⌋ channels along the temporal dimension.
We study the ratio of shifted channels in Table. 9. We retrain our

BSVD-64 with 𝑟 ∈ {4, 6, 8, 16}. The model of 𝑟 = 8 achieves the
best result. Thus, we set 𝑟 = 8 in other experiments. Fig. 12 shows
an example of artifacts during the FP16 inference of a model with
ReLU activation. To alleviate quantization artifacts, we replace the
ReLU with ReLU6, which limits the maximum of activation to 6.

MM ’22, October 10–14, 2022, Lisboa, Portugal Chenyang Qi, Junming Chen, Xin Yang, and Qifeng Chen

Table 9: Quantitative ablation study of shifted ratio 𝑟 . 𝑟 = 8 is the best setting among {4, 6, 8, 16}

DAVIS Set8
Shifted ratio 𝑟 10 20 30 40 50 Average 10 20 30 40 50 Average

4 39.74 36.72 34.97 33.74 32.78 35.59 36.73 33.79 32.09 30.90 30.00 32.70
6 39.65 36.58 34.81 33.56 32.59 35.44 36.66 33.74 32.02 30.83 29.91 32.63
8 39.81 36.82 35.09 33.86 32.91 35.70 36.74 33.83 32.14 30.97 30.06 32.75
16 39.71 36.66 34.90 33.66 32.70 35.52 36.67 33.73 32.03 30.84 29.93 32.64

Ground Truth Ours w/o buffer Ours

34.59 / 0.885 35.87 / 0.908PSNR / SSIM

Figure 11: Qualitative ablation of inference method

ReLU ReLU6 (ours)

Figure 12: ReLU6 alleviates the artifacts caused by FP16
quantization.

In Fig. 15, we compare our inference method with MIMO of
different 𝑇𝑐𝑙𝑖𝑝 . We show the result on the clip boundaries. A larger
𝑇𝑐𝑙𝑖𝑝 in MIMO framework increases the memory linearly and barely
improves edge fidelity.

Real-time Streaming Video Denoising with Bidirectional Buffers MM ’22, October 10–14, 2022, Lisboa, Portugal

PSNR / SSIM

Ground Truth / RuntimeFastDVDnet 41.9ms PaCNet 23750ms Ours 33.7ms

32.97 / 0.878 32.95 / 0.873 33.87 / 0.897

30.09 / 0.825 29.88 / 0.825 30.36 / 0.843PSNR / SSIM

Noisy input, 𝝈 = 𝟓𝟎

Figure 13: Qualitative comparison on DAVIS dataset.

Ground Truth / RuntimeFastDVDnet 44.3ms RViDeNet - Ours 14.2ms

32.35 / 0.936 35.82 / 0.942 35.54 / 0.956PSNR / SSIM

Noisy input

Figure 14: Qualitative comparison on CRVD dataset

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 8 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 32 OursGround Truth

PSNR / SSIM
Memory consumption

36.08 / 0.910
3.76GB

36.07 / 0.910
14.98GB

37.34 / 0.928
3.09GB

34.21 / 0.871
0.96GB

Figure 15: Comparison with MIMO of different 𝑇𝑐𝑙𝑖𝑝 .

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Training with Temporal Shift Module
	3.2 Inference with Bidirectional Buffer Block
	3.3 Pipeline-style Inference
	3.4 Analysis

	4 Experiments
	4.1 Datasets and Settings
	4.2 Baselines
	4.3 Results
	4.4 Application of Buffer in FastDVDnet.

	5 Ablation Studies
	5.1 Pipeline Inference vs MIMO
	5.2 Bidirectional Feature Propagation
	5.3 Backbone

	6 Conclusion
	References
	A Implementation Details
	A.1 Backbone Details
	A.2 Edges of the Stream
	A.3 Implementation of Skip-Connection
	A.4 Implementation of Buffer in FastDVDnet.
	A.5 Training Details

	B More results
	C More ablation Study

