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ABSTRACT
Text-to-image person re-identification (ReID) aims to search for
pedestrian images of an interested identity via textual descriptions.
It is challenging due to both rich intra-modal variations and signifi-
cant inter-modal gaps. Existing works usually ignore the difference
in feature granularity between the two modalities, i.e., the visual
features are usually fine-grained while textual features are coarse,
which is mainly responsible for the large inter-modal gaps. In this
paper, we propose an end-to-end framework based on transform-
ers to learn granularity-unified representations for both modali-
ties, denoted as LGUR. LGUR framework contains two modules:
a Dictionary-based Granularity Alignment (DGA) module and a
Prototype-based Granularity Unification (PGU) module. In DGA,
in order to align the granularities of two modalities, we introduce
a Multi-modality Shared Dictionary (MSD) to reconstruct both vi-
sual and textual features. Besides, DGA has two important factors,
i.e., the cross-modality guidance and the foreground-centric recon-
struction, to facilitate the optimization of MSD. In PGU, we adopt
a set of shared and learnable prototypes as the queries to extract
diverse and semantically aligned features for both modalities in the
granularity-unified feature space, which further promotes the ReID
performance. Comprehensive experiments show that our LGUR
consistently outperforms state-of-the-arts by large margins on both
CUHK-PEDES and ICFG-PEDES datasets. Code will be released at
https://github.com/ZhiyinShao-H/LGUR.

CCS CONCEPTS
• Information systems→ Top-k retrieval in databases.
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Man with short hair, wearing a black

and white jackket and jeans. His

shoes are black. He is looking at a

phone with a cord which goes into

his right jean pocket.

A young man has short faded black

hair and wearing a black and white

jacket with regal jeans. He is

wearing sepia formal shoes. He is

carrying a navy blue handbag.

The man is wearing a black and

white jacket with both hands in the

pockets. He is wearing black pants

with white shoes that have black

trim.

A tail man who is wearing a black

and white jacket with long dark

pants.

... ...

...

Different Jackets

Same Description

The man is wearing a black and

white jacket and a pair of blue jeans.

He is wearing a pair of white tennis

shoes and a tan plaid book bag.

Granularity Gap

… a black and white jacket …

……

……

…… a black and white jacket …

Figure 1: While textual descriptions on the jackets in the all
above images are the same, these jackets do in fact differ
in terms of their visual details. This example well reflects
the granularity gap between the two modalities, i.e., the vi-
sual information is fine-grained while the textual features
are coarser.

1 INTRODUCTION

Text-to-image person re-identification (ReID) is a cross-modal
retrieval task that searches for images of the target identity based on
natural language descriptions [22]. Compared with images, natural
language descriptions are more flexible and easier to obtain under
certain circumstances. The text-to-image ReID task thus attracts
much attention. However, text-to-image ReID is also significantly
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more challenging than the image-based ReID [7, 11, 28, 32, 38–40,
44] due to the dramatic modality gap between vision and language.

One main aspect of the modality gap relates to the feature gran-
ularity. Generally, the visual feature contains fine-grained infor-
mation, while the textual feature describes coarse attributes. This
results in the same textual description being applicable to similar
yet different image patches. For example, in Figure 1, there are
several jackets that share the same description “black and white”;
however, these jackets differ in their visual details. This difference
in feature granularity enlarges the modality gap and makes the
text-to-image ReID more challenging.

The modality gap caused by the feature granularity tends to be
ignored by existing works. In fact, the “granularity gap” mentioned
in the existing text-to-image ReID literature typically refers to the
situation in which one word may correspond to image patches of
dramatically different sizes [3, 16, 21, 22]. These existing approaches
do not explicitly solve the modality gap in which an image patch
contains more fine-grained information than its corresponding
words. Meanwhile, the common solution in these works is to apply
cross-modal attention operations that build the correspondence
between image patches and words, facilitating adaptation to the
changing size of image patches.

In this paper, we focus on the true granularity gap brought
by the fine-grained images and the coarse textual descriptions.
We propose a novel Learning Granularity-Unified Representations
(LGUR) framework, which maps both visual and textual features
into a granularity-unified feature space. The LGUR framework
contains a Dictionary-based Granularity Alignment (DGA) module
and a Prototype-based Granularity Unification (PGU) module.

In the DGA module, we propose to reconstruct both textual
and visual features via a Multi-modality Shared Dictionary (MSD)
based on a transformer layer. In the dictionary, we store a set of
granularity-unified atoms. The reconstruction operation aims to
reduce the feature granularity gap between the two modalities
based on these atoms. Intuitively, the information bottleneck lies in
coarse textual features; therefore, the granularity of atoms in MSD
should be as close as possible to the textual granularity.

However, without explicit guidance, it is hard to drive MSD to
closely approximate the granularity of textual features. To address
this problem, we introduce the following two strategies in DGA.
One is that we guide the learning of MSD parameters using textual
features. More specifically, we reconstruct the visual feature again,
using its matched textual feature as value in the same transformer
layer as above. By reducing the gap between the reconstructed
visual features in these two ways, the MSD is forced to be optimized
according to the granularity of the textual features. Note that we
adopt this guidance during training only; therefore, it introduces
no additional computational cost in the inference stage. Another
one is that we enable MSD to focus on the foreground pedestrian
body. It is because the background is typically ignored by linguistic
descriptions and is therefore less relevant to the text-to-image ReID
task. Based on the foreground reconstruction, the optimization
difficulty of MSD is significantly reduced.

In the PGU module, we further project the textual and visual
features into a unified format by a set of shared and learnable pro-
totypes of one transformer layer. These prototypes extract discrim-
inative and diverse features from the two modalities independently

via the cross-attention architecture. Through matching the paired
textual and visual features produced by the same prototype, the
granularity gap between the two modalities can be further reduced.
Meanwhile, thanks to the use of shared prototypes as the query, the
computational cost of LGUR is substantially diminished. In com-
parison, for methods adopting cross-modal attention operations,
the visual and textual features are adopted as queries and values
in turn; therefore, every image and text must be paired to get the
retrieval features, resulting in a heavy computational cost.

We conduct extensive experiments on two existing large-scale
benchmark datasets, i.e., CUHK-PEDES [22] and ICFG-PEDES [6].
The results show that our simple LGUR framework consistently
and significantly outperforms existing approaches. Compared with
many existing methods [9, 18, 25], LGUR is also more efficient, since
it does not require cross-modal attention operations between each
image-text pair in the testing stage. More impressively, we find
that LGUR performs well in domain generalization tasks due to the
feature unification on the granularity level. The main contributions
of the proposed method can be summarized as follows:

• We identify the difference in the feature granularity between
the visual and textual modalities that results in the modality
gap, which is an important element that is rarely considered
in the text-to-image ReID literature.

• We propose a novel Learning Granularity-Unified Represen-
tations (LGUR) framework that efficiently extracts granularity-
unified features from both modalities.

• Extensive experiments on two text-to-image ReID datasets,
i.e., CUHK-PEDES and ICFG-PEDES show that LGUR con-
sistently outperforms the state-of-the-arts by large margins.

2 RELATEDWORK
2.1 Vision-Language Models
Transformers have demonstrated their superiority on many vision
and natural language processing tasks. Multiple works have also
been developed that apply the transformer to the vision-language
pre-training (VLPT) task [4, 19, 20, 24, 30, 31, 33, 48]. Depending on
their model structure, existing VLPT methods can be categorized
as either two-stream or single-stream models. Both types of meth-
ods extract vision-language joint features. The two-stream models
[15, 30, 31, 33] extract features from the image and text modalities
separately, then fuse them by means of the transformer structure.
For their part, the single-stream models [4, 19, 20, 24, 48] adopt
the BERT [5] model and process the image feature and the lan-
guage feature together as a joint distribution. However, the above
approaches require the text and image pair to be fed into the net-
work. Specifically, in the testing stage of text-to-image retrieval
tasks, every textual query needs to be paired with each image in
the gallery, which introduces high computational complexities.

2.2 Text-to-Image Person ReID
Due to its fine-grained nature, text-to-image person ReID is more
challenging than general cross-modal retrieval tasks. Depending on
the alignment strategy utilized, existing works can be divided into
cross-modal attention-based methods and cross-modal attention-
free methods. The latter type of methods design various model
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Figure 2: Overview of the LGUR framework (shown in a), which includes a Dictionary-based Granularity Alignment (DGA)
module (shown in b) and a Prototype-based Granularity Unification (PGU) module (shown in c) to achieve feature extraction
that is both efficient and granularity-unified. DGA reconstructs both visual and textual features via a Multi-modality Shared
Dictionary (MSD). Moreover, we propose a cross-modal guidance strategy to optimize the MSD parameters according to the
granularity of the textual features. In addition, a foreground mask is utilized to enable MSD to focus on the reconstruction
of the pedestrian body. PGU projects both textual and visual features into a unified format via a set of shared and learnable
prototypes. LGUR does not need to implement any cross-modal attention operations in the testing stage and is therefore
computationally efficient. The blue arrows represent operations that are discarded during the testing stage. MHA represents
the multi-head attention module. Best viewed in color.

structures [41, 47] or objective functions [8, 10, 21, 23, 27, 45] to
align the features from both modalities in a shared feature space.

In comparison, cross-modal attention-based methods focus on
establishing region-word [3, 21, 22] or region-phrase [16, 25] cor-
respondences. These methods have their own advantages as well
as disadvantages. Cross-modal attention-free methods are usually
more efficient. Specifically, given 𝑁 images and𝑀 sentences, their
complexities are𝑂 (𝑀 +𝑁 ). By contrast, the complexity of the cross-
modal attention-based methods increases to𝑂 (𝑀𝑁 ) [37]. However,
these methods usually achieve significantly better retrieval perfor-
mance as they better reduce the modality gaps.

The granularity gapmentioned in existing cross-modal attention-
based methods [16, 25, 36] usually refers to the situation in which
each word may correspond to image patches of dramatically dif-
ferent sizes. However, these methods rarely pay attention to the
modality gap in feature granularity, i.e., similar but different image
regions may share the same textual description. In this paper, we
handle this new problem by means of a novel LGUR framework. As

LGUR avoids cross-modal attention operations between image and
text through the use of a modality-shared dictionary, it has great
advantages in computational efficiency.

3 METHODOLOGY
The overview of our LGUR framework is illustrated in Figure 2.
LGUR comprises three modules: the Feature Extraction Backbones
(see Section 3.1), the Dictionary-based Granularity Alignment Mod-
ule (see Section 3.2) and the Prototype-based Granularity Unifica-
tion Module (see Section 3.3). The latter two modules are used to
enhance the granularity unification of the image and text modal-
ities. The optimization of the overall framework is described in
Section 3.4.

3.1 Feature Extraction Backbones
Visual modality. Let V ∈ R𝐻𝑊 ×𝑑 represents the visual feature
produced by the visual backbone, while 𝑑 denotes the feature di-
mension. We consider two backbones, namely DeiT-Small [34]
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and ResNet50 [13]. For DeiT-Small, we split the image into 𝐻 ×𝑊
patches, so that 𝐻𝑊 denotes the number of patch tokens. As for
ResNet50, 𝐻 and𝑊 are the height and width respectively of its
output feature maps. These two backbones have a similar number
of parameters.
Textual modality. Let T ∈ R𝐿×𝑑 represents the output of the
textual backbone. We adopt a light-weight bidirectional long short-
term memory network (Bi-LSTM) [14] to extract textual features.
The input embeddings of Bi-LSTM are obtained from a pretrained
BERTmodel [5]. 𝐿 stands for the number of words in the description.
The backbones are introduced in more details in Section 4.2.

3.2 Dictionary-based Granularity Alignment
As analyzed in Section 1, the textual granularity is coarse while the
visual granularity is fine-grained. This large granularity gap creates
inconsistency between the two types of feature representations. We
conjecture that the visual and textual features will match with each
othermore tightly if the former aremade to bemore abstract. To this
end, we introduce a Dictionary-based Granularity Alignment (DGA)
module to reconstruct the representations of both modalities, such
that these features can be made consistent in a granularity-unified
feature space. Our DGA utilizes a Multi-modality Shared Dictionary
(MSD) to conduct the textual and visual feature reconstruction.
Multi-modality shared dictionary. We build the MSD as D ∈
R𝑠×𝑑 , which is randomly initialized. Here, 𝑠 indicates the number
of atoms in D. Each atom in D is a 𝑑-dimensional vector, which has
the same dimension as V and T. We expect D to possess similar
granularity to the textual features. In the following, we describe
the way in which granularity-aligned visual and textual features
can be obtained via reconstruction using D.
Textual feature reconstruction. We first apply D to reconstruct
textual features. The textual features before and after reconstruction
are expected to be similar with each other. To this end, we minimise
the similarity of these two textual features using a ranking loss,
which will be described in Section 3.4. This strategy drives the
atoms in D to possess similar granularity to that of the text.

Formally, we utilize a transformer’s cross-attention operation as
the reconstruction process [35], in which T is utilized as the query
whileD acts as the key and value. The reconstructed textual feature
T𝑟𝑒 can be expressed as follows:

T𝑟𝑒 = 𝑀𝐻𝐴1 (T,D,D), (1)

where 𝑀𝐻𝐴1 (·) denotes a transformer block, which consists of
a multi-head attention and a feed-forward network [35]. More
formally,𝑀𝐻𝐴(Q,K,V) = 𝐹𝐹𝑁 (𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (Q,K,V)), where Q, K,
and V are abbreviations for query, key, and value, respectively.
Visual feature reconstruction. We also reconstruct the visual
features via 𝑀𝐻𝐴1 (·) with V as the query and D as the key and
value. The reconstructed visual feature is denoted as V𝑟𝑒 ∈ R𝐻𝑊 ×𝑑 .

Different from the textual feature reconstruction, we propose
the following two strategies in the visual reconstruction to further
reduce the modality gap between V𝑟𝑒 and T𝑟𝑒 . First, we enable MSD
to focus on the reconstruction of the image foreground, i.e., the
pedestrian body. This is based on the consideration that pedestrian
images are usually characterized by rich occlusion and background
clutters, while textual descriptions are identity-centric and tend to

ignore the background noises. Therefore, we generate a foreground
maskM ∈ R𝐻𝑊 ×1 via the spatial attention mechanism [29]. Specif-
ically, we attach a 1×1 convolutional layer with a sigmoid function
to V to obtainM. As illustrated in Figure 2, the reconstructed visual
features from MSD based on the foreground restriction is shown as
follows:

V𝑟𝑒 = 𝑀𝐻𝐴1 (V,D,D)⊙M, (2)

where ⊙ represents the Hadamard product between M and each
column of𝑀𝐻𝐴1 (V,D,D). With the help ofM, the reconstructed
background clutters are suppressed and the optimization difficulty
of MSD is alleviated.

Second, we guide the granularity of V𝑟𝑒 to be abstract under
the help of the textual features. More specifically, we reconstruct V
again using T from the paired language description with the input
image. T acts as both the key and value in the transformer block:

V𝑔 = 𝑀𝐻𝐴1 (V,T,T)⊙M, (3)

where V𝑔 ∈ R𝐻𝑊 ×𝑑 .
Compared with V𝑟𝑒 , the granularity of V𝑔 is closer to that of

textual features. Therefore, we impose a ranking loss to penalize
the difference between V𝑟𝑒 and V𝑔 , as detailed in Section 3.4.

3.3 Prototype-based Granularity Unification
In Section 3.2, we align the granularity between image and text via
MSD. Despite this, the model’s ability to accurately match texts
and images of a specific identity remains limited. In fact, what
D has learned is general semantic knowledge. In this subsection,
we aim to extract more powerful features for the ReID purpose
via a Prototype-based Granularity Unification (PGU) module. PGU
projects both textual and visual features into a unified format, which
further aligns the granularity of both modalities. More specifically,
we design a set of prototypes P = [p1, p2, · · · , p𝐾 ] ∈ R𝑑×𝐾 , which
are randomly initialized. The𝐾 prototypes contain diverse semantic
information. To enable these prototypes to capture both textual
and visual features, we let each prototype act as the query in the
transformer layer, while textual or visual feature acts as both the
key and value. For simplicity, we define F as an example to represent
a textual or visual feature. As shown in Figure 2, the refined feature
F̃ ∈ R𝐾×𝑑

′
after PGU is defined as follows:

F̃ = 𝑃𝐺𝑈 (P, F) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑓1 (p1, F), . . . , 𝑓𝐾 (p𝐾 , F)),
𝑓𝑖 (p𝑖 , F) = W𝑘 (𝑀𝐻𝐴2 (p𝑖 , F, F)),

(4)

where W𝑘 ∈ R𝑑
′×𝑑 denotes an FC layer for the 𝑘-th query p. We

apply independent FC layers for the queries in order to produce
semantically diverse features. Meanwhile, each query adopts the
same FC layer for both modalities, which further aligns their feature
granularity. 𝑑

′
is the output dimension after FC.𝐶𝑜𝑛𝑐𝑎𝑡 denotes the

concatenation operation.𝑀𝐻𝐴2 is of the same structure as𝑀𝐻𝐴1
in Eq. (1) albeit with independent parameters. Based on Eq. (4), we
obtain the granularity-unified feature T̃𝑟𝑒 of T𝑟𝑒 in Eq. (1), Ṽ𝑟𝑒 of
V𝑟𝑒 in Eq. (2), T̃ of T, and Ṽ𝑔 of V𝑔 in Eq. (3). More formally,

T̃𝑟𝑒 = 𝑃𝐺𝑈 (P,T𝑟𝑒 ), Ṽ𝑟𝑒 = 𝑃𝐺𝑈 (P,V𝑟𝑒 ),

T̃ = 𝑃𝐺𝑈 (P,T), Ṽ𝑔 = 𝑃𝐺𝑈 (P,V𝑔).
(5)
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Here, we use a single shared 𝑀𝐻𝐴2 in Eq. (5). After PGU, the
granularities of the visual and textual features are aligned to a
unified space, which substantially reduces the granularity gap.
Discussion. Previous works [3, 9, 16, 21, 22, 25] usually rely on a
cross-model attention between two modalities to reduce modality
gaps. However, all image-text pairs need to be fed into this models
of this kind, which is very computationally costly. In comparison,
the prototypes in our PGU are unified representations for both
modalities. For a single piece of text or image, we directly obtain
the feature T̃𝑟𝑒 or Ṽ𝑟𝑒 rather than first composing text-to-image
pairs; thus, our PGU is more computationally efficient. Meanwhile,
the format of our prototype is similar to the object query in [2].
However, in [2], the output corresponding to each object query rep-
resents a potential object instance, while the output corresponding
to each prototype in our PGU denotes a discriminative region of
one pedestrian. The prototypes in PGU thus contain more detailed
information.

3.4 Optimization & Inference
Optimization. Inspired by [32, 45], we adopt cross-entropy loss
as the identification loss for each prototype. For a specific feature
F̃ in Eq. (4), we denote the predicted identity probabilities by the
k-th prototype as ŷ𝑘 . The identification loss can thus be written as:

𝐿𝐼𝐷 (F̃) =
1
𝐾

𝐾∑︁
𝑘=1

−y ⊙ 𝑙𝑜𝑔(ŷ𝑘 ), (6)

where y is the ground-truth label vector.
Meanwhile, ranking loss is commonly applied to the text-to-

image ReID task. For two features F̃1 and F̃2 from one matched
image-text pair, the ranking loss is formulated as follows:

𝐿𝑅𝐾 (F̃1, F̃2) =𝑚𝑎𝑥 (𝛼 − 𝑆 (F̃1, F̃+2 ) + 𝑆 (F̃1, F̃
−
2 ), 0)

+𝑚𝑎𝑥 (𝛼 − 𝑆 (F̃2, F̃+1 ) + 𝑆 (F̃2, F̃
−
1 ), 0),

(7)

where F̃+1 /̃F
+
2 and F̃−1 /̃F

−
2 are one positive sample and one semi-hard

negative sample of F̃1/ F̃2 in a mini-batch, respectively. In addition,
𝛼 is a margin hyper-parameter, while 𝑆 denotes the cosine similarity
metric.

By applying Eq. (6) and Eq. (7) to LGUR, we obtain the following
loss:

𝐿𝑀 = 𝐿𝐼𝐷 (T̃𝑟𝑒 ) + 𝐿𝐼𝐷 (Ṽ𝑟𝑒 ) + 𝐿𝐼𝐷 (T̃) + 𝐿𝐼𝐷 (Ṽ𝑔)

+ 𝐿𝑅𝐾 (T̃𝑟𝑒 , Ṽ𝑟𝑒 ) + 𝐿𝑅𝐾 (T̃, Ṽ𝑔) .
(8)

Moreover, to achieve tighter granularity alignment, we impose
another loss function based on the guidance features, Ṽ𝑔 and T̃,
as described in Section 3.2. Specifically, we adopt the ranking loss
to pull the reconstructed features closer to the guidance features
when they refer to the same person, or push them away when they
refer to different identities. The guidance loss can be represented
as follows:

𝐿𝐺 = 𝐿𝑅𝐾 (T̃𝑟𝑒 , T̃) + 𝐿𝑅𝐾 (Ṽ𝑟𝑒 , Ṽ𝑔). (9)
The overall loss function can thus be expressed as:

𝐿 = 𝐿𝑀 + 𝐿𝐺 . (10)

Inference. We separately extract the textual feature T̃𝑟𝑒 and the
visual feature Ṽ𝑟𝑒 for the text-to-image retrieval. T̃ and Ṽ𝑔 are

Table 1: Performance comparisons on CUHK-PEDES.

Methods Rank-1 Rank-5 Rank-10

Re
sN

et
-5
0

Dual Path [47] 44.40 66.26 75.07
CMPM/C [45] 49.37 - 79.27

MIA [25] 53.10 75.00 82.90
A-GANet [23] 53.14 74.03 82.95
GALM [16] 54.12 75.45 82.97
TIMAM [27] 54.51 77.56 84.78
TDE [26] 55.25 77.46 84.56
VTA [10] 55.32 77.00 84.26
SCAN [18] 55.86 75.97 83.69
ViTAA [41] 55.97 75.84 83.52
CMAAM [1] 56.68 77.18 84.86
HGAN [46] 59.00 79.49 86.62
NAFS [9] 59.94 79.86 86.70
DSSL [49] 59.98 80.41 87.56
MGEL [36] 60.27 80.01 86.74
SSAN [6] 61.37 80.15 86.73

Han et al. [12] 61.65 80.98 86.78
LapsCore [43] 63.40 - 87.80

LGUR 64.21 81.94 87.93
LGUR ( DeiT-Small) 65.25 83.12 89.00

abandoned during inference. The cosine similarity is adopted as
the metric for retrieval.

4 EXPERIMENTS
We evaluate the LGUR framework on two datasets, namely CUHK-
PEDES and ICFG-PEDES. We further adopt the Rank-1, Rank-5,
and Rank-10 accuracies as metrics to evaluate performance on both
databases.

4.1 Datasets and Evaluation Metrics
CUHK-PEDES. CUHK-PEDES [22] contains 40,206 images and
80,412 textual descriptions for 13,003 identities. The training set
comprises 34,050 images and 68,120 textual descriptions of 11,000
pedestrians. The testing set includes 3,074 images and 6,156 textual
descriptions of the rest 1,000 pedestrians. Each image contains at
least two textual descriptions, each of which is made up of 23.5
words on average.
ICFG-PEDES. ICFG-PEDES [6] contains 54,522 pedestrian images
of 4,102 different identities, all of which were collected from the
MSMT17 database [42]. The training set includes 34,674 images
of 3,102 pedestrians. The testing set comprises 19,848 images of
1,000 pedestrians. Each image is associated with only one textual
description; these descriptions contain 37.2 words on average.
Evaluationmetrics.Weadopt the popular Rank-𝑘 metrics (𝑘=1,5,10)
as the evaluation metrics. Rank-𝑘 reveals the probability that, when
given a textual description as query, we can find at least one match-
ing person image in the top-𝑘 candidate list.

4.2 Implementation Details
In our experiments, we choose to use DeiT-Small [34] with a patch
size of 16 and ResNet-50 [13] as the visual backbones, respectively.
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Table 2: Performance comparisons on ICFG-PEDES.

Methods Rank-1 Rank-5 Rank-10

Re
sN

et
-5
0

Dual Path [47] 38.99 59.44 68.41
CMPM/C [45] 43.51 65.44 74.26

MIA [25] 46.49 67.14 75.18
SCAN [18] 50.05 69.65 77.21
ViTAA [41] 50.98 68.79 75.78
SSAN [6] 54.23 72.63 79.53
LGUR 57.42 74.97 81.45

LGUR ( DeiT-Small) 59.02 75.32 81.56

Table 3: Performance comparisons on the domain general-
ization task. “C” denotes CUHK-PEDES, while “I” represents
ICFG-PEDES.

Methods Rank-1 Rank-5 Rank-10

C
→

I

Dual Path [47] 15.41 29.80 38.19
MIA [25] 19.35 36.78 46.42
SCAN [18] 21.27 39.26 48.83
SSAN [6] 24.72 43.43 53.01

SSAN(w/ BERT) [6] 29.24 49.00 58.53
LGUR 34.25 52.58 60.85

I→
C

Dual Path [47] 7.63 17.14 23.52
MIA [25] 10.93 23.77 32.39
SCAN [18] 13.63 28.61 37.05
SSAN [6] 16.68 33.84 43.00

SSAN(w/ BERT) [6] 21.07 38.94 48.54
LGUR 25.44 44.48 54.39

We attach one 1×1 convolutional layer to the visual backbone to
project its output to 𝑑-dim. For the textual modality, the sequence
of word embeddings extracted from BERT is then fed to a Bi-LSTM.
Note that we “freeze” the weights of BERT, similar to [27], and only
fine-tune Bi-LSTM. We resize all images to 384 × 128 pixels and
use only random horizontal flipping as the data augmentation. We
set the feature dimension 𝑑 for both the image and text to 384. 𝑑

′

is set to 512. The dictionary size 𝑠 is 400 and the margin 𝛼 is set to
0.3. The number of shared prototypes 𝐾 is set to 6. During training,
we adopt the Adam optimizer [17]. The batch size is 64, and the
number of epochs is 60. The initial learning rate of DeiT-Small is
set to 0.0001, while the others are set to 0.001.

4.3 Comparisons with State-of-the-Art
Methods

To facilitate fair comparison, we evaluate the performance of LGUR
with DeiT-Small and ResNet-50 as the visual backbone, respectively.
Comparisons on CUHK-PEDES. In Table 1, our LGUR outper-
forms all state-of-the-art methods, achieving Rank-1 accuracy of
64.21% and 65.25% based on ResNet-50 and DeiT-Small, respec-
tively. In particular, our LGUR outperforms NAFS [9] (which also
adopts BERT for textual feature extraction) by as much as 4.27% in
terms of Rank-1 accuracy. Moreover, NAFS requires cross-modality
attention operations, which are computationally expensive. By con-
trast, LGUR extracts textual and visual features independently and

Table 4: Performance comparisons in terms of time com-
plexity. “CAM” refers to the cross-modal attention mecha-
nism [18].

CAM Methods Train Inference Rank-1

CU
H
K-
PE

D
ES

✓ MIA [25] 680ms 42ms 53.10
✓ SCAN [18] 718ms 46ms 55.86
✓ NAFS [9] 1,284ms 42ms 59.94
× Dual Path [47] 321ms 10ms 44.40
× CMPM/C [45] 338ms 27ms 49.37
× SSAN [6] 901ms 76ms 61.37
× LGUR (Ours) 886ms 26ms 64.21

IC
FG

-P
ED

ES

✓ MIA [25] 711ms 113ms 46.49
✓ SCAN [18] 738ms 114ms 50.05
✓ NAFS [9] 1,304ms 116ms -
× Dual Path [47] 342ms 11ms 38.99
× CMPM/C [45] 356ms 31ms 43.51
× SSAN [6] 973ms 77ms 54.23
× LGUR (Ours) 910ms 31ms 57.42

thereby substantially reduces the computational cost (as discussed
in Section 3.3). LGUR also achieves higher performance than one
most recent method, named LapsCore [43]. It is worth noting that
LapsCore is based on the NAFS [9] model and therefore also has
a much higher computational cost than LGUR. Furthermore, Lap-
sCore focuses on designing auxilary tasks for regularization and
does not consider the granularity gap between the two modalities;
therefore, the contributions of LGUR and LapsCore complement
each other.
Comparisons on ICFG-PEDES. Comparison results are summa-
rized in Table 2. Since ICFG-PEDES is a new database, we directly
cite the performance of existing approaches evaluated in [6]. LGUR
consistently achieves the best performance. Specifically, it achieves
57.42% and 59.02% Rank-1 accuracies with the ResNet-50 and DeiT-
Small backbones, respectively. SSAN [6] achieves superior perfor-
mance since it extracts fine-grained part-level textual and visual
features. However, this method still ignores the granularity gap
between the two modalities. By bridging the granularity gap, LGUR
outperforms SSAN by 3.19% in terms of Rank-1 accuracy.
Comparisons on the domain generalization (DG) task. Our
LGUR effectively narrows the granularity gap between the textual
and visual features. Due to the feature unification on a coarse gran-
ularity level, it could be naturally assumed that the model is able to
generalize well to the other domains. To this end, we conduct exper-
iments on DG tasks. Here, we directly deploy the model pretrained
on the source domain to the target dataset. As shown in Table 3,
our LGUR outperforms all other comparison methods. In particular,
LGUR achieves Rank-1 improvements of 9.53% and 8.76% on the
C→I and I→C settings respectively when compared to SSAN [6].
To exclude the differences arising from BERT [5], we also equip
SSAN with the same textual feature extraction backbone as LGUR.
The performance of SSAN increases, yet is still lower than that of
LGUR by 5.01% and 4.37% in terms of Rank-1 accuracy. This experi-
ment demonstrates that the granularity-unified representations of
text and image have good generalization ability.
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Table 5: Ablation study on keymodules of LGUR. DGAhas three important components: themulti-modality shared dictionary
(D), the foreground mask (M), the guidance (𝐺) for reconstruction (T and V𝑔).

No. Methods
Components CUHK-PEDES ICFG-PEDES

PGU DGA Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10D M 𝐺

0 baseline - - - - 58.67 79.08 85.82 52.09 70.91 78.07
1 + PGU ✓ - - - 63.26 81.17 87.69 56.34 73.58 80.23
2 + DGA - ✓ ✓ ✓ 61.86 80.43 87.20 55.83 73.65 80.48
3 + PGU + DGA (only D) ✓ ✓ - - 64.28 81.95 88.11 57.52 74.84 81.14
4 + PGU + DGA (D +M) ✓ ✓ ✓ - 64.64 82.91 88.52 57.82 74.99 81.17
5 + PGU + DGA (D + G) ✓ ✓ - ✓ 64.80 82.29 88.32 58.17 75.83 81.51
6 LGUR ✓ ✓ ✓ ✓ 65.25 83.12 89.00 59.02 75.32 81.56

Table 6: Comparisons with variants of MSD, including
without reconstruction (w/o reconstruction), reconstruction
with a self-attention layer (w/ SA) [35], reconstruction with
modality unshared dictionary (w/ unshared D).

Type of reconstruction CUHK-PEDES ICFG-PEDES
Rank-1 Rank-5 Rank-1 Rank-5

w/o reconstruction 63.26 81.17 56.34 73.58
w/ SA 63.39 82.28 56.34 74.09

w/ unshared D 61.55 80.69 55.96 73.23
w/ shared D (Ours) 64.28 81.95 57.52 74.84

Table 7: Comparisons between different types of prototypes
P in PGU, including the modality shared prototypes (w/
shared P) and the modality unshared prototypes (w/ un-
shared P).

Type of P CUHK-PEDES ICFG-PEDES
Rank-1 Rank-5 Rank-1 Rank-5

w/ unshared P 63.78 82.15 57.73 75.11
w/ shared P (Ours) 65.25 83.10 59.02 75.32

4.4 Comparisons on Time Complexity
As discussed in Section 3.3, our LGUR has advantages in time com-
plexity. In this subsection, we evaluate the training time1, inference
time2 and Rank-1 accuracy of LGUR, three works that do not im-
plement the cross-modal attention mechanism (i.e., Dual Path [47],
CMPM/C [45], and SSAN [6]), and another threemethods that adopt
cross-attention mechanism (i.e., MIA [25], SCAN [18], and NAFS
[9]). To facilitate fair comparison, we set the image size of input
images to 384 × 128 pixels and the batch size to 64 for all methods.
All experiments are conducted on a Titan X GPU. As shown in Ta-
ble 4, LGUR is dramatically more efficient than all methods that rely
on cross-modal attention operations. This advantage in efficiency
benefits from the disentanglement of the textual and visual feature
extraction in LGUR. In addition, the computational cost of LGUR is
competitive with the works that do not incorporate cross-modal

1The training time refers to the average time taken to process one mini-batch of images
and descriptions.
2The inference time includes the feature extraction time for a given query and time
for similarity computation with all gallery images.

attention mechanisms. For example, LGUR costs 26ms per query
on the CUHK-PEDES database, which is faster than SSAN at 76ms.
Considering the trade-off between accuracy and efficiency, LGUR
is thus superior to other methods.

4.5 Ablation Study
In this subsection, we analyze the effectiveness of each key com-
ponent in the LGUR framework. Here, we adopt the DeiT-Small as
the visual backbone.
Effectiveness of PGU. In Table 5, the efficacy of PGU is revealed
via the experimental results of No.0 v.s. No.1. Adding PGU on the
baseline promotes the Rank-1 accuracy of the baseline by 4.59%
on CUHK-PEDES. When comparing the results of No.2 and No.6
experiments, PGU can improve the Rank-1 accuracy from 61.86%
to 65.25% on baseline+DGA. The above results clearly show that
the unified textual and visual feature representations from PGU are
beneficial for improving the performance.
Effectiveness of DGA. The experimental results of No.0 v.s. No.2,
and No.1 v.s. No.6 in Table 5 demonstrate the efficacy of DGA. In
particular, when adding DGA to the baseline, the Rank-1 accuracy
is promoted by 3.19% and 3.74% on CUHK-PEDES and ICFG-PEDES,
respectively. These results justify that DGA well aligns the fea-
ture granularity of the two modalities and therefore promotes the
retrieval accuracy.

Meanwhile, we provide comprehensive experimental analysis to
further explore the impact of each component in DGA.

First, the most important part in DGA is the multi-modality
shared dictionary (D). In Table 5, when adoptingD on baseline+PGU
in experiment No.3, the performance is promoted by 1.02% on
CUHK-PEDES, showing that the reconstructed features from D is
more effective. This is because via the shared D for the visual and
textural features, their granularity is roughly aligned.

Second, we also enable DGA to focus on the reconstruction of
foreground visual features. As shown in experiments No.3 and No.4
in Table 5, the foreground mask M further promotes the Rank-
1 accuracy from 64.28% to 64.64% on CUHK-PEDES. This result
reveals that foreground-oriented reconstruction helps to further
reduce the modality gap and relieves the optimization burden of
D, as analyzed in Section 3.2. Meanwhile, we also visualize the
foreground mask M in Figure 3. It clearly shows that M makes the
model to focus on the meaningful pedestrian body instead of the
useless background.
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Figure 3: Visualization of the foreground masks M. The
pedestrian body areas are highlighted while the cluttered
background is suppressed.

Third, we adopt V𝑔 in Eq. (3) without M to guide D to learn
atoms of coarse granularities as the same as that in text. As shown
by the experimental results No.5 v.s. No.3, the Rank-1 accuracy
improves by 0.65% on ICFG-PEDES when V𝑔 is adopted, verifying
the effectiveness of the guidance from V𝑔 .

Finally, our LGUR combinesD,M,G and PGU together, achieving
the best result. For example, LGUR outperforms the baseline by as
much as 6.58% and 6.93% in Rank-1 accuracy on CUHK-PEDES and
ICFG-PEDES, respectively.
Comparisonswith variants ofMSD.Weadopt themulti-modality
shared dictionary (D) to reconstruct both the textual and the visual
features. The experiment No.3 in Table 5 has justified the effective-
ness of D. In Table 6, we further verify its design via comparison
with several possible variants.

First, MSD significantly outperforms the naïve self-attentions
layer (SA) in transformer [35]. The result in Table 6 reveals that
reconstruction via D is more effective since it aligns the granulary
of both modalities. In comparison, the self-attention layer cannot
explicitly reduce the granularity gap between the two modalities,
and thus is inferior to our MSD. Second, the shared D between the
two modalities significantly outperforms its unshared counterpart,
as shown in the last two rows in Table 6. Actually, the separate D
for the two modalities may enlarge the modality gap, which hurts
the ReID performance. Overall, the design of our shared D in MSD
is a good choice to narrow down the modality gap.
Comparisons with variants of PGU. The prototypes P in PGU
are shared between the image and text modalities. To validate the
advantage of this design, we also evaluate the unshared P, i.e., using
different P for text and image. In Table 7, it is clear that adopting
shared P outperforms the unshared P by large margins. It is due to
the superiority of the shared P, which can improve the granularity
unification between the two modalities.

4.6 Qualitative Results
Here, we provide qualitative results to demonstrate MSD’s recon-
struction ability in Figure 4. Ideally, if one phrase describes an
image patch, their cross-attention maps with D should be similar.
Otherwise, their cross-attention maps should be different. Consid-
ering that the whole attention map is large, here we only show 15
selected attention scores.

A woman 

walking 

forward with 

her right hand 

to her face is 

wearing a 

white jacket, 

black pants ...

The top-15 

attention 

scores in 

MSD for

“white

jacket”.

Attention 

scores for 

the same 

15 atoms 

as those 

selected 

for “white 

jacket”.

A man 

wearing a 

grey jacket

and black 

pants is 

carrying a 

black bag ...

The top-15 

attention 

scores in 

MSD for

“grey 

jacket”

Attention 

scores for 

the same 

15 atoms 

as those 

selected 

for “grey 

jacket”.

0.2 0.4 0.6 0.80.0 1.0

Figure 4: Visualization of the attentions scores between one
selected phrase with D (the right part) and the image patch
with D (the left part) in the DGA module. The red rectangle
denotes the text-matched image patch, while the yellow one
represents the text-irrelevant image patch.

Specifically, we first choose one phrase and its corresponding
image patch, which are highlighted in red text colour and red rec-
tangle in Figure 4, respectively. We also select one irrelevant image
patch to the phrase and frame the patch in yellow. We first draw
the top-15 attention scores that represent the highest similarities
between the phrase and D. Then we show the attention scores on
the same 15 atoms as above between each of the two patches and
D. Results in Figure 4 show that the scores for the matched phrase-
patch pair are similar, which indicates that the atoms in D can well
represent features for both text and image. In contrast, the attention
scores for the irrelevant phrase-patch pair are different. This phe-
nomenon indicates that the granularity gap of the two modalities
can be reduced after the dictionary-based reconstruction.

5 CONCLUSION
In this paper, we have introduced a novel framework named LGUR
to learn granularity-unified representations for the text-to-image
ReID task. This framework includes a Dictionary-based Granular-
ity Alignment (DGA) module and a Prototype-based Granularity
Unification (PGU) module. In the DGA module, we build a Multi-
modality Shared Dictionary (MSD) to reconstruct both visual and
textual features, such that their granularity can be unified. We fur-
ther provide a cross-modal guidance strategy and a foreground
mask to facilitate the optimization of MSD parameters. In the PGU
module, we adopt a set of shared prototypes for diverse textual
and visual feature extraction, which further aligns the granular-
ity of both modalities. Extensive experiments on two large-scale
databases demonstrate the effectiveness of our LGUR.
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