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ABSTRACT
Blind watermarking provides powerful evidence for copyright pro-
tection, image authentication, and tampering identification. How-
ever, it remains a challenge to design a watermarking model with
high imperceptibility and robustness against strong noise attacks.
To resolve this issue, we present a framework Combining the
Invertible and Non-invertible (CIN) mechanisms. The CIN is com-
posed of the invertible part to achieve high imperceptibility and
the non-invertible part to strengthen the robustness against strong
noise attacks. For the invertible part, we develop a diffusion and
extraction module (DEM) and a fusion and split module (FSM)
to embed and extract watermarks symmetrically in an invertible
way. For the non-invertible part, we introduce a non-invertible
attention-based module (NIAM) and the noise-specific selection
module (NSM) to solve the asymmetric extraction under a strong
noise attack. Extensive experiments demonstrate that our frame-
work outperforms the current state-of-the-art methods of imper-
ceptibility and robustness significantly. Our framework can achieve
an average of 99.99% accuracy and 67.66 𝑑𝐵 𝑃𝑆𝑁𝑅 under noise-free
conditions, while 96.64% and 39.28 𝑑𝐵 combined strong noise at-
tacks. The code will be available in https://github.com/rmpku/CIN.

CCS CONCEPTS
• Security and privacy→ Digital rights management.
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Figure 1: The top and bottom are the watermarked im-
ages with noise-free and 𝐽𝑝𝑒𝑔 noise (training with combined
noise). From left to right are the MBRS [21], the invertible-
only baseline CIN*, and the proposed CIN, respectively. The
red marks in the picture are 𝑃𝑆𝑁𝑅 with the input image and
the accuracy 𝐴𝑐𝑐 of the extracted watermark, respectively.

1 INTRODUCTION
Digital watermarking utilizes data concealment techniques to em-
bed some form of identification into a digital medium that can be
transmitted together and authenticated by the property owner. Wa-
termarking has the characteristics that the information embedding
should be robust, tamper-resistant, and for authentication [7, 47].
HiDDeN [50] is the first watermarking framework that enabled end-
to-end training, and numbers of works are subsequently derived,
which can be simply classified as CNN-based [21, 26, 32, 42, 50]
and GAN-based [46, 48, 49]. The end-to-end joint training of the
models enabled the incorporation of the embedding and extrac-
tion efficiently and ensured the effectiveness of the pipeline. As
shown in the top part of Fig.2, the key to guaranteeing robustness
is the adversarial training with the differential noise layer. There
are some limitations in the end-to-end framework. The decoder
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Figure 2: Framework of digital watermarking model. Top is
the End-to-endmethod. Middle is the baseline CIN*. Bottom
is the proposed CIN.

and its latent variables are approximately likelihood evaluation
inferred by data, which means the entire training objective is not
an exact form. And if the model contains a Bottleneck structure,
such as in auto-encoder based watermarking [22], the manipulation
of the features will result in non-invertible losses of information
that is detrimental to the watermark restoration. In addition, more
information is uncontrollably removed when watermarked images
are subject to noise attacks, which leads to the inevitable sacrifice
of imperceptibility to improve robustness.

We propose a framework combining the invertible and non-
invertible mechanisms, as shown the bottom of Fig.2. For the in-
vertible part 𝑓𝜃1 (·), we introduce an invertible neural network (INN)
based module that significantly improves the imperceptibility of
the watermark and is robust to common additive noise. Denoting
the input image and watermarking as 𝐼𝑚 and𝑊𝑚 , and 𝑓𝜃1 (𝐼𝑚,𝑊𝑚)
as 𝑧. The inverse function 𝑓 −1

𝜃1
(·) can be trivially obtained, such that

𝑃 (𝑊𝑚) can be easily sampled with𝑊𝑚 = 𝑓 −1
𝜃1

(𝑧), where 𝑧 ∼ 𝑃𝑍 (𝑧)
and 𝑃 (𝑊𝑚) refers to the probability distribution of the watermark.
In a generic INN, the probability distribution of 𝑃𝑍 (𝑧) can be ex-
plicitly defined as a Gaussian prior since 𝑧 poses no additional
limitation[19], and yet we define it as the input image-based prior,
which helps to reduce the introduction of errors destroying re-
versibility and helps to stabilize the overall training process[9].
Benefiting from the invertibility, the probability distribution of the
latent variable in the inverse process is a full posterior probability,
ensuring the accuracy of the restored watermark. Since the prop-
erty that the INN shares a set of parameters for both the embedding
and the extraction processes, we can train and learn the forward
embedding process and obtain the inverse extraction process "for
free", as opposed to the end-to-end, in which the decoder has a
separate train and learn process.

For the high imperceptibility of the watermark overlaid with
the input image, the distribution 𝑧 should be numerically small. As
shown in Fig. 3, since 𝑃𝑍 (𝑧) is more variable when subjected to
lossy compression noise leading to a more fragile watermark. And
the property of sharing parameters between the embedding and
extraction process of the invertible module leads to the extraction
process being only sampled according to 𝑃𝑍 (𝑧) of the embedding,
which also limits the decoder’s ability to adapt to the strong and

z

Embedded watermark
distribution Additive noise zn

Lossy quantization
noise

zn z z'

Figure 3: Noise description. Although the INN can fit the dis-
tribution 𝑧𝑛 of additive noise, the lossy quantization noise
will change the embedded watermark distribution.

non-differentiable noise. For the non-invertible part 𝑓𝜃2 (·), we in-
troduce a non-invertible attention-based module (NIAM) and the
noise-specific selection module (NSM) to solve the asymmetric
extraction of watermarks under a lossy compression noise. The
distribution of the noised image is denoted as 𝑧′ ∼ 𝑃𝑍 ′ (𝑧′), and we
expect using the NIAM to approximate𝑊𝑚 ≈ 𝑓 −1

𝜃2
(𝑧′) from 𝑃𝑍 ′ (𝑧′).

We introduce approximately differentiable and non-differentiable
compression noise in the training step to enable NIAM to guide the
encoder as well. The gradients are backward to the encoder when
the differentiable noise is selected in the noise pool. In contrast, only
the NIAM is updated when the non-differentiable noise is chosen.
Therefore, we can effectively combine invertible and non-invertible
modules in digital watermarking.

The contributions of this paper can be summarized as follows:
1. To the best of our knowledge, we are the first to incorporate

an INN with blind watermarking, while most of the existing deep
learning-basedwatermarking approaches focus on encoder-decoder
pipeline or adversarial training.

2. To compensate for the deficiency of the INN in combating
quantization loss noise, we introduce NIAM as a parallel decoder
to improve the robustness of the model against compression.

3. We propose the diffusion and extraction module (DEM) and
the fusion and split module (FSM) for more efficient and robust
embedding and extraction of watermarks.

4. We conduct extensive experiments on various image datasets
and compare our approach against the state-of-the-art watermark-
ing methods. Our method achieves excellent performance in terms
of imperceptibility and robustness.

2 RELATEDWORK
2.1 Watermarking
The research on digital watermark is first proposed in [40] in 1994,
and it can be generally classified into two categories: traditional
algorithms based on transform domain and a deep learning-based
approach driven by data. Where the traditional watermarking meth-
ods include algorithms based on singular value decomposition
[31, 37, 38], moment-based watermarking algorithms [17, 18] and
transform domainwatermarking algorithms [3, 15, 33]. Accordingly,
the deep learning-based watermarking model is first introduced by
Hamidi et al. [22] in 2017, whose method brings superior impercep-
tibility and robustness over traditional methods by employing an
auto-encoder convolutional neural network(CNN). HiDDeN [50] is
the first to introduce the adversarial network to blind watermark-
ing and also the first end-to-end method using neural networks.
Subsequently, Ahmadi et al. [2] propose a digital watermarking
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framework based on residual networks and achieved excellent ro-
bustness and imperceptibility. Liu et al. [26] propose the TSDL
framework, which is composed of two-stage: noise-free end-to-end
adversary training and noise-aware decoder-only training. This
method is effective against black-box noise and can introduce non-
differentiable noise attacks in the end-to-end network. Soon, Jia
et al. [21] propose a novel Mini-Batch of Simulated and Real 𝐽𝑝𝑒𝑔
compression method to enhance robustness against 𝐽𝑝𝑒𝑔 compres-
sion, which performs excellent performance in various noises. In
addition, there are works studying deep learning-based steganog-
raphy and encryption [12, 28, 35, 43, 49] and a review of research
on deep learning-based watermarking and steganography can be
found [7, 47].

2.2 Invertible Neural Network
Invertible neural network is the first learning-based normalizing
flow framework for modeling complex high-dimensional densities,
proposed by Dinh et al. [10] in 2014. To improve the efficiency
and performance of image processing, Dinh et al. [11] introduce
convolutional layers in coupling models by modifying the additive
coupling layers to both multiplication and addition, called real NVP.
To further improve the coupling layer for density estimation and
achieve better generation results, Kingma et al. [24] propose a novel
generative flow model based on the ActNorm layer and generalize
channel-shuffle operations with invertible 1×1 convolutions. Real
NVP and 1×1 convolutions are two frequently used structures in
image tasks employing INN. Normalizing flow-based INN has be-
come a popular choice in image generation tasks, and evolved with
various similar deformations [6, 8, 13, 20, 24]. And there are also
several approaches that incorporate INN with other methods, such
as INN combined with self-attention [16] and INN constructed with
masked convolutions [36]. Due to the flexibility and effectiveness
of INN, it is also used for image super-resolution [29, 44] and video
super-resolution[51]. In addition, Ouderaa et al.[39] applied INN to
image-to-image translation, Wang et al.[41] applied INN in digital
image compression, Ardizzone et al. [5] introduce conditional INN
for colorization, Liu et al. [27] propose an invertible denoising net-
work, Xing et al. [45] propose an invertible image signal processing
and Pumarola et al. [34] apply INN for image and 3D point cloud
generation.

3 METHOD
3.1 Overall Architecture
Fig. 5 shows the architecture of our proposed𝐶𝐼𝑁 , which is divided
into the following parts: a Diffusion and Extraction Module (DEM),
an Invertible Module (IM), a Fusion and split Module (FSM), a
Non-invertible Attention-based Module (NIAM), and Noise-specific
Selection Module (NSM). The embedding and extraction of CIN are
defined as 𝑓𝐶𝐼𝑁 (𝜃 ) and 𝑓 −1

𝐶𝐼𝑁
(𝜃 ).

3.2 Diffusion and Extraction Module
The watermark 𝑊𝑚 is a binary sequence of length 𝐿 randomly
sampled from𝑊𝑚 ∼ {0, 1}𝐿 . Embedding the watermark into an
RGB image 𝐼𝑚 with length andwidth of𝐻 and𝑊 , respectively. Then
the watermark and the image of the input model are𝑊𝑚 ∈ R𝐵×𝐿

、 、
5-layer Dense Block

+

+

Forward

-

-/
Backward

Invertible 
Coupling Layer 

Figure 4: The structure diagram of the invertible coupling
layer. Top is the functions, 𝜙 , 𝜌 and 𝜂 constructed with 5-
layer dense block, of the invertible coupling layer. Bottom
is the exact form of the affine coupling layer.

and 𝐼𝑚 ∈ R𝐵×𝐶×𝐻×𝑊 respectively, where B and C refer to batchsize
and channel number.

As shown in fig. 6, the top and bottom parts show the diffusion
and extraction processes, respectively. In the diffusion processing,
to align the watermark with the number of channels of the image,
we first replicate the watermark𝑊𝑚 in three copies. The different
fully connected (FC) branches produce redundant watermarks of
longer length, respectively. Subsequently, reshape and upsample to
the same scale size as the cover image by two-dimensional trans-
pose convolution (ConvT). After passing through the FC layer, the
watermark length 𝐿̂ is 256, the kernel size and stride of ConvT are
both 2, and the block number is 3. Finally, the output of the three
branches is concatenated and fed into the invertible module after
the Haar transform. For forward embedding operations:

Ψ𝐷𝐸𝑀 = Γℎ𝑎𝑎𝑟 (O𝑐𝑎𝑡 (Γ𝑐𝑜𝑛𝑣𝑇 (Γ𝑓 𝑐 (O𝑐𝑜𝑝𝑦 (𝑊𝑚)))) (1)

where O𝑐𝑜𝑝𝑦 ∈ 3 × R𝐵×𝐿 , Γ𝑓 𝑐 ∈ R𝐵×𝐿̂ , Γ𝑐𝑜𝑛𝑣𝑇 ∈ R𝐵×1×𝐻×𝑊 ,
O𝑐𝑎𝑡 ∈ R𝐵×3×𝐻×𝑊 and Γℎ𝑎𝑎𝑟 ∈ R𝐵×12×𝐻/2×𝑊 /2 refer to opera-
tions Copy, FC, ConvT, Concatenate and Haar Transform, respec-
tively. And Ψ𝐷𝐸𝑀 is the output tensor of Diffusion and Extract
Module.

In the extraction process, the operation Ψ−1
𝐷𝐸𝑀 , which is the

opposite of the embedding process, is taken for extraction. In con-
trast to Copy in the watermark embedding step, the final result is
output by Average Pooling in the extraction process. The formula
is as follows:

𝑊𝑚1 = Ψ−1
𝐷𝐸𝑀 (·) (2)

3.3 Invertible Module
The coupling layer in the IM is an additive affine transformation,
which was first proposed in NICE [10]. Recently, invertible ar-
chitecture has been applied to information hiding with excellent
representational capacity in works [14, 28, 44], from which we were
inspired. We use the watermark𝑊𝑚 and the image 𝐼𝑚 as the two
inputs of the invertible module, respectively. Our goal is to embed
the𝑊𝑚 into the 𝐼𝑚 with excellent imperceptibility and robustness.
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Figure 5: Overall model architecture. The DEM diffuses the watermark to the same dimension as the image using FC, Convo-
lution, and Haar Transform. IM maps the diffused watermark to an embeddable distribution. FSM scales the watermark to
be embedded and stacks it with the input image in the frequency domain. The noise pool introduces a variety of traditional
noises. NIAM is used to enhance the robustness against lossy compression noise. NSM is used to output the best result of IM
and NIAM.

The invertible module is shown in Fig. 4. The embedding and
extraction correspond to the forward and backward of the bijection
structure [44], respectively. In the coupling layer of the 𝑙𝑡ℎ , 𝑢𝑤𝑚
and 𝑢𝑖𝑚 denote the input watermark and image, respectively. The
corresponding 𝑢𝑙+1𝑤𝑚 and 𝑢𝑙+1

𝑖𝑚
denote the output watermark and im-

age after passing through the current coupling layer. The invertible
module is formulated as:

u𝑙+1𝑖𝑚 = 𝜙 (u𝑙𝑤𝑚) + u𝑙𝑖𝑚 (3)

u𝑙+1𝑤𝑚 = u𝑙𝑤𝑚 ⊙ exp
(
𝜌

(
u𝑙+1𝑖𝑚

))
+ 𝜂

(
u𝑙+1𝑖𝑚

)
(4)

where exp(·) is exponential operator, 𝜙 (·), 𝜌 (·) and 𝜂 (·) are arbi-
trary functions, ⊙ is the Hadamard product. The corresponding
backward propagation of the extraction process is formulated as:

u𝑙𝑖𝑚 = u𝑙+1𝑖𝑚 − 𝜙

(
u𝑙𝑤𝑚

)
(5)

u𝑙𝑤𝑚 =

(
u𝑙+1𝑤𝑚 − 𝜂

(
u𝑙+1𝑖𝑚

))
⊙ exp

(
−𝜌

(
u𝑙+1𝑖𝑚

))
(6)

3.4 Fusion and Split Module
The output Ψ𝑖𝑛𝑣 ∈ R𝐵×24×𝐻/2×𝑊 /2 of the invertible mudule (IM)
can be split into two parts,Ψ𝐼

𝑖𝑛𝑣
(𝑥 ;𝐿𝑅,𝐻𝑅) andΨ𝐼 𝐼

𝑖𝑛𝑣
(𝑥 ;𝐿𝑅_, 𝐻𝑅_) ∈

R𝐵×12×𝐻/2×𝑊 /2. After Haar transform, the LR and HR represent
the image’s low and high-frequency components. The left part of
Fig. 7 is similar to the Channel Squeeze module of work [9]. The
corresponding channels of the two outputs of the IM are averaged,
which can be fused and squeezed to the size of the image. It is,
however, difficult to trade off the watermark robustness with the
imperceptibility. Therefore, we propose the fusionmethod as shown
on the right in Fig. 7.

In the embedding process, we discard the image part of the IM
output, keep only the mapped watermark part, and then add it to
the image after scaling by the strength factor 𝑆 to obtain the final
watermarked image. The formula is as follows:

𝑊𝐼𝑚 = Γ−1
ℎ𝑎𝑎𝑟

(Ψ𝐼 𝐼
𝑖𝑛𝑣 (𝑥 ;𝐿𝑅_, 𝐻𝑅_) × 𝑆 + Γℎ𝑎𝑎𝑟 (𝐼𝑚 (𝑥 ;𝐿𝑅,𝐻𝑅))) (7)

where 𝑆 is the strength of the watermark. To restore the embedded
watermark by invertible branch, the inputs are

ˆΨ𝐷𝐸𝑀 = 𝑂𝑐𝑎𝑡 (𝑂𝑐𝑜𝑝𝑦 (Γ−1ℎ𝑎𝑎𝑟
(𝑊𝐼𝑚))) (8)

where Γ−1
ℎ𝑎𝑎𝑟

(·) is inverse Haar transform.

3.5 Non-invertible Module
The embedding and extraction of the watermark in invertible net-
works has a deterministic mapping relationship, which makes excel-
lent results for watermark extraction accuracy in scenes without or
with additive noise. However, when subjected to lossy compression
or complex non-additive noise, since the forward and backward
of the invertible network share the same set of parameters, the
parameters of the decoder are updated along with the encoder,
which limits the ability of the decoder to cope with complex noise.
Therefore, an additional decoder is introduced in our framework
to enhance the robustness of the invertible module against non-
differentiable noise attacks, such as lossy compression noise. The
non-invertible module uses SENet as the backbone to extract the
watermark information𝑊𝑚2:

𝑊𝑚2 = Γ𝑓 𝑐 (Φ𝑆𝐸 (Γ𝑐𝑜𝑛𝑣 (·))) (9)

where Γ𝑓 𝑐 (·), Φ𝑆𝐸 (·), and Γ𝑐𝑜𝑛𝑣 (·) are FC, SENet and convolution
layer, respectively.
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Figure 6: Diffusion and Extraction Module. Top: watermark
embedding. Bottom: watermark extraction.

Inspired by the article [21], we introduce differentiable and non-
differentiable compression noise into the noise pool to push the
NIAM robustness by encountering lossy compression. The network
can update the parameters of both the IM and NIAM when intro-
ducing differentiable compression attack and only the NIAM for
non-differentiable noise. For NSM, we employ a CNN-based noise
discriminator to distinguish whether the attack is 𝐽𝑝𝑒𝑔 noise or
not. If it is 𝐽𝑝𝑒𝑔, the selector exports𝑊𝑚2 extracted by NIAM;
otherwise, return𝑊𝑚1 decoded by IM.

3.6 Noise Pool
The robustness of the watermark is improved by introducing a
noise layer in the architecture in [26, 30, 50] et al.. To optimize
the network parameters against the noise attack, it is generally
necessary to use a differentiable noise layer trained jointly with the
other basic module. In this work, the following 14 types of common
noises:

𝑁𝑝𝑜𝑜𝑙 = {𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝐽𝑝𝑒𝑔𝑀𝑎𝑠𝑘, 𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔,𝐶𝑟𝑜𝑝,𝐶𝑟𝑜𝑝𝑜𝑢𝑡, 𝑅𝑒𝑠𝑖𝑧𝑒,

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐵𝑙𝑢𝑟, 𝑆𝑎𝑙𝑡𝑆𝑎𝑙𝑡&𝑃𝑒𝑝𝑝𝑒𝑟,𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑁𝑜𝑖𝑠𝑒, 𝐷𝑟𝑜𝑝𝑜𝑢𝑡,

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠,𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡, 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝐻𝑢𝑒}
where 𝐽𝑝𝑒𝑔𝑀𝑎𝑠𝑘 is the simulated differentiable 𝐽𝑝𝑒𝑔 noise [21].

For resisting specific noise𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔, we employ the following noise
pool to train the model:

𝑁
𝑐 𝑗

𝑝𝑜𝑜𝑙
= {𝐽𝑝𝑒𝑔𝑀𝑎𝑠𝑘, 𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔}

To test the robustness of the model against simultaneous su-
perimposed attacks of multiple noises, we use the following noise
pool:

𝑁 𝑠𝑖
𝑝𝑜𝑜𝑙

= {𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦,𝐶𝑟𝑜𝑝𝑜𝑢𝑡, 𝑅𝑒𝑠𝑖𝑧𝑒, 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝐻𝑢𝑒, 𝐷𝑟𝑜𝑝𝑜𝑢𝑡,
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐵𝑙𝑢𝑟, 𝑆𝑎𝑙𝑡𝑆𝑎𝑙𝑡&𝑃𝑒𝑝𝑝𝑒𝑟,𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑁𝑜𝑖𝑠𝑒}

For comparison with other works:
𝑁
𝑐𝑝1
𝑝𝑜𝑜𝑙

= {𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔, 𝐷𝑟𝑜𝑝𝑜𝑢𝑡,𝐶𝑟𝑜𝑝𝑜𝑢𝑡, 𝑅𝑒𝑠𝑖𝑧𝑒}
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Figure 7: Left: fusion to the average value of the correspond-
ing image channels. Right: fusion with the input image and
discards the corresponded image part.

𝑁
𝑐𝑝2
𝑝𝑜𝑜𝑙

= {𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔,𝐶𝑟𝑜𝑝,𝐶𝑟𝑜𝑝𝑜𝑢𝑡,
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐵𝑙𝑢𝑟, 𝐷𝑟𝑜𝑝𝑜𝑢𝑡}

3.7 Loss Functions
The loss functions constrain two parts: the watermarked image
and the extracted watermark. Since the INN shares parameters for
the embedding and extraction and has the same input and output
dimensions, the loss constraint on the restored image in the noise-
free version can also accelerate the convergence [4].

Watermarked Image We employ 𝐿2 loss to guide the water-
marked image 𝑊𝐼𝑚 to be visually alike to the reference image
𝐼𝑚 :

L𝑊𝐼𝑚 = | |𝐼𝑚−𝑊𝐼𝑚 | |22 = | |𝐼𝑚−𝑓𝐶𝐼𝑁 (𝜃, 𝐼𝑚,𝑊𝑚)) | |22 (10)
Restored Watermark Calculate the 𝐿2 distance for each pair

of input watermark𝑊𝑚 and the extracted watermark 𝑅𝑊𝑚 :

L𝑅𝑊𝑚 = | |𝑊𝑚−𝑅𝑊𝑚 | |22 = | |𝑊𝑚−𝑓 −1𝐶𝐼𝑁 (𝜃, 𝑁𝑝𝑜𝑜𝑙 (𝑊𝐼𝑚)) | |22 (11)

Restored Image When training the 𝐶𝐼𝑁 with 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 noise
layer, we employ 𝐿2 distance to constrain the difference between
the restored image 𝑅𝐼𝑚 and the reference image 𝐼𝑚 :

L𝑅𝐼𝑚 = | |𝐼𝑚−𝑅𝐼𝑚 | |22 = | |𝐼𝑚−𝑓 −1𝐶𝐼𝑁 (𝜃, 𝑁𝑝𝑜𝑜𝑙 (𝑊𝐼𝑚)) | |22 (12)

Total Loss To sum up, our 𝐶𝐼𝑁 is optimized by minimizing the
compact loss L𝑡𝑜𝑡𝑎𝑙 , with the corresponding weight coefficients
𝜆𝑊𝐼𝑚 , 𝜆𝑅𝑊𝑚 and 𝜆𝑅𝐼𝑚 :

L𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑊𝐼𝑚L𝑊𝐼𝑚 + 𝜆𝑅𝑊𝑚L𝑅𝑊𝑚 + 𝜆𝑅𝐼𝑚L𝑅𝐼𝑚 (13)

4 EXPERIMENTS
4.1 Baseline
The baseline model (denote as CIN*) contains only the invertible
part. Using the method proposed in the article [50] to concatenate
each bit watermark after duplication with the image channels. And
the channel squeezing method proposed in the article [9] is used
to output the watermarked image, as shown in the left part of
Fig. 7. The specific architecture of CIN* is given in the Appendix.
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Figure 8: Visual comparisons of the experimental results under different traditional noises. Each column corresponds to a type
of noise. Top: input image 𝐼𝑚 . Second row: watermarked image𝑊𝐼𝑚 . Third row: noised image 𝐼𝑛𝑜𝑖𝑠𝑒𝑑𝑚 . Bottom: the magnified
difference |𝐼𝑛𝑜𝑖𝑠𝑒𝑑𝑚 −𝑊𝐼𝑚 |.

The results of the reference models are from either the published
results or the open-source works and are partially quoted from the
article [48]. Our experimental setup is consistent with the reference
method.

4.2 Datasets.
To verify the robustness and imperceptibility of the proposed 𝐶𝐼𝑁 ,
we utilize the real-world acquired COCO dataset [25] for training
and evaluation. We also evaluate the transform performance of
the model on the super-resolution dataset DIV2K dataset [1]. For
the COCO dataset, 10000 images are collected for training, and
evaluation is performed on the other 5000 images. For the DIV2K
dataset, we use 100 images from the validation set for evaluation. For
each input image, there is a corresponding watermarking message
which is randomly sampled from the binary distribution𝑊𝑚 ∼
{0, 1}𝐿 .

4.3 Evaluation Metrics
To objectively evaluate the robustness and imperceptibility of our
proposed watermarking framework, we apply a series of quantita-
tive metrics. To validate the robustness, we evaluate the accuracy
(𝐴𝑐𝑐) between the extracted 𝑅𝑊𝑚 and the embedded𝑊𝑚 . For each
input image 𝐼𝑚 (𝑥𝑖 ), its corresponding watermark embedded and re-
stored are𝑊𝑚 (𝑥𝑖 ) and 𝑅𝑊𝑚 (𝑥𝑖 ), respectively. Bit Error Ratio (𝐵𝐸𝑅)
is also listed below, and the corresponding 𝐴𝑐𝑐 (%) is (1 − 𝐵𝐸𝑅).

𝐵𝐸𝑅(%) = ( 1
𝐿
×

𝐿∑︁
𝑘=1

|𝑅𝑊𝑚 (𝑥𝑖 ) −𝑊𝑚 (𝑥𝑖 ) |) × 100% (14)

For imperceptibility of watermarked images, we adopt the Peak
Signal-to-Noise Ratio (𝑃𝑆𝑁𝑅) and Structural Similarity (𝑆𝑆𝐼𝑀) for
evaluation.

𝑃𝑆𝑁𝑅(𝐼𝑚 (𝑥𝑖 ), 𝑅𝐼𝑚 (𝑥𝑖 )) = 20 × log10
𝑀𝐴𝑋 (𝐼𝑚 (𝑥𝑖 ), 𝑅𝐼𝑚 (𝑥𝑖 )) − 1
𝑀𝑆𝐸 (𝐼𝑚 (𝑥𝑖 ), 𝑅𝐼𝑚 (𝑥𝑖 ))

(15)

𝑆𝑆𝐼𝑀 (𝐼𝑚 (𝑥𝑖 ), 𝑅𝐼𝑚 (𝑥𝑖 ) =
(2𝜇𝑥 𝜇𝑦 +𝐶1) (2𝜎𝑥𝑦 +𝐶2)

(𝜇2𝑥 + 𝜇2𝑦 +𝐶1) (𝜎2𝑥 + 𝜎2𝑦 +𝐶2)
(16)

where𝑀𝐴𝑋 (·) is the maximum pixel value of images, and𝑀𝑆𝐸 (·)
represents the Mean Squared Error. Symbol 𝜎 , 𝜇𝑥 and 𝜎𝑥𝑦 represent
the average, variances and covariance of images, respectively. 𝐶1
and 𝐶2 are two constants for preventing unstable results.

4.4 Implementation Details
To keep a fair comparison, we adopt exactly the same settings with
the reference methods. Images are resized to 128×128 for all models,
and the watermark length is 30 or 64. For our model, training
with Nvidia 3080 graphics cards, the batch size is set to 32, and
the Adam optimizer [23] with default hyperparameters is adopted.
In the implementation, we train and evaluate the model under
Specific Noise and Combined Noise, respectively. In the Specific
Noise, all training and evaluations are performed only for one
noise. In the Combined Noise, each mini-batch randomly samples a
specific noise from 𝑁𝑝𝑜𝑜𝑙 , 𝑁

𝑐𝑝1
𝑝𝑜𝑜𝑙

or 𝑁𝑐𝑝2
𝑝𝑜𝑜𝑙

. In the evaluation stage,
we utilize the trained model to test the performance of each noise
in turn. Throughout the training phase, we first trained the model
in the noise-free case, at which point the loss weights are set to
𝜆𝑊𝐼𝑚 = 1, 𝜆𝑅𝑊𝑚 = 0.001 and 𝜆𝑅𝐼𝑚 = 1, respectively. Next, the
model is trained to resist different noise. We load the trained noise-
free model and subsequently set the loss weights to 𝜆𝑊𝐼𝑚 = 1,
𝜆𝑅𝑊𝑚 = 0.01 and 𝜆𝑅𝐼𝑚 = 0, respectively. In training combined
noise 𝑁𝑝𝑜𝑜𝑙 , 𝑁

𝑐𝑝1
𝑝𝑜𝑜𝑙

and 𝑁
𝑐𝑝2
𝑝𝑜𝑜𝑙

, the loss weight are set to 𝜆𝑊𝐼𝑚 = 1,
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Table 1: Results of robustness and imperceptibility against
various distortions. 𝑃𝑆𝑁𝑅1 and 𝑃𝑆𝑁𝑅2 denote the similar-
ity between input image 𝐼𝑚 and watermarked image 𝑊𝐼𝑚 ,
𝑊𝐼𝑚 and noised image 𝐼𝑛𝑜𝑖𝑠𝑒𝑑𝑚 , respectively. 𝑃𝑟𝑒 shows pre-
trained accuracy without noise attack during the training
stage. Specified and Combined mean the performance of
specified noise and combined noises 𝑁𝑝𝑜𝑜𝑙 , respectively.

Noise Factor
Specified Combined

𝑃𝑆𝑁𝑅1 𝑃𝑆𝑁𝑅2 𝑃𝑟𝑒 𝐴𝑐𝑐 𝑃𝑆𝑁𝑅1 𝐴𝑐𝑐

dB dB (%) (%) dB (%)

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 - 67.66 - - 99.99 39.28 99.99
𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑝 = 30% 61.39 62.93 99.43 99.99 39.29 99.99
𝐺𝑎𝑢𝑠𝐵𝑙𝑢𝑟 𝑘 = 7 52.44 21.64 50.21 99.94 39.28 99.99
𝑅𝑒𝑠𝑖𝑧𝑒 𝑝 = 50% 53.56 21.06 59.10 99.97 39.29 99.99

𝐺𝑎𝑢𝑠𝑁𝑜𝑖𝑠𝑒 𝜎 = 25 61.50 18.65 99.90 99.99 39.29 99.99
𝑆𝑎𝑙𝑡𝑃𝑒𝑝𝑝𝑒𝑟 𝑝 = 10% 53.83 14.80 81.24 99.96 39.29 99.99
𝐶𝑟𝑜𝑝𝑜𝑢𝑡 𝑝 = 30% 62.30 62.65 99.90 99.99 39.29 99.99
𝐶𝑟𝑜𝑝 𝑝 = 3.5% 41.62 11.06 60.32 99.70 39.29 99.94

𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔 𝑄 = 50 42.70 27.13 50.32 99.11 39.29 95.80
𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 𝑓 = 2 46.83 11.12 89.07 99.13 39.28 99.70
𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑓 = 2 51.70 17.87 89.87 99.58 39.29 99.99
𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑓 = 2 56.91 23.18 95.95 99.92 39.29 99.98

𝐻𝑢𝑒 𝑓 = 0.1 58.85 27.73 96.60 99.98 39.29 99.99
𝑆𝑢𝑝𝑒𝑟𝑖𝑚𝑝𝑜𝑠𝑒 - 46.43 13.92 50.24 98.54 - -

Average - 54.12 25.67 78.62 99.69 39.28 99.64

𝜆𝑅𝑊𝑚 = 1 and 𝜆𝑅𝐼𝑚 = 0, respectively. More experimental details
can be found in the Appendix.

4.5 Visualization Results
The results of our model 𝐶𝐼𝑁 against various noises are visualized
in Fig. 8. Each column indicates the result against a specific noise.
And we omit the results of noise 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝐶𝑟𝑜𝑝𝑜𝑜𝑢𝑡 , and 𝐷𝑟𝑜𝑝𝑜𝑢𝑡
since they appear almost identical to the input image. The first
two rows are the input image 𝐼𝑚 and the output watermarked
image 𝑊𝐼𝑚 , respectively. We can find that the image 𝑊𝐼𝑚 and
𝐼𝑚 are almost indistinguishable visually, which indicates that our
model has excellent imperceptibility. The third row is the noised
image 𝐼𝑛𝑜𝑖𝑠𝑒𝑑𝑚 attacked by the specific noise. The bottom row shows
the magnified difference |𝐼𝑛𝑜𝑖𝑠𝑒𝑑𝑚 −𝑊𝐼𝑚 | between the watermarked
image𝑊𝐼𝑚 and the noised image 𝐼𝑛𝑜𝑖𝑠𝑒𝑑𝑚 , which indirectly indicates
the intensity of the noise. In the Appendix, we present detailed noise
parameters and experimental results against rotation, affine, and
combinatorial attacks.

The detailed experimental performance corresponding to Fig. 8
is listed in Table 1. In the 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 case, the 𝑃𝑆𝑁𝑅 reaches 67.66𝑑𝐵
with𝐵𝐸𝑅 less than 10−4, which demonstrates the high imperceptibil-
ity of our framework. The results are given for the two mechanisms
of specific and combined noise. For specific noise, we list the 𝑃𝑆𝑁𝑅1
between 𝐼𝑚 and𝑊𝐼𝑚 , the 𝑃𝑆𝑁𝑅2 between𝑊𝐼𝑚 and 𝐼𝑛𝑜𝑖𝑠𝑒𝑑𝑚 , the
𝑃𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (𝑃𝑟𝑒) accuracy tested on the 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 model and the ac-
curacy (𝐴𝑐𝑐) tested on the specific noise model. The average 𝑃𝑆𝑁𝑅

and 𝐴𝑐𝑐 with specific noise reach 54.76𝑑𝐵 and 99.78% respectively,
which indicates that our framework has great potential against

Table 2: Comparison results of combined noise on COCO
dataset. The message length of all models is 30. Red repre-
sents the top accuracy value, blue takes the secondplace, and
underlining indicates equal accuracy. Adjusting the 𝑃𝑆𝑁𝑅 to
38.51 (dB) by the strength factor.

Models Imp Robustness (𝐴𝑐𝑐%)

𝑃𝑆𝑁𝑅
𝐶𝑟𝑜𝑝𝑜𝑢𝑡 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑅𝑒𝑠𝑖𝑧𝑒 𝐽𝑝𝑒𝑔 𝐴𝑣𝑒

𝑝 = 30 % 𝑝 = 30% 𝑝 = 50% 𝑄 = 50 -
HiDDeN 33.5 75.96 76.89 82.72 84.09 79.915
ABDH 32.8 74.82 75.31 80.23 82.62 78.245
DA 33.7 78.58 77.13 81.72 82.82 80.06
IGA 32.8 79.33 77.51 81.44 87.35 81.40

ReDMark - 92.5 92.00 94.1 74.6 86.36
TSDL 33.5 97.30 97.40 92.80 76.20 90.92
MBRS 33.5 99.99 99.99 - 95.51 98.49
CIN* 36.2 97.41 99.33 99.64 77.49 93.46
CIN 38.51 99.99 99.99 99.99 99.24 99.80

specific noise we have no test. For combined noise, we list the 𝐴𝑐𝑐
of the restored watermark 𝑅𝑊𝑚 and the 𝑃𝑆𝑁𝑅 between 𝐼𝑛𝑜𝑖𝑠𝑒𝑑𝑚

and𝑊𝐼𝑚 . Moreover, the mean values of 𝑃𝑆𝑁𝑅 and 𝐴𝑐𝑐 with the
combined noises 𝑁𝑝𝑜𝑜𝑙 reach 39.28𝑑𝐵 and 99.64%, respectively.

As shown in Fig. 9, we visualize the watermark patterns that
the model tends to embed for different noises. The watermarked
pixel with 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 is relatively concentrated in areas with texture
information where watermarks can be easily embedded, while the
region of the combined model and 𝐶𝑟𝑜𝑝 are more globally embed-
ded to resist multiple noise and random cropping. 𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔 model
is embedded in a way that can resist quantization loss.

4.6 Comparison against SOTA methods
In this work, we compare with several outstandingmethods, such as
HiDDeN [50], DA [30], ABDH [46], IGA [48], TSDL [26], ReDMark
[2], and MBRS [21]. To evaluate the performance of our model
compared with other methods, we conducte experiments using
noise 𝑁

𝑐𝑝1
𝑝𝑜𝑜𝑙

in Table 2. Our model not only has a higher 𝑃𝑆𝑁𝑅

than other methods but also achieves the best results in terms of
robustness.

R
es

id
ua

l S
ig

na
l

W
at

er
m

ar
ke

d 
Im

ag
e

RealJpegIdentity Crop SuperimposeIdentity With 𝒑𝒐𝒐𝒍
𝒄𝒑

Figure 9: Visually comparewatermarks embedded in images.
Top: watermarked image. Bottom: the magnified difference
|𝐼𝑚 −𝑊𝐼𝑚 | between input image and watermarked image.



Conference’17, July 2017, Washington, DC, USA Rui Ma et al.

Table 3: Compare the robustness of combined noise on the
COCO and DIV2K dataset. We use the model trained with
noise 𝑁𝑝𝑜𝑜𝑙 to evaluation on both datasets. The 𝑃𝑆𝑁𝑅 of CIN
is adjusted to 37.28 𝑑𝐵 on the COCO dataset and 40.08 𝑑𝐵 on
DIV2K. The 𝑃𝑆𝑁𝑅 of the other references is 33.5 𝑑𝐵.

Dataset Methods Robustness (𝐴𝑐𝑐%)

COCO

𝐶𝑟𝑜𝑝 𝑆𝑎𝑙𝑡&𝑃𝑒𝑝𝑝𝑒𝑟 𝐺𝑎𝑢𝑁𝑜𝑖𝑠𝑒 𝐺𝑎𝑢𝐵𝑙𝑢𝑟

𝑝 = 1% 𝑝 = 10% 𝜎 = 25 𝑘 = 3
TSDL 75.3 90.9 74.4 99.1
CIN* 77.31 99.82 99.88 99.58
CIN 98.81 99.99 99.99 99.97

DIV2K

𝐶𝑟𝑜𝑝 𝐶𝑟𝑜𝑝𝑜𝑢𝑡 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 𝑅𝑒𝑠𝑖𝑧𝑒 𝐽𝑝𝑒𝑔

𝑝 = 3.5% 𝑝 = 30% 𝑝 = 30% 𝑝 = 50% 𝑄 = 50
HiDDeN 68.24 60.92 63.78 66.28 66.37
ABDH 62.24 59.71 58.72 60.83 63.44
DA 77.32 77.11 74.55 71.01 82.35
IGA 77.39 60.93 76.63 72.19 82.90
CIN* 83.70 97.00 99.29 99.72 75.31
CIN 99.99 99.84 99.99 99.99 97.52

In Table 3, all models are trained and evaluated with watermark
length 𝐿 = 30. We find that our model can resist more kinds of noise
(𝑁𝑝𝑜𝑜𝑙 has 12 types of noise) while achieving optimal robustness
and a much higher 𝑃𝑆𝑁𝑅 than other methods.

4.7 Ablation Study
We conducte experiments with noise pool 𝑁𝑐𝑝2

𝑝𝑜𝑜𝑙
in Table 4. At

watermark length 𝐿=30, the PNSR is considerably higher than the
reference method, and the 𝐵𝐸𝑅 is lower. At 𝐿=64, our approach is
significantly more robust to cropping than MBRS and has a slightly
higher 𝑃𝑁𝑆𝑅. Our method achieves excellent results in terms of
robustness and imperceptibility compared to the SOTA MBRS [21].

In Fig. 10, the comparison experiments with the model MBRS
show that our framework achieves higher 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 at lower
𝐵𝐸𝑅. Meanwhile, in the experiments with higher 𝐽𝑝𝑒𝑔 compression
strength, as shown in the left part for Q=10, our 𝐵𝐸𝑅 is significantly
lower than MBRS. In addition, as shown in the right part, our 𝑆𝑆𝐼𝑀
is also noticeably higher than the reference at the strength factor
of 1.4.

Through the ablation experiments in Table 5, we can find that
when only the IM module (ICN*) is available, the 𝐴𝑐𝑐 against
𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔 is 77.49%, and the watermark intensity cannot be flexibly
adjusted. After adding the DEM and FSM modules, the 𝐴𝑐𝑐 of the

Table 4: Comparison toMBRS with combined noise 𝑁𝑐𝑝2
𝑝𝑜𝑜𝑙

on
COCO dataset. The 𝑃𝑆𝑁𝑅 (dB) and 𝐵𝐸𝑅(%) are given in the
table. The watermark lengths are 30 and 64.

Models L=30 L=64
𝑃𝑆𝑁𝑅 𝐶𝑟𝑜𝑝 𝐽𝑝𝑒𝑔 𝑃𝑆𝑁𝑅 𝐶𝑟𝑜𝑝 𝐶𝑟𝑜𝑝𝑜𝑢𝑡 𝐽𝑝𝑒𝑔

MBRS 33.5 4.15 4.48 33.5 45.86 32.86 4.14
CIN 38.51 0.09 2.6 34.22 13.40 13.27 6.77
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Figure 10: Compared to the methods MBRS with 𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔

noise. The left part gives the 𝐵𝐸𝑅 with a quality factor of 10
and 50, respectively. The right part provides the 𝑃𝑆𝑁𝑅 and
𝑆𝑆𝐼𝑀 with strength factors, respectively. CIN achieve out-
standing performence not only in 𝐵𝐸𝑅 but also in 𝑃𝑆𝑁𝑅 and
𝑆𝑆𝐼𝑀 .

watermark improves by 7.2%, and the 𝑃𝑆𝑁𝑅 improves by 2.38%.
Finally, after employing NIAM and NSM modules, the model’s ac-
curacy against 𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔 improves by 16.9%, and the 𝑃𝑆𝑁𝑅 and the
𝐴𝑐𝑐 of resistance to multiple noises are also enhanced.

Table 5: Ablation experiments. The average 𝐴𝑐𝑐 and 𝑃𝑆𝑁𝑅

with 𝑁𝑝𝑜𝑜𝑙 and 𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔 are given in the table, respectively.
𝑆 indicates whether the watermark strength is adjustable.

Modules Acc (%) PNSR (dB)

IM DEM&FSM NIAM&NSM S 𝑁𝑝𝑜𝑜𝑙 𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔 𝑁𝑝𝑜𝑜𝑙 𝑅𝑒𝑎𝑙 𝐽𝑝𝑒𝑔

✓ × 91.23 77.49 36.21 36.30
✓ ✓ ✓ 98.43 78.90 38.59 38.50
✓ ✓ ✓ ✓ 99.64 95.80 39.28 39.29

5 CONCLUSIONS
We propose a CIN framework that learns a joint representation
between watermark embedding and extraction, which effectively
improve the imperceptibility of watermarking against traditional
noise. To resist the non-differentiable lossy compression noise, we
introduce a NIAM to improve the decoder’s performance against
non-additive quantization noise. In addition, we present a DEM to
embed and extract watermark with high robustness. Finally, the
NSM enables the appropriate decoder for compression or other
noises. Extensive experiments on COCO and DIV2K datasets show
that our method performs better in imperceptibility and robustness.
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