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Abstract

Universal domain adaptive object detection (UniDAOD)
is more challenging than domain adaptive object detection
(DAOD) since the label space of the source domain may
not be the same as that of the target and the scale of ob-
Jjects in the universal scenarios can vary dramatically (i.e,
category shift and scale shift). To this end, we propose
US-DAF, namely Universal Scale-Aware Domain Adaptive
Faster RCNN with Multi-Label Learning, to reduce the neg-
ative transfer effect during training while maximizing trans-
ferability as well as discriminability in both domains under
a variety of scales. Specifically, our method is implemented
by two modules: 1) We facilitate the feature alignment of
common classes and suppress the interference of private
classes by designing a Filter Mechanism module to over-
come the negative transfer caused by category shift. 2) We
fill the blank of scale-aware adaptation in object detection
by introducing a new Multi-Label Scale-Aware Adapter to
perform individual alignment between corresponding scale
for two domains. Experiments show that US-DAF achieves
state-of-the-art results on three scenarios (i.e, Open-Set,
Partial-Set, and Closed-Set) and yields 7.1% and 5.9% rela-
tive improvement on benchmark datasets Clipartlk and Wa-
tercolor in particular.

1. Introduction

Object detection is a fundamental problem in computer
vision, aiming for precise localization and classification of
objects in images. In the past few years, numerous ob-
ject detection models [8, 10,22, 26,27] based on convolu-
tional neural networks (CNNs) [19] have successfully im-
proved the performance using a large amount of labeled
data. Nevertheless, applying off-the-shelf pre-trained de-
tectors to detect objects in real-world scenarios inevitably
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Figure 1. Problem setting of UniDAOD and illustration on the
influence of scale on domain shift.

leads to a significant performance drop due to the large do-
main gap including object appearance, image scale, back-
grounds, illumination, viewpoints, and image quality, efc.
To meet this challenge, researchers have explored domain
adaptation [24] to transfer a detector learned from a labeled
source domain to an unlabeled target domain with different
scenarios, which is named domain adaptive object detection
(DAOD).

Domain adaptive Faster RCNN (DAF) [4] is the most
representative DAOD work that integrates Faster R-CNN
[27] with adversarial training. To address the domain shift
problem, it aligns both the image-level and instance-level
distributions across domains with adversarial training. Sub-
sequently, with the structural characteristics of detection
tasks, DAF has rapidly evolved into a successful baseline
[14,17,18,28,30,32,33,38-40]. These methods success-
fully improve the performance of the detector on the target
domain under the ideal and prior assumption that the label
spaces are identical across domains (i.e., Closed-set).

Nonetheless, existing methods overlook the fact that
there is NO prior knowledge about the target domain cate-



gories in the real-world scenarios. Hence, as shown in Fig-
ure 1, we consider a new realistic setting called Universal
Domain Adaptive Object Detection (UniDAOD). For a bet-
ter illustration, we denote C and C; as the label set of source
and target domains, respectively. According to the relation-
ship of label sets between the source and target domains, the
universal scenarios fall into partial-set (Cs O C;), open-set
(Cs CCrorCsNCt # 3,Cs G Ct, Cs 2 Cr ), and closed-set
(Cs = Cy) scenarios. Thus, the main task for UniDAOD is
to recognize the common classes (i.e., classes shared across
domains) and eliminate the domain gap, by simultaneously
suppressing the interference of private classes (i.e., classes
only exist in one domain). Besides, Figure 1 shows that
the distributions of features extracted from objects at differ-
ent scales can be very different due to the perspective pro-
jection effect, e.g., cars that are far away are usually very
small in an image, while the near ones are relatively larger.
Thus, a uniform feature alignment across all scales, as pre-
vious DAOD methods did, may not be sufficient. Instead
it is more feasible to perform individual alignment on each
scale between domains.

Generally, the inherent challenges come from two as-
pects for UniDAOD. (1) category shift challenge: the label
set of test data may not be the same as that of training data,
and the private classes may lead to negative transfer due
to its absence in another domain. (2) diverse scales chal-
lenge: previous DAOD methods mainly explored the cate-
gory adaptation while ignoring a crucial challenge caused
by the large variance in object scales, which is difficult
but important for detection performance, especially for the
UniDAOD task.

To overcome these challenges, we propose an end-to-
end deep universal domain adaptation framework, US-DAF,
namely Universal Scale-Aware Domain Adaptive Faster
RCNN with Multi-Label Learning. Specifically, since ad-
versarial alignment on features of all classes without sep-
aration might hurt its discriminability (category shift chal-
lenge), we propose a Filter Mechanism to suppress the pri-
vate classes and preserve the common classes during the ad-
versarial training. To fill the blank of scale-aware adaptation
in cross-domain object detection (diverse scale challenge),
we introduce a new Multi-Label Scale-Aware adapter to
perform individual alignment between corresponding scale
for two domains (i.e., aligning small objects to small ones,
medium objects to medium ones, and large objects to large
ones).

The main contributions of this paper can be summa-
rized as the following four-fold: (1) We first introduce
a more practical Universal Domain Adaptive Object De-
tection (UniDAOD) protocol, which is accompanied with
a novel Universal Scale-Aware Domain Adaptive Faster
RCNN (US-DAF) framework. (2) To alleviate the impact of
negative transfer caused by category shift, we propose a Fil-

ter Mechanism to reject the private classes and preserve the
common classes during adversarial training on the image-
level alignment and instance-level alignment. (3) To tackle
the problem caused by the large variation of object scales in
natural scenes, we propose a new Multi-Label Scale-Aware
adapter, which can leverage the scale information for better
feature alignment. (4) Through ablation studies and exper-
iments, we show that our USAF achieves state-of-the-art
performance and also contributes a potential baseline under
this pretty new task.

2. Related Work and Preliminaries

Universal Domain Adaptation: Existing domain adap-
tation methods for classification [9,20,23,36,37] generally
assume that the source and target domain share identical
label space. However, in real applications, it is not prac-
tical to find a source domain having the same label space
as the target domain due to the diversity of detection cate-
gories. Therefore, Cao et al. [1] introduce the Partial Do-
main Adaption problem which assumes that the target la-
bel space is a subset of the source label space, and present
Partial Adversarial Domain Adaptation (PADA) by down-
weighing the data of outlier source classes to alleviates neg-
ative transfer. Busto er al. [25] propose the Open Set Do-
main Adaption scene in which there is an intersection be-
tween the source and the target domain label spaces. You
et al. [34] propose Universal Adaptation Network (UAN),
equipped with a novel criterion to quantify the transferabil-
ity of each sample under the generalized Universal Domain
Adaptation setting that requires no prior knowledge about
the label space between domains. Fu et al. [7] propose Cal-
ibrated Multiple Uncertainties (CMU) with a novel transfer-
ability measure estimated by a mixture of uncertainty quan-
tities to align target features with source features. However,
directly applying these methods to object detection yields
an unsatisfactory effect. The difficulty is that the image of
object detection usually contains multiple objects, thus the
features of an image can have complex multi-modal struc-
tures.

Domain Adaptive Object Detection: Domain adaptive
object detection (DAOD) task has drawn a lot of attention
due to its various applications [4, 14,28,30,33,38,39]. As a
pioneering work, Chen et al. [4] propose the domain adap-
tive Faster-RCNN method (DAF), which achieves image-
level and instance-level feature alignment by using adver-
sarial gradient reversal. At the same time, it is pointed out
that the core issue of DAOD is to solve the domain gaps
in image level and instance level. Formally, let d = 0 de-
note that the feature is from the source domain while d = 1
denote that the feature is from the target domain. For the
image-level alignment, let D, ,) denote the output of the
image-level domain classifier for the activation located at
(u,v) of the feature map, then the image-level alignment
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Figure 2. The architecture of the Universal Scale-Aware Domain Adaptive Faster R-CNN (US-DAF) designed for UniDAOD. Two novel
modules including the Filter Mechanism (FM) and Scale-Aware Adaptation (SAA) are deployed.

loss can be written as:

Limg = Y _[d10g(D(y.)) + (1 = d)log(1 — D(yv))] (1)

u,v

For the instance-level alignment, let D; denote the output of
the instance-level domain classifier for the i-th region pro-
posal, then the instance-level alignment loss is as follows:

Lins = Y ldlog(Dy) + (1 — d)log(1 — D)

%

(@)

After that, a large number of excellent detection algo-
rithms emerge to overcome the image-level and instance-
level domain adaption problems. Specifically, Saito et al.
[28] utilize strong and weak domain classifiers to align lo-
cal and global features. He and Zhang [14] propose a hierar-
chical alignment network that is designed to align features
at different scales between the source domain and the tar-
get domain. He ef al. [15] introduce an asymmetric tri-way
approach to account for the differences in labeling statis-
tics between domains. Chen et al. [2] utilize CycleGAN
as a method of data augmentation to generate intermediate
domain images between the source domain and the target
domain to make model easy to align. Zhao et al. [38] use
multi-label classification as an auxiliary task to regularize
the features.

However, most of the DAOD approaches have over-
looked two fundamental yet practical issues: 1) All the pre-
vious methods rely on an inherent assumption that differ-
ent domains have identical label space, which greatly limits
their generalization in the wild. 2) They mainly explore cat-
egory adaptation and ignore the crucial challenge caused by

the large variance in object scales. In this paper, we are
working on solving the above two problems from two as-
pects: 1) Our model considers a universal setting that im-
poses no prior knowledge on the label sets and proposes a
filter mechanism to suppress private classes. 2) Our model
employs a reliable multi-label scale-aware adapter, which
can leverage the scale information for better feature align-
ment to bridge the domain gap caused by the scale shift.

3. METHOD

In UniDAOD, we assume that a source domain Dy =
{(z,y7) ~ p}i=, of n, labeled samples from distribution
p and a target domain D; = {(z!) ~ ¢}, of n; unlabeled
samples from distribution g are provided at training. Since
the label set may not be identical, we use Cg, C; to denote
the label set of source and target domains, respectively. C =
Cs N C; is the common label set shared by both domains,
while Cy = C,\C and C; = C;\C are the private label sets
for source and target respectively. Note that the target label
set is not accessible at training and only used for defining
the UniDAOD problem. The Jaccard index of the label sets

of the two domains, £ = ggg: is used to represent the
overlap among classes.
3.1. Network Structure

To deal with the challenge (i.e., category shift and scale
shift) mentioned in Section 1, we propose the Universal
Scale-Aware Domain Adaptive Faster RCNN with Multi-
Label Learning (US-DAF) framework, which has two steps:
(1) suppresses the private classes and preserves the common
classes at the image level and the instance level. (2) designs



the multi-label scale-aware adapter at the image level and
instance level to tackle the problem brought by the varia-
tion of object scales in natural scenes.

Since the private-class features might lead to negative
transfer during the training to hurt the discriminability of
the detector, we filter out the private classes and focus on
the common classes in adapting an object detector by in-
troducing a Filter Mechanism. To fill the blank of scale-
aware adaptation in cross-domain object detection, we need
to perform adaptation on the bounding box scale. The over-
all structure of the proposed US-DAF is presented in Figure
2, and Section 3.2 and 3.3 will introduce the design of the
filter mechanism and the scale-aware adapter in details.

3.2. Filter Mechanism

An ideal solution for the category shift of UniDAOD is to
make the samples with common categories go through for
further adaptation while suppressing the samples of private
categories. If we naively pick any of the existing DAOD
methods to solve the UniDAOD by aligning the source with
the target domain, the private classes will impose negative
transfer and degrade the detection performance of common
classes in the target domain. Therefore, we adopt a sample-
level Filter Mechanism. For both source and target domains,
the samples with the common categories are expected to be-
come well-aligned while the samples of private categories
are expected to be ignored. Consequently, we need a cri-
terion to explore the common category set and private cate-
gory set, and then perform the adversarial domain alignment
with this criterion.

Our motivation is from the observation on the opti-
mization process with Gradient Reverse Layer (GRL) [9].
Specifically, the objective of domain discriminator D is to
predict samples from source domain as 0 and samples from
target domain as 1. The ideal convergence point of the do-
main adversarial training is that the samples with similar
categories cannot be easily distinguished, which means the
predictions from domain discriminator on these samples are
around the middle point 0.5. Thus, D can be seen as the
quantification for the domain similarity of each sample. For
a source sample z, larger D(x) means that it is more simi-
lar to the target domain; for a target sample x, smaller D(z)
means that it is more similar to the source domain. There-
fore, we can hypothesize that E;p, D(z) <Eznp, D(2)
<Eymg.D(x) <Eange, D(x).

Inspired by this, we propose to draw a boundary be-
tween common and private points using the predictions of
the domain discriminator. We visually introduce the idea in
Figure 3. Specifically, the distance between the prediction
and middle point, 0.5, is defined as |D(z) — 0.5|, where
D(z) is the classification output for a sample z. We ex-
pect that the prediction of common-class samples is closer
to the middle point than the private-class ones. Therefore,
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Figure 3. An overview of the filter mechanism. Samples in the
bottom part are more likely to be source private class samples,
while the top samples are more likely to be target private samples.
We introduce a confidence threshold that allows us to explore the
common-class samples and private-class samples.

we propose to introduce a confidence threshold parameter
m to explore the common category set and private category
set. The above formulation shows that common-class and
private-class samples can be separated with the confidence
threshold parameter m. Note that tuning the parameter m
for each adaptation setting requires a validation set.

With the above analysis, by combining Filter Mecha-
nism with image-level and instance-level alignments, the
sample-level transferability criterion for the image-level do-
main adaptation (i.e., Eq. 1) and the instance-level domain
adaptation (i.e., Eq. 2) can be respectively re-formulated as
Eq. 3 and Eq. 4:

Limg, if (|Dguwy — 0.5/ <m)
Lim /i J .’ 3
g-EM { 0 , otherwise )
Lins, ’Lf D; —0.5 <m)
Lins,FM = (| . | (4)
0 , otherwise

The introduction of the confidence threshold m allows
us to give the final separation loss for differentiating the
common-class samples from private-class samples.

3.3. Scale-Aware Adaptation with Multi-Label
Learning

We design a scale-aware adaptation (SAA) module to
leverage the scale information for better feature alignment
at image level and instance level. Our motivation lies in
two aspects. First, Chen [3] and Lin [21] claim that the
scale of objects in natural images can vary dramatically,
which is an inevitable and non-negligible problem in im-
age segmentation. We can therefore make a reasonable
assumption that the large variance in object scales often
brings a crucial challenge to cross-domain object detection.
Second, as discussed in Section 1, current DAOD mod-
els [2,4,14,15,28,38] ignore the importance of scale-aware
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Figure 4. Illustration on different strategies for feature alignment.
Although the domain gap is reduced successfully by DAF [4],
there might exist misaligned the scales between two domains. Our
scale-aware adaptation with multi-label learning is expected to
avoid such misalignment.

alignment and have a uniform feature alignment across all
scales, which may not be sufficient (see Figure 4 for illus-
tration).

Building upon those above considerations, we introduce
the scale-aware adaptation module to perform alignment be-
tween the corresponding scale for two domains. Intuitively,
the size of instance features can be divided into three cat-
egories: small (<202 pixels), medium (20> ~ 100? pix-
els), and large (>1002 pixels). The size of the instance is
cost-free for detection datasets, and can be easily acquired
through the sub-module RPN of Faster RCNN. It is worth
noting that, as illustrated in Figure 2, we attach the scale-
aware adaptation with the instance level and image level,
due to the image level features contain fine-grained infor-
mation associated with the objects in the instance level.

In particular, we treat the scale-aware domain classifica-
tion task as a multi-label classification problem [11,35]. It
takes the size of the instance features produced by the RPN
of the Faster-RCNN model as additional label input, and
combines it with the original domain label. More formally,
as shown in Figure 4, we define by d the multi-label of a
training image, and encode d = [0, 1,0,0], d = [0,0, 1, 0],
and d = [0,0,0,1] for the source domain with three dif-
ferent scales and d = [1,1,0,0], d = [1,0,1,0], and
d = [1,0,0,1] for the target domain with three different
scales. It is worth noting that the first entry of the encoded
multi-label d is used to indicate the domain and the last
three entries indicate the scale (small, medium, large) of
objects. The domain-invariant features can then be learned
by minimizing the following multi-label cross-entropy loss:

Lipy =Y [d"log(Dfy, ) + (1 = d)" log(1 = D, )]

’ )

Lip, =Y [d"log(D}") + (1 — d)" log(1 = D")] (6)

K2

With the above analysis, by combining the filter mecha-
nism(i.e., Eq.3 and Eq.4) with SAA , the sample-level trans-
ferability criterion for the image-level multi-scale domain
adaptation (i.e., Eq.5) and the instance-level multi-scale do-
main adaptation (i.e., Eq.6) can be respectively defined as
Eq.7 and Eq.8:

m _ Lig: if (|D(y,,)[0] —0.5] <m) o
img-FM
0 , otherwise
LY., if (|ID"[0] — 0.5] <m)
Lm — wms 3 8
ins-I'M { 0 , otherwise ®
where Dfy; 1[0] and D}"[0] represent the first entry of the

prediction output vectors DZZ v) and D" generated by the
multi-label multi-scale domain discriminator, indicating the
probability of the presence of objects from the source or
target.

3.4. Overall End-to-End Learning

The overall framework of US-DAF with a detailed
pipeline can be observed in Figure 2. US-DAF contains
three loss functions, including the detection loss Lpgr,
image-level domain adversarial loss L;7}, | ), and instance-
level domain adversarial loss L7 . ;. The standard detec-
tion loss L p g7 in Faster-RCNN [27] is used, i.e., the cross-
entropy loss is used for classification and the SmoothL1 loss
is used for regression (localization). Note that the detection
loss is only optimized on the labeled source samples.

The combination of the last two losses formulates the
proposed universal domain alignment (UniDA) of US-DAF
in both image-level and instance-level. By jointly consid-
ering Eq.7 and Eq.8, the proposed UniDA loss is expressed
as:

Lunipa = Liyg rar + Lins ru )

With the combination of the detection loss and domain
alignment loss, the final loss of the proposed US-DAF can
be written as:

Lys_par = Hgn max Lper —nLunipa (10)

where 7 is a hyper-parameter, G denotes a Faster R-CNN
object detector, and D indicates the domain classifier. The
mini-max adversarial optimization is implemented by the
GRL [9].

4. Experiments

To perform a thorough evaluation under a variety of
UniDAOD settings, we compare US-DAF with state of the
art methods tailored to DAOD settings on several datasets
with different scenarios, i.e., open-set, partial-set, and



Table 1. Results (%) on universal adaptation from Pascal VOC [6] to Clipartlk [

] (Open-set, £=0.75). The source private classes

include: ‘train’ and ‘tvmonitor’. The target private classes include: ‘aeroplane’, ‘bicycle’ and ‘bird’. US-DAF' denotes the ablation
analysis without filter mechanism. US-DAF* means that the ablation analysis without scale-aware adaptation.

Methods ‘boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa | mAP
Faster-RCNN |31.8 41.2 31.1 347 5.1 337 23.0 207 83 43.0 527 496 406 17.0 13.8]29.8
DAF [4] 37.2 38.0 269 359 23 352 240 285 42 338 547 594 584 134 179|313
MAF [14] 242 429 351 323 11.0 41.7 224 326 6.7 400 59.1 527 410 241 179|322
HTCN [2] 259 47.8 36.0 32.8 11.3 394 51.7 18.7 105 409 563 579 494 213 204|347
UAN [34] 26.6 37.7 482 315 86 328 237 31.6 24 366 56.6 428 448 147 164|303
CMU [7] 147 419 525 347 92 365 381 210 7.6 370 48.6 557 445 17.7 21.1|32.1
US-DAF! 324 38.6 30.8 39.0 132 372 61.5 297 82 451 632 615 437 284 228|370
US-DAF* 33,5 459 279 351 15.1 392 53.1 259 9.8 423 653 61.6 484 250 174|364
US-DAF(ours) | 349 40.8 289 364 17.7 384 64.6 28.0 103 458 645 625 521 258 24.8]|384

Table 2. Results (%) on universal adaptation from Pascal VOC to Clipartlk (Open-set, £=0.5). The source private classes include:
‘aeroplane’, ‘bicycle’, ‘bird’, ‘boat’, and ‘bottle’. The target private classes include: ‘plant’, ‘sheep’, ‘sofa’, ‘train’, and ’tvmonitor’.

Methods ‘ bus car cat chair  cow table dog horse =~ motor  person | mAP
Faster-RCNN 433  33.0 8.4 32.1 240 287 6.9 349 51.8 42.5 30.6
DAF [4] 37.5 328 10.2 40.3 272 31.3 4.1 41.0 55.5 52.0 332
MAF [14] 37.1 31.1 9.7 38.1 19.9 29.1 2.5 37.3 50.7 50.0 30.6
HTCN [2] 29.5 344 173 33.8 50.6 14.0 3.6 46.9 74.7 58.5 36.3
UAN [34] 489 264 146 36.7 49.9 30.0 32 39.9 56.1 52.0 35.8
CMU [7] 333 3238 8.1 41.5 55.5 24.6 5.6 433 54.9 60.4 36.0
US-DAF' 36.1 333 11.8 39.9 582  26.1 7.5 43.2 70.5 57.8 38.4
US-DAF* 348 398 11.9 374 55.2 27.4 16.8 34.5 59.8 64.1 38.2
US-DAF(ours) | 31.3 419 7.3 42.9 64.3 30.0 5.7 44.8 69.5 61.9 40.0

Table 3. Results (%) on universal adaptation from Pascal VOC to

Cityscapes [5], Foggy Cityscapes [

1, PASCAL VOC [6],

Clipart1k (Open-set, £=0.25). The source private classes include:
‘bus’, ‘car’, ‘cat’, ‘chair’, ‘cow’, ‘table’, and ‘dog’. The target
private classes include: ‘horse’, ‘motorbike’, ‘person’, ‘plant’,
‘sheep’, ‘sofa’, ‘train’, and ‘tvmonitor’.

Methods ‘plane bicycle bird boat bottle | mAP
Faster-RCNN | 332 557 254 292 41.6 | 370
DAF [4] 31.5 425 252 344 508 | 369
MAF [14] 293 570 27.1 339 41.8 |378
HTCN [2] 325 53.0 24.1 27.0 484 |37.0
UAN [34] 356 559 27.1 282 442 | 382
CMU [7] 455 5277 288 294 40.1 | 393
US-DAF! 432 542 241 28.6 43.6 | 38.7
US-DAF* 419 547 254 260 41.7 | 379
US-DAF(ours) | 442 57.5 279 322 405 | 40.5

closed-set. We conduct sufficient experiments and evalu-
ate our proposed method on benchmark datasets, including

Clipartlk and WaterColor [16]. Then, we explore the per-
formance with respect to the change of £. Code will be
available.

4.1. Experimental Setup

Implementation Details. For fair comparison, the
backbone network of our proposed US-DAF model is
ResNet101 [13] pre-trained on ImageNet [19] in the experi-
ments. Following the default settings in [4], the shorter side
of each input image is resized to 600 pixels. We optimize
the network by using the stochastic gradient descent (SGD)
optimizer with a momentum of 0.9 and a weight decay of
0.0005. The initial learning rate is set to 0.001 and dropped
to 0.0001 after 50k iterations. Totally, 100k iterations are
trained. The trade-off parameter 1 in Eq.10 is set as 0.01
in our implementation. A single batch is composed of two
images respectively for the source and target domains. To
evaluate the adaptation performance, we report mean aver-
age precision (mAP) with IOU threshold of 0.5.



Compared Methods. We compare the proposed US-
DAF with (1) CNN based object detection: Source only
Faster RCNN [27] without any adaption, (2) Traditional
domain adaptive object detection methods: Domain Adap-
tive Faster R-CNN (DAF) [4], Multi-adversarial Faster-
RCNN (MAF) [14], and Hierarchical Transferability Cal-
ibration Network (HTCN) [2], (3) Partial domain adap-
tation methods: Partial Adversarial Domain Adaptation
(PADA) [1], (4) Universal domain adaptation methods:
Universal Adaptation Network (UAN) [34], Calibrated
Multiple Uncertainties (CMU) [7]. Because these meth-
ods achieved state-of-the-art performance in their respec-
tive task, it is valuable to show their performance in the
UniDAOD setting. It is worth noting that PADA, UAN, and
CMU are domain adaptation methods for image classifica-
tion, and we use them in domain adaptation object detec-
tion.

4.2. Experimental Results

In the case of different £, with respect to open-set,
partial-set, and closed-set, the mean average precision of
the common classes are shown in Tables 1 to 6. US-DAF
outperforms all the compared methods in terms of the mean
average precision. These consistent results suggest that US-
DAF can overcome the double challenge brought by cate-
gory shift and scale issue between the source and target do-
mains. We have the following observations.

Open-set scenario. As shown in Tables 1 to 3, we use
the PASCAL VOC [6] as the source domain and the Cli-
partlk [16] as the target domain, and we select some classes
as the common classes or private classes. Specifically, we
design three experiments for this scenario (from PASCAL
VOC to Clipartlk) with different £ = {0.75,0.5,0.25} .

The experiments show that whatever this ¢ is, our US-
DAF can achieve state-of-the-art results among all com-
pared methods. The proposed US-DAF clearly outperforms
the baseline model DAF [4] by +7.1%, +6.8%, and +3.6%
with different £&. Note that our US-DAF also can surpass
the MAF [14] and HTCN [2], even if they have a multi-
layer alignment structure and additional adaptation mod-
ules. And both source and target domains have their own
private classes in these scenarios, which lead to more se-
rious negative transfer. However, our model still performs
well in these scenarios by using the proposed filter mecha-
nism and scale-aware adaptation.

Furthermore, in open-set settings, especially the diffi-
cult task Watercolor [12] — PASCAL VOC [6] (i.e., Ta-
ble 4), most existing methods perform similarly to or even
worse than Faster RCNN, indicating that existing methods
are prone to negative transfer in open-set settings. That is,
they perform worse than a model only trained on source
data without any adaptation. We can find that DAF [4],
MAF [14], and HTCN [2] suffer from negative transfer in

Table 4. Results (%) on universal adaptation from Watercolor
[12] to Pascal VOC [6]. (Open-set Cs C Cy).

Methods ‘bicycle bird car cat dog person mAP
Faster-RCNN | 29.8 50.2 47.1 62.2 51.5 57.8 |49.8
DAF [4] 29.5 53.8 50.6 58.1 48.1 56.5 |49.4
MAF [14] 28.5 50.0 46.8 59.4 50.2 58.6 |48.9
HTCN [2] 264 43.0 46.5 50.8 44.0 539 |44.1
PADA [1] 325 522 51.8 57.7 542 60.2 |51.4
UAN [34] 33.6 52.1 53.8 62.4 52.2 56.1 |51.7
CMU [7] 36.9 51.2 533593 51.7 599 |52.0
US-DAF! 28.7 53.1 51.3 62.4 534 58.7 |51.3
US-DAF* 30.6 524 54.5 61.4 53.8 59.9 |52.1
US-DAF(ours)| 35.0 52.4 52.7 63.1 54.3 59.8 | 52.9

most classes and are only able to promote the adaptation for
a few classes. Comparatively, the proposed US-DAF pro-
motes positive transfer for all classes.

Partial-set scenario. We conduct the partial domain
adaptive object detection scenario, in which the target label
set is completely a subset of the source label set (Cs D C;).
WaterColor [16] dataset contains 6 categories in common
with PASCAL VOC [6]. Therefore, we adopt the PASCAL
VOC as the source domain and the WaterColor as the target
domain in the partial domain adaptation.

The results are presented in Table 5. We can see that
our US-DAF achieves 55.2% mAP, which outperforms a re-
markable increase of +5.9% over the baseline DAF [4]. Fur-
thermore, we can observe that most existing DAOD meth-
ods perform similarly to or even worse than Faster RCNN,
indicating that existing methods are prone to negative trans-
fer in partial-set settings. That is, they perform worse than
a model only trained on source data without any adapta-
tion. Note that our US-DAF also can surpass the UAN [34]
and CMU [7], even if they avoid negative transfer in most
tasks. Comparatively, the proposed US-DAF promotes pos-
itive transfer for all classes. These consistent results suggest
that US-DAF can overcome the double challenge brought
by category shift and scale issue between the source and
target domains.

Closed-set scenario. Existing DAOD methods work un-
der the closed-set domain adaptation setting, where the cat-
egory sets of the source and target domains are the same.
Therefore, we use the samples from common label set to
compare our methods with previous methods. As shown
in Table 6, we conduct the experiment on the closed set
(Cs = Cp) from Cityscapes [5] to Foggy Cityscapes [29]
by comparing the two baseline methods [4, 14].

Experimental result shows that our proposed US-DAF
outperforms the two methods, which significantly indi-
cates that our the sample-level transferability criterion filter



Table 5. Results (%) on universal adaptation from Pascal VOC to
Watercolor in partial scenario. (Partial-set Cs O Cy).

Methods ‘bicycle bird car cat dog person‘mAP
Faster-RCNN | 82.4 51.7 48.4 39.9 30.7 59.2 |52.0
DAF [4] 734 51.9 43.1 35.6 28.8 63.1 |49.3
MAF [14] 704 50.3 44.3 36.7 30.6 62.9 |49.2
HTCN [2] 74.1 49.8 51.9 353 353 66.0 |52.1
PADA [1] 74.3 53.6 45.6 38.6 41.8 64.3 |53.0
UAN [34] 78.0 53.6 50.4 36.4 35.8 65.6 |53.3
CMU [7] 82.0 53.9 48.6 39.6 33.1 66.0 |53.9
US-DAF! 81.3 52.7 51.5 375359 619 |535
US-DAF* 81.8 55.3 445 38.8 31.1 62.1 |52.3
US-DAF(ours)| 86.5 54.1 50.0 43.0 34.0 63.2 |55.2

Table 6. Results (%) on domain adaptation from Cityscape [5]
to Foggy Cityscape [29] in closed-set scenario. (closed-set Cs =
Ci). “+FM” and “+SAA” mean the replacement of the original
mechanism with the proposed filter mechanism and scale-aware
adaptation module, respectively.

Methods ‘ prsn rider car trunk bus train mcyc bicy‘mAP

Faster-RCNN| 17.8 23.627.1 11.9 23.8 9.1 14.4 22.8/18.8

DAF [4] 25.0 31.040.5 22.1 35.320.2 20.0 27.1|27.6
DAF+FM 27.4 39.642.0 22.3 35.011.8 20.2 32.8/28.7
DAF+SAA | 31.8 44.244.4 22.8 38.7 31.1 28.0 35.7/34.6
MATF [14] 28.2 39.543.9 23.8 39.933.3 29.2 33.9/34.0
MAF+FM | 33.4 44.644.6 23.9 37.828.8 30.2 37.3|35.1
MAF+SAA | 33.9 47.050.6 28.1 46.7 27.7 32.2 36.4/37.8

mechanism of US-DAF does not deteriorate performance
on the closed set domain adaptation setting, and demon-
strates the effectiveness of our scale-aware adaptation ap-
proach on the closed-set domain adaptation scenario.

4.3. Further Empirical Analysis

In this section, we conduct model analysis and dis-
cussion to investigate the effect of our US-DAF for the
UniDAOD task. An in-depth insight into the proposed mod-
els is shown.

Ablation Study. We conduct the ablation study to show
the effectiveness of each component (i.e., FM, SAA) by
evaluating several variants of US-DAF and the results are
reported at the bottom part of Tables | to 5 in all scenar-
ios. We can see that the proposed filter mechanism (FM)
is designed reasonably and when it is removed, the perfor-
mance drops accordingly. Take Pascal VOC — Clipartlk
(& = 0.5) (i.e., Table 2) as an example, with FM, its mean
average precision is 40.0%, however, if without FM, its ac-
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Figure 5. Algorithmic analysis. (a) Analysis of the negative trans-
fer in cross-domain task PASCAL VOC — Watercolor. (b) Anal-
ysis of the negative transfer in cross-domain task Watercolor —
PASCAL VOC.

curacy drops to 38.4%. Similarly, the results from Tables
1 to 5 also show that removing the SAA can make the per-
formance correspondingly degrade. This indicates that the
SAA module in the US-DAF is designed reasonably.

Negative Transfer. In the practical setting of
UniDAOD, most existing methods perform similarly to or
even worse than Faster-RCNN without any adaptation, in-
dicating that existing methods are prone to negative transfer
in UniDAOD settings. For example, Figure 5 (a) and (b)
show the per-class accuracy gain compared to Faster RCNN
on the tasks Pascal VOC — Waterclolor and Waterclolor —
Pascal VOC. We can find that DAF, MAF, and HTCN suf-
fer from negative transfer in most classes. Only US-DAF
promotes positive transfer for all classes. This suggests that
our proposed US-DAF has the capacity to quantify the class
importance and intensify the common label set across do-
mains.

Visualization of Feature Distribution. In Figure 6, we
used t-SNE [3 1] to compare the distribution of induced fea-
tures between our US-DAF and other models on the Patrial-
set (i.e., Pascal VOC to Watercolor) and Open-set (i.e., Wa-
tercolor to Pascal VOC) scenarios, where different color
stands for different common categories and the black dots
stand for the private categories. We can observe that fea-
tures of private classes and several common classes are
close or even mixed together, indicating that DAF and UAN
cannot discriminate known (common) and unknown (pri-
vate) classes during training. By contrast, our proposed US-
DAF produces features that can well separate the common
and private classes, which benefits from the proposed strat-
egy of filter mechanism and multi-label scale-aware adap-
tation.

Scale-Wise Analysis. In order to gain further insight
into the influence of feature alignment, we conduct a scale-
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Figure 7. We show the features extracted with different models.
The first row presents the domain-wise alignment, while the sec-
ond row shows the scale-wise alignment.

wise analysis, where we visualize the instance-level feature
from different object scales, as well as provide a scale-
wise quantitative evaluation. As shown in Figure 7, we
use Cityscapes — Foggy Cityscapes in this study. On the
top row we show the domain-wise alignment. And on bot-
tom row we show the scale-wise alignment, where we di-
vide each instance into three sub-categories, based on the
instance size: small (<202 pixels), medium (202 ~ 1002
pixels), large (>100? pixels).

Figure 7 presents the results of the source-only Faster
RCNN, DAF, and DAF+SAA. From the results, the source
and target features extracted from the source-only Faster
R-CNN model can be clearly divided into two parts, and
features of different scales are spanned across the feature
space. DAF performs a uniform domain alignment, which
is agnostic to the scale. As a result, the features are aligned

between the two domains to some extent. However, the
alignment produces a side effect of wrongly aligned features
across different scales. In contrast, our DAF+SAA is able
to take advantage of the scale information, and maintains
the scale discriminability when aligning the features. This
has resulted an observable better feature alignment. Fur-
ther, We report mAP for each scale and summarize the re-
sults in Figure 7. We observe that the proposed modules
also demonstrate better quantitative results across scales.

5. Conclusion

In this paper, we introduce a novel setting that better
meets the needs of real-world scenarios, Universal Domain
Adaptive Object Detection (UniDAOD), which requires no
prior knowledge on the label set of target domains. In order
to meet this challenge of UniDAOD, we contribute a Uni-
versal Scale-Aware Domain Adaptive Faster R-CNN with
Multi-Label Learning (US-DAF) framework, which, to the
best of our knowledge, is a pioneer work for object detec-
tion under both category shift and scale issue toward uni-
versal scenarios. In order to overcome the category shift
of conventional UniDAOD, we introduce the filter mech-
anism to reject the private classes and preserve the com-
mon classes. Moreover, the scale-aware adapter is proposed
with multi-label learning mechanism to tackle the prob-
lem caused by the large variety of scales in natural scenes.
Through extensive experiments, we validated the effective-
ness of our method by achieving a new state-of-the-art per-
formance in various universal domain adaptation scenarios.
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