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Figure 1: Illustration of our motivation and solutions. We observe two core challenges: 1) serious data imbalance problem
between the two training datasets; 2) network is required to learn from different domains simultaneously. Correspondingly,
we have the following key solutions: 1) proposing the multi-expert learning that first learns two individual teacher models
and then transfers the knowledge to a student model via knowledge distillation; 2) presenting a novel domain decomposition
module that learns to decompose the network structure of student model into two domain-related sub-parts.

ABSTRACT
Recently, Cross-Domain Few-Shot Learning (CD-FSL) which aims
at addressing the Few-Shot Learning (FSL) problem across differ-
ent domains has attracted rising attention. The core challenge of
CD-FSL lies in the domain gap between the source and novel tar-
get datasets. Though many attempts have been made for CD-FSL
without any target data during model training, the huge domain
gap makes it still hard for existing CD-FSL methods to achieve
very satisfactory results. Alternatively, learning CD-FSL models
with few labeled target domain data which is more realistic and
promising is advocated in previous work [13]. Thus, in this paper,
we stick to this setting and technically contribute a novel Multi-
Expert Domain Decompositional Network (ME-D2N). Concretely,
to solve the data imbalance problem between the source data with
sufficient examples and the auxiliary target data with limited ex-
amples, we build our model under the umbrella of multi-expert
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learning. Two teacher models which can be considered to be ex-
perts in their corresponding domain are first trained on the source
and the auxiliary target sets, respectively. Then, the knowledge
distillation technique is introduced to transfer the knowledge from
two teachers to a unified student model. Taking a step further, to
help our student model learn knowledge from different domain
teachers simultaneously, we further present a novel domain decom-
position module that learns to decompose the student model into
two domain-related sub-parts. This is achieved by a novel domain-
specific gate that learns to assign each filter to only one specific
domain in a learnable way. Extensive experiments demonstrate
the effectiveness of our method. Codes and models are available at
https://github.com/lovelyqian/ME-D2N_for_CDFSL.
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1 INTRODUCTION
FSL mainly aims at transferring knowledge from a source dataset
to a novel target dataset with only one or few labeled examples.
Generally, FSL assumes that the images of the source and target
datasets belong to the same domain. However, such an ideal as-
sumption may not be easy to be met in real-world multimedia
applications. For example, as revealed in [9], a model trained on the
Imagenet [11] which is mainly composed of massive and diverse
natural images still fails to recognize the novel fine-grained birds.
To this end, CD-FSL which is dedicated to addressing the domain
gap problem of FSL has invoked rising attention.

Recently, various settings of CD-FSL have been extensively stud-
ied in many previous methods [13, 14, 33, 40, 44]. Most of them [14,
40, 44] use only the source domain images for training and pay
efforts on improving the generalization ability of the FSL mod-
els. Though some achievements have been made, it is still hard to
achieve very impressive performance due to the huge domain gap
between the source and target datasets. Thus, some works [13, 33]
relax the most basic yet strict setting, and allow target data to be
used during the training phase. More specifically, STARTUP [33]
proposes to make use of relative massive unlabeled target data,
whilst Meta-FDMixup [13] advocates utilizing few limited labeled
target data. Unfortunately, the massive unlabeled examples in the
former one may still be not easy to be obtained in many real-world
applications, such as the recognition of endangered wild animals
and specific buildings. By contrast, learning CD-FSL with few lim-
ited labeled target domain data, e.g., 5 images per class, is more
realistic. Thus, in this paper, we stick to the setting proposed in
Meta-FDMixup [13] to promote the learning process of models.

Formally, given a source domain dataset with enough examples
and an auxiliary target domain dataset with only a few labeled ex-
amples, our goal is to learn a good FSL model taking these two sets
as training data and achieve good results on the novel target data.
Notably, as in Meta-FDMixup, our setting doesn’t violate the basic
FSL setting, as the class sets of the auxiliary target training data and
the novel target testing data are disjoint from each other strictly.
This ensures that none of the novel target categories will appear
during the training stage. Critically, as shown in Figure 1, we high-
light that there are two key challenges: 1) The number of labeled
examples for the source dataset and auxiliary target dataset are
extremely unbalanced. Models learned on such unbalanced training
data will be biased towards the source dataset while performing
much worse on the target dataset. 2) Since the source dataset and
the auxiliary target belong to two distinct domains, it may be too
difficult for a single model to learn knowledge from datasets with
different domains simultaneously. Such challenges unfortunately
have less been touched in previous works [13].

To address these challenges, this paper presents a novelMulti-
Expert Domain Decompositional Network (ME-D2N) for CD-FSL.
Our key solutions are also illustrated in Figure 1. Specifically, taking
unbalanced datasets as training data will leads to the model biased
problem [2, 49]. That is, the learned model tends to perform well on
the classes with more examples but has a performance degradation

on the categories with fewer examples. To tackle the data imbal-
ance issue, we propose to build our model upon the multi-expert
learning paradigm. Concretely, rather than learning a model on
the merged data of source and auxiliary target datasets directly, we
train two teacher models on the source and the auxiliary dataset,
respectively. Models trained in this way can be considered experts
in their specialized domain avoiding being affected by training
data of another domain. Then, we transfer the knowledge from
these two teachers to our student model. This is done by using
the knowledge distillation technique which constrains the student
model to produce consistent predictions with the teachers. By dis-
tilling the individual knowledge from both source and target teacher
models, our student model picks up the ability to recognize both
the source and auxiliary target images, avoiding learning from the
unbalanced datasets. We take one step further: considering that
forcing a unified model to learn from teachers of different domains
may be nontrivial. Concretely, since each filter in the network needs
to be responsible for extracting all domain features simultaneously,
this vanilla learning method may limit the performance of the net-
work. A natural question is whether it is possible to decompose the
student model into two parts – one for learning from the source
teacher and the another for the auxiliary target teacher? Based on
the above insights, a novel domain decomposition module which
is also termed as D2N is proposed. Specifically, our D2N aims at
building a one-to-one correspondence between the network filters
and the domains. That is, each filter is only assigned to be activated
by one specific domain. Technically, we achieve this by proposing a
novel domain-specific gate that learns the activation state of filters
for a specific domain dynamically. We insert the D2N into the fea-
ture extractor of the student model and make it learnable together
with the model parameters.

We conduct extensive experiments on four different target datasets.
Results well indicate that our multi-expert learning strategy helps
address the data imbalance problem. Besides, our D2N further im-
proves the performance of the student model showing the advan-
tages of decomposing the student model into two domains.
Contributions. We summarize our contributions as below: 1) For
the first time, we introduce the multi-expert learning paradigm
into the task of CD-FSL with few labeled target data to prevent the
model from learning on unbalanced datasets directly. By learning
from two teachers, we avoid our model being biased towards the
source dataset with significantly more samples. 2) A novel domain
decomposition module (D2N) is proposed to learn to decompose the
model’s filters into the source and target domain-specific parts. The
concept of domain decomposition has less been explored in previous
work, especially for the task of CD-FSL. 3) Extensive experiments
conducted show the effectiveness of our modules and our proposed
full model ME-D2N builds a new state of the art.

2 RELATEDWORK
Cross-Domain Few-Shot Learning. Recent study [9] finds that
most of the existing FSL methods [12, 15, 17, 28, 37, 37, 39, 41–
43, 46, 52–54] that assume the source and target datasets belong
to the same distribution fail to generalize to novel datasets with a
domain gap. Thus, CD-FSL which aims at addressing FSL across
different domains has risen increasing attentions [4, 13, 14, 18, 24,
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33, 40, 44, 48]. In this paper, these CD-FSL methods are categorized
according to which kind of data are being used for training: 1) CD-
FSL with only source data [14, 40, 44, 48]; 2) CD-FSL with unlabeled
target data [24, 33]; 3) CD-FSL with labeled target data [13]. Typi-
cally, CD-FSL with only source data is the most strict setting that
demands model to recognize totally unseen target dataset with-
out any target information. Flagship works including FWT [44],
BSCD-FSL [18], LRP [40], ATA [48], wave-SAN [14], RDC [29],
NSAE [32], and ConFT [10]. Though many well-designed tech-
niques e.g. readjusting the batch normalization [44], augmenting
the difficult of meta tasks [48], spanning style distributions [14], and
even fine-tuning models using few target images during the testing
stage [10, 18, 29, 32], the performances of them are still greatly
limited due to the huge domain gap. By contrast, STARTUP [33]
relaxes this strict setting and uses unlabeled target data for training.
Another choice that performs CD-FSL with few labeled target data
is advocated by Meta-FDMixup [13], since obtaining extremely few
labeled target data per class is relatively more realistic and can
boost the model performance to a large extent. Thus, in this paper,
we mainly stick to the setting of CD-FSL with few labeled target
data.
Long-Tailed Recognition. This paper is also related to the long-
tailed recognition from the perspective of tackling data imbalance
problem. In the literature, many attempts have been made to ad-
dress the task of long-tailed recognition [16, 59]. Main-stream
methods include: 1) re-sampling based methods [2, 3, 19] which
under-sample the head classes or over-sample the tail classes; 2)
re-weighting based methods [5, 21, 22, 50] which assign different
weights for classes or instances; 3) two-stage fine-tuning based
methods [7, 26, 57] which train the representation and classifier
separately. Another line of work [6, 49, 51] trains multiple experts
for the head, medium, and tail classes respectively which is the most
related work to us. However, to the best of our knowledge, it is the
first time that multi-expert learning is used for the CD-FSL task.
Our method trains two teacher models of different domains and
transfers the knowledge into the student model. In addition, besides
the unbalanced training sets, what intrinsically distinguishes our
work from these methods is that we tackle datasets of different
domains. The idea of decomposing the student model into different
domains has never been explored in these works.
Decomposition of Network Filters. Generally, as studied in [1,
55], the filters of a normal CNN tend to extract mixed features of
the input data. Such entangled filters inevitably lead to some unex-
pected problems, including limiting the representational capability
of the network and increasing the uninterpretability. Subsequently,
some methods [23, 30, 34, 36] explore decomposing the filters for
making a more efficient and compressed network. Other works
including [8, 31, 38, 55] decompose the network filters for more
interpretable networks via assigning filters dynamically. Gener-
ally, we are similar but fundamentally different from methods of
this type. They learn the correspondence between filters and the
“classes” or “objects” to explain the activation of the model, while
our motivation is to decompose the student model into two “do-
mains” so that we can learn from teachers of different domains.
Another work that may also be related to us is domain-aware dy-
namic network [56] which learns different weights for different

domains. However, using soft weights for readjusting the activation
of the network essentially can not be seen as a decomposition.

3 METHOD
Problem Definition. For the CD-FSL with few labeled target
data, we have two training sets: source training dataset 𝐷𝑠𝑟𝑐 =

{𝑥𝑠𝑟𝑐 , 𝑦𝑠𝑟𝑐 } and the auxiliary target dataset𝐷𝑡𝑔𝑡 =
{
𝑥𝑡𝑔𝑡 , 𝑦𝑡𝑔𝑡

}
. The

model trained on 𝐷𝑠𝑟𝑐 and 𝐷𝑡𝑔𝑡 is evaluated on the novel target
testing dataset 𝐷𝑡𝑒𝑠𝑡 = {𝑥𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 }. The 𝑥 represents the image
examples and the 𝑦 denotes the corresponding labels of images.
Note that all the classes contained in 𝐷𝑠𝑟𝑐 , 𝐷𝑡𝑔𝑡 , and 𝐷𝑡𝑒𝑠𝑡 are dis-
joint from each other and there is a domain gap between the source
dataset 𝐷𝑠𝑟𝑐 and the target datasets 𝐷𝑡𝑔𝑡 , 𝐷𝑡𝑒𝑠𝑡 .

We construct meta-learning tasks which also known as the 𝑁 -
way 𝐾-shot episodes to train and test our model. Typically, an
episode contains a support set 𝑆 = {𝑥𝑖 , 𝑦𝑖 }𝑁×𝐾

𝑖 and a query set𝑄 =

{𝑥𝑖 , 𝑦𝑖 }𝑁×𝑀
𝑖 . 𝑁 -way 𝐾-shot means that 𝑁 categories are sampled.

Each category of 𝑆 and𝑄 contains𝐾 labeled examples and𝑀 testing
images, respectively. The images in𝑄 are classified according to the
given 𝑆 . We use the {𝑆𝑠𝑟𝑐 , 𝑄𝑠𝑟𝑐 },

{
𝑆𝑡𝑔𝑡 , 𝑄𝑡𝑔𝑡

}
, and {𝑆𝑡𝑒𝑠𝑡 , 𝑄𝑡𝑒𝑠𝑡 } to

denote episodes sampled from 𝐷𝑠𝑟𝑐 , 𝐷𝑡𝑔𝑡 , and 𝐷𝑡𝑒𝑠𝑡 , respectively.
Method Overview. The overall illustration of our method is given
in Figure 2. We mainly have two training stages: a) optimizing
the source and target domain teacher networks (St-Net & Tt-Net)
separately; b) optimizing the multi-expert domain decompositional
student network (ME-D2N) by distilling the knowledge from St-Net
and Tt-Net. The St-Net and Tt-Net are composed of an embedding
module 𝐸 and an FSL classifier 𝐺 . Besides these two basic mod-
ules 𝐸,𝐺 , ME-D2N also contains a novel domain decomposition
module 𝐷2𝑁 and two global classifiers 𝑓𝑠𝑟𝑐 , 𝑓𝑡𝑔𝑡 which classify the
input images into the global source and target categories. Note that
𝑓𝑠𝑟𝑐 , 𝑓𝑡𝑔𝑡 are only used during the training phase. As for the object
functions, the St-Net and Tt-Net are optimized using the FSL clas-
sification loss L𝑓 𝑠𝑙 alone. The ME-D2N is optimized by the L𝑓 𝑠𝑙 ,
the knowledge distillation loss L𝑘𝑑 , and the global classification
loss L𝑐𝑙𝑠 simultaneously. Note that we use the “STD path” and the
“DSG path” in the figure to denote the standard forward path and
the domain-specific gate forward path which is guided by the D2N,
respectively. During testing, the ME-D2N is utilized to obtain the
predictions for the novel target episodes.

3.1 Learning the Teacher Networks
As shown in Figure 2.a, we first train our two teacher networks
(St-Net & Tt-Net) using episodes sampled from the source training
dataset 𝐷𝑠𝑟𝑐 and the auxiliary target dataset 𝐷𝑡𝑔𝑡 , respectively.
These trained teachers are considered experts in the corresponding
domain to guide the subsequent training of the ME-D2N student
network. Both the network structure and training process of St-Net
and Tt-Net are exactly the same. Here we take the St-Net as an
example to introduce the learning details of the teacher network.
For each training iteration, we randomly sample a source episode
{𝑆𝑠𝑟𝑐 , 𝑄𝑠𝑟𝑐 } from 𝐷𝑠𝑟𝑐 as input, and feed it into the embedding
module 𝐸 of St-Net to obtain the feature representations of the 𝑆𝑠𝑟𝑐
and𝑄𝑠𝑟𝑐 . After that, the FSL classifier module𝐺 of St-Net is used to
predict the class categories of 𝑄𝑠𝑟𝑐 according to the 𝑆𝑠𝑟𝑐 resulting
in the FSL prediction scores 𝑃𝑠𝑟𝑐 . Note that to prevent the model
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Figure 2: Our method contains two training stages: a) optimizing the experts network for the source and target domains; b)
optimizing theME-D2N student network by distilling knowledge from both source and target domain experts. In the inference
stage, only the ME-D2N network is used for prediction.

from learning the correspondence between the inputs images to
its global labels 𝑦𝑠𝑟𝑐 , meta-learning refines the labels of these 𝑁
classes as 𝑦𝑠𝑟𝑐

𝑓 𝑠𝑙
∈ (0, 1, ..., 𝑁 − 1). By calculating the cross entropy

loss between the predictions and its corresponding FSL ground
truth 𝑦𝑠𝑟𝑐

𝑓 𝑠𝑙
as follows, we obtain its FSL classification loss L𝑠𝑟𝑐

𝑓 𝑠𝑙
.

L𝑠𝑟𝑐
𝑓 𝑠𝑙

= 𝐶𝐸

(
𝑃
𝑠𝑟𝑐
, 𝑦𝑠𝑟𝑐
𝑓 𝑠𝑙

)
(1)

where 𝐶𝐸 indicates the cross entropy loss. In the same way,
for the Tt-Net, we get the FSL prediction scores 𝑃𝑡𝑔𝑡 and the FSL
classification loss L𝑡𝑔𝑡

𝑓 𝑠𝑙
. The L𝑠𝑟𝑐

𝑓 𝑠𝑙
and the L𝑡𝑔𝑡

𝑓 𝑠𝑙
are finally used for

optimizing the Tt-Net and St-Net, respectively.

3.2 Domain Decomposition Module
Given two experts St-Net and Tt-Net, a direct and commonly used
solution for training the student model is distilling knowledge from
these two teachers at the same time. However, as we stated in Sec. 1,
one key challenge of this task lies in the available training sets 𝐷𝑠𝑟𝑐
and 𝐷𝑡𝑔𝑡 belong to different domains. To that end, the learned
teacher models will be biased towards their training domains. It
may be difficult for a unified student model to learn knowledge
from two teachers of different domains. Thus, our D2N learns to
decompose the student model into the source-specific part and
target-specific part. Overall, the decomposition is achieved by a
novel domain-specific gate (DSG) that learns to assign each filter
to only one specific domain dynamically.

As shown in Figure 3, we first randomly initialize the domain-
specific gate matrix 𝑀 . The number of elements 𝑀 is consistent
with the number of filters that need to be decomposed in the net-
work. The element in 𝑀 can be seen as the probability that the
corresponding filter belongs to one specific domain. Typically, we
use the𝑀 to denote the gate matrix for the source domain, and the
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Figure 3: The illustration of our domain decompositionmod-
ule (D2N). D2N learns a domain-specific gate matrix 𝑀 to
control the activation states of the filters. The Gumbel soft-
max is utilized to binarize the soft matrix.

gate matrix for the target domain can be easily obtained by 1 −𝑀 .
While the soft gate is not enough to achieve the real decomposition,
which does not meet our ideal expectation of assigning a filter to
only a domain. Thus, the Gumbel softmax [25] which generates the
discrete data from a soft categorical distribution is introduced to
transform the soft𝑀 into the hard one𝑀 (denoted as the black and
white dots). With the𝑀 , the DSG forward path only activates the fil-
ters when the gates for them equal 1 thus establishing a one-to-one
correspondence between filters and domains.
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3.3 Learning the ME-D2N Student Network
As shown in Figure 2.b, to learn knowledge from both the source
and target domain teachers, two episodes {𝑆𝑠𝑟𝑐 , 𝑄𝑠𝑟𝑐 },

{
𝑆𝑡𝑔𝑡 , 𝑄𝑡𝑔𝑡

}
are randomly sampled as the input for each training iteration. These
source and target episodes are fed into the ME-D2N through two
different forward paths. One is the standard (STD) path and the
other is the DSG path as introduced in Sec.3.2. Regardless of whether
the forward is domain decomposed or not, all the other details e.g.
input data and loss functions are the same for these two paths. Thus,
for convenience, we first introduce the learning and optimization
process of the DSG path as an example. For each input episode
e.g. the source episode {𝑆𝑠𝑟𝑐 , 𝑄𝑠𝑟𝑐 }, we feed it into the embedding
module and the FSL classifier module consequently obtaining its
FSL predictions 𝑃𝑠𝑟𝑐

𝐷𝑆𝐺
. Based on the 𝑃𝑠𝑟𝑐

𝐷𝑆𝐺
, a total of three sub-tasks

are performed resulting in three different losses. Firstly and most
importantly, the knowledge distillation is performed to keep the
ability of ME-D2N with that of the teacher model. Specifically, the
same {𝑆𝑠𝑟𝑐 , 𝑄𝑠𝑟𝑐 } is fed into the trained St-Net obtaining the FSL
predictions 𝑃𝑠𝑟𝑐 . After that, the Kullback-Leibler divergence loss
is used to constrain the consistency between the 𝑃𝑠𝑟𝑐

𝐷𝑆𝐺
and 𝑃𝑠𝑟𝑐 .

Thus, the knowledge distillation loss L𝑠𝑟𝑐
𝐷𝑆𝐺_𝑘𝑑

is expressed as:

L𝑠𝑟𝑐𝐷𝑆𝐺_𝑘𝑑
= 𝐾𝐿

(
𝑃𝑠𝑟𝑐𝐷𝑆𝐺 , 𝑃

𝑠𝑟𝑐
)

(2)
where the 𝐾𝐿 means the Kullback-Leibler divergence loss. Sec-

ondly, by calculating the cross entropy loss between the predictions
𝑃𝑠𝑟𝑐
𝐷𝑆𝐺

and its FSL ground truth as defined in Equa. 1, we obtain
its FSL classification loss L𝑠𝑟𝑐

𝐷𝑆𝐺_𝑓 𝑠𝑙
. Thirdly, we also use the global

classifier 𝑓𝑠𝑟𝑐 to classify the input images into the its global class
categories. This generates the global classification loss L𝑠𝑟𝑐

𝐷𝑆𝐺_𝑐𝑙𝑠
.

In the same way, we obtain the target knowledge distillation loss
L𝑡𝑔𝑡
𝐷𝑆𝐺_𝑘𝑑

, the target FSL classification loss L𝑡𝑔𝑡
𝐷𝑆𝐺_𝑓 𝑠𝑙

, and the target

global classification loss L𝑡𝑔𝑡
𝐷𝑆𝐺_𝑐𝑙𝑠

. Formally, we have:

L𝐷𝑆𝐺_𝑘𝑑 = 𝜆1L𝑠𝑟𝑐𝐷𝑆𝐺_𝑘𝑑
+ (1 − 𝜆1)L𝑡𝑔𝑡𝐷𝑆𝐺_𝑘𝑑

(3)

L𝐷𝑆𝐺_𝑓 𝑠𝑙 = 𝜆1L
𝑠𝑟𝑐
𝐷𝑆𝐺_𝑓 𝑠𝑙

+ (1 − 𝜆1)L𝑡𝑔𝑡𝐷𝑆𝐺_𝑓 𝑠𝑙
(4)

L𝐷𝑆𝐺_𝑐𝑙𝑠 = 𝜆1L𝑠𝑟𝑐𝐷𝑆𝐺_𝑐𝑙𝑠
+ (1 − 𝜆1)L𝑡𝑔𝑡𝐷𝑆𝐺_𝑐𝑙𝑠

(5)

L𝐷𝑆𝐺 = L𝐷𝑆𝐺_𝑘𝑑 + 𝜆2L𝐷𝑆𝐺_𝑓 𝑠𝑙 + 𝜆3L𝐷𝑆𝐺_𝑐𝑙𝑠 (6)
Similarly, we obtain the loss for the STD path as L𝑆𝑇𝐷 . The final

loss for our ME-D2N is defined as follows:
L = L𝐷𝑆𝐺 + 𝜆4L𝑆𝑇𝐷 (7)

The 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are four hyper-parameters.
Inference Stage.During the inference stage, as shown in Figure 2.c,
only the ME-D2N is used for generating the predictions. Given a
novel target testing episode {𝑆𝑡𝑒𝑠𝑡 , 𝑄𝑡𝑒𝑠𝑡 }, we forward it into the
ME-D2N using both the DSG and STD paths resulting in two pre-
dictions 𝑃𝑡𝑒𝑠𝑡

𝐷𝑆𝐺
and 𝑃𝑡𝑒𝑠𝑡

𝑆𝑇𝐷
. Note that since the Gumbel softmax will

cause inconsistencies in each forward process, unlike the training
process, we directly binarize the gate matrix 𝑀 by choosing the
domain with a higher value. The final prediction 𝑃𝑡𝑒𝑠𝑡 takes the
mean of these two paths:

𝑃𝑡𝑒𝑠𝑡 =
1

2
(𝑃𝑡𝑒𝑠𝑡𝐷𝑆𝐺 + 𝑃𝑡𝑒𝑠𝑡𝑆𝑇𝐷 ) (8)

4 EXPERIMENTS
4.1 Setup
Datasets. Totally five datasets are used to validate the effectiveness
of our method. Concretely, mini-Imagenet [35] works as the source
dataset. CUB [47], Cars [27], Places [58], and Plantae [45] serve as
the target datasets, respectively. As for the splits of 𝐷𝑠𝑟𝑐 , 𝐷𝑡𝑔𝑡 , and
𝐷𝑡𝑒𝑠𝑡 , we strictly follow the meta-FDMixup [13]. Specifically, each
class category in 𝐷𝑡𝑔𝑡 has only 5 labeled examples.
Network Modules. Resnet-10 [20] is used as the embedding mod-
ule 𝐸. GNN [17] is selected as the FSL classifier 𝐺 . Totally same
basic modules 𝐸 and 𝐺 with previous CD-FSL methods ensures
the fair comparisons. Besides, same to wave-SAN [14], we divide
the embedding module 𝐸 into four blocks and decompose the fil-
ters of the last two blocks. The global classifiers 𝑓𝑠𝑟𝑐 and 𝑓𝑡𝑔𝑡 are
represented by a fully connected layer, respectively.
Implementation Details. We conduct our experiments in the
form of 5-way 1-shot and 5-way 5-shot meta tasks. For training, we
train the Tt-Net 100 and 400 epochs for 5-way 1-shot and 5-way
5-shot, respectively. The training of both the St-Net and ME-D2N
takes 400 epochs. The Adam with the initial learning rate of 0.001 is
uniformly used as the optimizer. Besides, as a common practice in
CD-FSL [13, 44], the 𝐸 pre-trained on the source dataset 𝐷𝑠𝑟𝑐 with
the standard classification tasks is used to warm start the training
of St-Net, Tt-Net, and ME-D2N. As for the testing stage, the average
accuracy of 1000 episodes randomly sampled from the novel target
set 𝐷𝑡𝑒𝑠𝑡 is reported. Without searching the best hyper-parameters
for different target dataset, we uniformly set the 𝜆1, 𝜆2, 𝜆3, and 𝜆4
as 0.2, 0.05, 0.05, and 0.2, respectively.

4.2 Baselines & Competitors
We introduce our baselines and competitors as below. 1) Typical
FSL Methods. Totally three flagship methods in the FSL commu-
nity including MatchingNet [46], RelationNet [41], and GNN [17]
are introduced. These methods demonstrate how the typical FSL
methods perform under the CD-FSL setting. 2) Several Baselines.
Three baselines namely “St-Net”, “Tt-Net”, and “M-base” are in-
cluded for comparisons. Concretely, as stated in Sec. 3, “St-Net” and
“Tt-Net” represent our two teacher models. “M-base” is obtained by
training model on the merged data of source and auxiliary datasets.
The network architecture of “M-base” is exactly the same as that of
“St-Net” and “Tt-Net”. These three baselines play an important role
in analyzing the effectiveness of our method. 3) CD-FSL Methods.
Since the setting of CD-FSL with few labeled target data is proposed
very recently, meta-FDMixup [13] is the only competitor that can
be compared directly. To better illustrate the competitiveness of
our method, we further adapt several other CD-FSL methods in-
cluding FWT [44] which improves the generalization ability of
the model by feature-wise transformation, LRP [40] which utilizes
the results of the explanation model to guide the learning process,
ATA [48] which augments the meta tasks via adversarial attack,
and wave-SAN [14] which tackles the domain gap from the per-
spective of augmenting the style distributions of the source dataset.
These methods are initially designed for the most strict CD-FSL
setting. The adaption is achieved by training the models using the
merged training data as used for “M-base”. To that end, we obtain
the competitors “M-FWT”, “M-LRP”, “M-ATA”, and “M-waveSAN”.



MM ’22, October 10–14, 2022, Lisboa, Portugal Yuqian Fu et al.

5-way 1-shot 𝐷𝑡𝑔𝑡 CUB Cars Places Plantae Avg.
FSL MatchingNet [46] - 35.89 ± 0.51 30.77 ± 0.47 49.86 ± 0.79 32.70 ± 0.60 37.31

RelationNet [41] - 42.44 ± 0.77 29.11 ± 0.60 48.64 ± 0.85 33.17 ± 0.64 38.34
GNN [17] - 45.69 ± 0.68 31.79 ± 0.51 53.10 ± 0.80 35.60 ± 0.56 41.54

Baselines St-Net - 46.10 ± 0.68 31.05 ± 0.54 54.22 ± 0.81 37.11 ± 0.60 42.12
Tt-Net ! 52.35 ± 0.79 39.16 ± 0.65 49.49 ± 0.78 44.54 ± 0.75 46.39
M-base ! 57.65 ± 0.80 46.03 ± 0.72 55.70 ± 0.79 48.25 ± 0.74 51.91

CD-FSL FWT [44] - 47.47± 0.75 31.61± 0.53 55.77± 0.79 35.95± 0.58 42.70
LRP [40] - 48.29± 0.51 32.78± 0.39 54.83± 0.56 37.49± 0.43 43.35
ATA [48] - 45.00± 0.50 33.61± 0.40 53.57± 0.50 34.42± 0.40 41.65
wave-SAN [14] - 50.25± 0.74 33.55± 0.61 57.75± 0.82 40.71± 0.66 45.57
M-FWT [44] ! 61.16 ± 0.81 49.01 ± 0.76 57.89 ± 0.82 50.49 ± 0.81 54.64
M-LRP [40]† ! 59.23 ± 0.58 46.88 ± 0.53 57.92 ± 0.58 49.11 ± 0.54 53.29
M-ATA [48]† ! 57.73 ± 0.57 45.19 ± 0.49 55.39 ± 0.55 48.07 ± 0.52 51.60
M-waveSAN [14] † ! 63.59 ± 0.85 50.06 ± 0.76 59.89 ± 0.86 51.99 ± 0.81 56.38
meta-FDMixup [13] ! 63.24 ± 0.82 51.31 ± 0.83 58.22 ± 0.82 51.03 ± 0.81 55.95

Ours ME-D2N ! 65.05 ± 0.83 49.53 ± 0.79 60.36 ± 0.86 52.89 ± 0.83 56.96
5-way 5-shot 𝐷𝑡𝑔𝑡 CUB Cars Places Plantae Avg.
FSL MatchingNet [46] - 51.37 ± 0.77 38.99 ± 0.64 63.16 ± 0.77 46.53 ± 0.68 50.01

RelationNet [41] - 57.77 ± 0.69 37.33 ± 0.68 63.32 ± 0.76 44.00 ± 0.60 50.61
GNN [17] - 62.25 ± 0.65 44.28 ± 0.63 70.84 ± 0.65 52.53 ± 0.59 57.48

Baselines St-Net - 66.89 ± 0.66 46.26 ± 0.67 72.87 ± 0.67 55.13 ± 0.66 60.29
Tt-Net ! 64.72 ± 0.69 52.32 ± 0.69 69.37 ± 0.68 59.23 ± 0.70 61.41
M-base ! 78.08 ± 0.60 63.27 ± 0.70 75.90 ± 0.67 66.69 ± 0.68 70.99

CD-FSL FWT [44] - 66.98± 0.68 44.90± 0.64 73.94± 0.67 53.85± 0.62 59.92
LRP [40] - 64.44± 0.48 46.20± 0.46 74.45± 0.47 54.46± 0.46 59.89
ATA [48] - 66.22± 0.50 49.14± 0.40 75.48± 0.40 52.69± 0.40 60.88
wave-SAN [14] - 70.31± 0.67 46.11± 0.66 76.88± 0.63 57.72± 0.64 62.76
M-FWT [44] ! 79.14 ± 0.62 65.42 ± 0.70 78.59 ± 0.60 68.26 ± 0.68 72.85
M-LRP [40] † ! 77.07 ± 0.44 64.38 ± 0.48 77.73 ± 0.45 67.90 ± 0.47 71.77
M-ATA [48] † ! 73.96 ± 0.46 68.58 ± 0.45 76.73 ± 0.42 66.45 ± 0.46 71.43
M-waveSAN [14] † ! 82.29 ± 0.58 66.93 ± 0.71 80.01 ± 0.60 71.27 ± 0.70 75.13
meta-FDMixup [13] ! 79.46 ± 0.63 66.52 ± 0.70 78.92 ± 0.63 69.22 ± 0.65 73.53

Ours ME-D2N ! 83.17 ± 0.56 69.17 ± 0.68 80.45 ± 0.62 72.87 ± 0.67 76.42
Table 1: The 5-way 1(5)-shot classification results (%) on four novel target datasets. “Avg.” is short for “Average Accuracy”. The
checkmark indicates whether the auxiliary target data 𝐷𝑡𝑔𝑡 is used for training. Notation † denotes that we adapt the methods
into our setting. In most cases, our ME-D2N outperforms all the FSL, baselines, and CD-FSL competitors.

4.3 Main Results
Main Results on Target Datasets. The comparison results of our
ME-D2N against all the typical FSL methods, baselines, CD-FSL
with or without auxiliary target training data 𝐷𝑡𝑔𝑡 are given in
Table 1. What can be apparently seen from the results is that our
ME-D2N achieves the best results beating all the baselines and
competitors in most cases. Specifically, under the 5-way 5-shot
setting, we achieve 83.17%, 69.17%, 80.45%, and 72.87% on the cub,
cars, places, and plantae, respectively. Compared with the GNN,
our ME-D2N has an average improvement of 15.42% and 18.94%
on 5-way 1-shot and 5-shot tasks. Such a performance growth is
contributed by both the use of auxiliary target data and the effec-
tiveness of our technical solutions. Besides, there are some other
points worth mentioning. 1) Firstly, by comparing the results of
“M-base” with that of FWT, LRP, ATA, and wave-SAN, we observe
that by merging the source and target datasets together directly as

the training data, the “M-base” shows advantages over these meth-
ods that are carefully designed for CD-FSL. Another observation is
that after adapting these methods to our setting e.g. adapting the
FWT to M-FWT, an obvious improvement can be found. These two
phenomenons together show the superiority of introducing the few
auxiliary target data and well explain why we stick to this setting;
2) Though the M-base has achieved relatively good performance,
our ME-D2N still outperforms it by a large margin. This basically
shows that we further address the data imbalance issue thus the
knowledge of the training data is utilized to a larger extent; 3) We
also notice that the performances of our teacher models St-Net and
Tt-Net are not so good. Take the Tt-Net as an example, it has only
an average accuracy of 46.39% and 61.41% on 1-shot and 5-shot
settings. However, based on these “ordinary” teachers, our final
ME-D2N still achieves very high results. This indicates that the
knowledge learning process of our student model is effective and
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Methos mini-Img | CUB mini-Img | Cars mini-Img | Places mini-Img | Plantae Avg.
St-Net 81.36 ± 0.57 81.36 ± 0.57 81.36 ± 0.57 81.36 ± 0.57 81.36
Tt-Net 52.02 ± 0.66 53.91 ± 0.70 64.77 ± 0.71 51.63 ± 0.69 55.58
M-base 78.94 ± 0.58 80.75 ± 0.55 79.99 ± 0.58 80.51 ± 0.55 80.05
M-FWT 81.88 ± 0.57 80.89 ± 0.58 81.32 ± 0.56 82.28 ± 0.55 81.59
M-LRP [40] † 80.84 ± 0.40 81.15 ± 0.41 81.07 ± 0.40 81.51 ± 0.38 81.14
M-ATA [48] † 77.84 ± 0.39 78.49 ± 0.40 77.57 ± 0.39 78.39 ± 0.40 78.07
M-waveSAN [14] † 83.08 ± 0.56 82.96 ± 0.57 82.79 ± 0.56 83.20 ± 0.58 83.01
meta-FDMixup [13] 82.29 ± 0.57 81.00 ± 0.58 81.37 ± 0.56 79.64 ± 0.59 81.08
ME-D2N 84.10 ± 0.53 83.89 ± 0.53 85.45 ± 0.53 83.74 ± 0.56 84.30

Table 2: The 5-way 5-shot results (%) on the testing set of mini-Imagenet (abbreviated as mini-Img). “mini-Img | target set"
indicates the model is trained on which target dataset. Note that “St-Net” doesn’t need any target data thus its results on
four target datasets are the same. “Avg.” is short for “Average Accuracy”. Our ME-D2N shows clear advantages over other
competitors.

Method ME D2N CUB Cars Places Plantae Avg.
M-base - - 78.08 ± 0.60 63.27 ± 0.70 75.90 ± 0.67 66.69 ± 0.68 70.99
ME ! - 82.22 ± 0.56 66.59 ± 0.73 79.63 ± 0.64 71.30 ± 0.68 74.94

ME + D2N (ours) ! ! 83.17 ± 0.56 69.17 ± 0.68 80.45 ± 0.62 72.87 ± 0.67 76.42
Table 3: The effectiveness of our main technical contributions –multi-expert learning (abbreviated as ME) and domain decom-
position module (D2N) are shown. Experiments were conducted under the 5-way 5-shot setting.

partially shows that our domain decomposition module makes the
student model not limited to the performance of teachers.

As for the CD-FSL competitors with auxiliary target data, gen-
erally, the M-ATA performs worst, then follows the M-LRP and
M-FWT. Meta-FDMixup and M-waveSAN are the most competitive
methods. The relatively good performance of meta-FDMixup is
not easy to understand since it is purely proposed for this setting.
Among these competitors, the M-waveSAN performs best with very
competitive results. This shows that the idea of augmenting styles
is also a helpful solution to narrow the domain gap. But, generally,
M-waveSAN is still inferior to our method.
MainResults on Source Dataset. To further test the performance
of our method on the original source domain, we compare it against
the baselines and CD-FSL competitors. The 5-way 5-shot results on
the testing set of the mini-Imagenet (disjoint from 𝐷𝑠𝑟𝑐 ), abbrevi-
ated as mini-Img, are given in Table 2. Since our setting is target
dataset specific, the results are reported in the form of “mini-Img
| target set”. Notably, the St-Net is trained using only source data.
Thus, the results of St-Net on four target datasets are the same.

We mainly have the following observations. 1) Our ME-D2N
outperforms all the three baseline methods and five CD-FSL com-
petitors achieving an average accuracy of 84.30%. This demonstrates
that our model keeps the best ability of recognizing the novel source
images; 2) By comparing the results of St-Net, Tt-Net, and M-base,
we find that St-Net performs best since it is totally trained using
source data. The Tt-Net performs worst and the performance of the
M-base also has a degradation compared to that of St-Net. This in-
dicates that merging the target data into the source data is harmful
to the source domain. However, this negative effect is addressed by
our ME-D2N.We even improve the St-Net by 2.94% on average. This
shows that decomposing the student network makes our model has
sufficient capacity to learn both the knowledge of the source and
target domains.

4.4 Ablation Studies.
Ablation Study on Network Modules. The effectiveness of our
main technical contributions – multi-expert learning and domain
decomposition module are studied. Results of the 5-way 5-shot
setting are provided in Table 3. We use the “ME” to refer to our
model learned under the umbrella of multi-expert learning without
applying domain decomposition to the student model. Correspond-
ingly, the “ME + D2N” denotes the model equipped with both the
multi-expert learning and domain decomposition module. Thus,
“ME + D2N” also equals our full ME-D2N network. Comparing “ME”
against the M-base, we notice that the multi-expert learning strat-
egy improves the M-base by up to 3.95% on average. This illustrates
that we do alleviate the data imbalance problem of the M-base.
Similarly, the effectiveness of our domain decomposition module
can be drawn through the advantages of “ME + D2N” over “ME”.
Ablation Study on the Number of Decomposed Blocks. As
stated in Sec 4.1, we divide our embedding module into four blocks,
thus decomposing which blocks is an important question. To that
end, we conduct experiments of decomposing different number of
blocks and give the 5-way 5-shot results in Table 4. As indicated
in previous work [1], the low-level filters convey more generic
information thus naturally entangled, while the high-level filters
are more semantic-related and much easier to be decomposed. Thus,
the upper blocks are decomposed with higher priorities. Take “3
decomposed blocks” as an example, it means the last three blocks
are decomposed. Results show that our choice of “2 decomposed
blocks” performs best, then follows the “1 decomposed block”, “3
decomposed blocks”, and “4 decomposed blocks” consecutively. This
phenomenon basically keeps the consistency of the conclusions as
in [1]. Different from those works strive for a more interpretable
network that only decomposes the last semantic layer [31, 38, 55],
in this paper, decomposing the last two blocks is the best choice
for us. This reveals that the domain information is also conveyed
in the relatively low-level filters.
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Choices CUB Cars Places Plantae Avg.
4 decomposed blocks 78.05 ± 0.62 63.27 ± 0.67 77.53 ± 0.64 67.85 ± 0.72 71.68
3 decomposed blocks 81.76 ± 0.57 64.90 ± 0.67 78.55 ± 0.62 70.05 ± 0.70 73.82

2 decomposed blocks (ours) 83.17 ± 0.56 69.17 ± 0.68 80.45 ± 0.62 72.87 ± 0.67 76.42
1 decomposed block 81.39 ± 0.60 68.27 ± 0.70 80.39 ± 0.62 72.18 ± 0.67 75.56

STD path 83.32 ± 0.58 67.85 ± 0.68 80.60 ± 0.61 72.52 ± 0.70 76.07
DSG path 78.15 ± 0.62 65.37 ± 0.67 75.15 ± 0.67 68.85 ± 0.70 71.88

STD + DSG paths (ours) 83.17 ± 0.56 69.17 ± 0.68 80.45 ± 0.62 72.87 ± 0.67 76.42
Table 4: Ablation studies of our method. We conduct experiments of decomposing filters on different numbers of blocks and
using different testing strategies for model inference. Results of 5-way 5-shot tasks are reported.

Ablation Study on Testing Strategies. Recall that ME-D2N has
two forward paths – STD path and DSG path, thus we report the
results of different testing strategies in Table 4. The “STD path” and
“DSG path” mean only a single forward path is used while the “STD
+ DSG paths” denotes both of them are utilized. From the results, it
can be observed that the STD path performs better than the DSG
path. This is not difficult to understand since the STD path receives
knowledge from both domains. However,the contribution of our
D2N still hold as the STD path is hosted under the D2N module. On
average, utilizing two paths generally improves the final results.

4.5 More Analysis
To provide more analysis of our domain decomposition module, we
show the number of filters assigned for different domains in Figure 4.
Typically, block3 and block4 have a total of 256 and 512 filters,
respectively. Firstly, we observe that the models trained on different
target sets share similar distribution of the decomposed filters.
Secondly, we notice that the number of target-specific filters is
comparable with that of source-specific ones with slight advantages
at block3. While the filters of block4 have an obvious bias towards
the target domain with a rough ratio of 3:2 for target: source. This
illustrates that our D2N module learns to assign more capacity to
the target domain.
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Figure 4: Thenumber of thefilters assigned for each domain.

In addition, to have an intuitive understanding of our D2N, we
visualize the activation maps of two different domain-specific filters
on two different domain images. The demonstrated “source filter”
and “target filter” are sampled from the last block of the embedding

module. As shown in Figure 5, the activation results of these two
filters towards the same input image are significantly different. The
domain-specific filters can accurately focus on the effective features
for the input image of the same domain. This further verifies the
effectiveness of our D2N module.
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Figure 5: Visualization of activation maps for input images
on the source and target-related filters.

5 CONCLUSION
To conclude, we mainly aim at promoting the CD-FSL methods
with few labeled target data. To achieve this, we first observe two
key challenges lay in this task – data imbalance issue and learning
model from two different domains. To address these problems, we
thus contribute two novel modules. One is the multi-expert learn-
ing mechanism together with the knowledge distillation technique,
which enables us to learn “individual knowledge” from two teacher
models of different domains rather than learning from the “unbal-
anced data”. Another is the domain decomposition module which
learns to decompose the filters of our student model into the source-
specific and target-specific sub-parts. In this way, we prevent our
model from learning knowledge of the source domain and target
domain at the same time. Based on these two modules, we build
our multi-expert domain decompositional network. Experimen-
tal results show that our network alleviates the above-mentioned
challenges well and achieves state-of-the-art results.
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