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ABSTRACT

Video Question Answering (VideoQA) is the task of answering the
natural language questions about a video. Producing an answer re-
quires understanding the interplay across visual scenes in video and
linguistic semantics in question. However, most leading VideoQA
models work as black boxes, which make the visual-linguistic align-
ment behind the answering process obscure. Such black-box nature
calls for visual explainability that reveals “What part of the video
should the model look at to answer the question?”. Only a few
works present the visual explanations in a post-hoc fashion, which
emulates the target model’s answering process via an additional
method. Nonetheless, the emulation struggles to faithfully exhibit
the visual-linguistic alignment during answering.

Instead of post-hoc explainability, we focus on intrinsic inter-
pretability to make the answering process transparent. At its core is
grounding the question-critical cues as the causal scene to yield an-
swers, while rolling out the question-irrelevant information as the
environment scene. Taking a causal look at VideoQA, we devise a
self-interpretable framework, Equivariant and Invariant Grounding
for Interpretable VideoQA (EIGV). Specifically, the equivariant
grounding encourages the answering to be sensitive to the semantic
changes in the causal scene and question; in contrast, the invariant
grounding enforces the answering to be insensitive to the changes
in the environment scene. By imposing them on the answering
process, EIGV is able to distinguish the causal scene from the envi-
ronment information, and explicitly present the visual-linguistic
alignment. Extensive experiments on three benchmark datasets
justify the superiority of EIGV in terms of accuracy and visual in-
terpretability over the leading baselines. Our code is available at
https://github.com/yl13800/EIGV.
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1 INTRODUCTION

Video Question Answering (VideoQA) [54] is a keystone in inter-
active Al such as vision-language navigation and communication
systems. It aims to answer the natural language question based
on the video content. Striving for the architecture novelty, many
studies have been conducted on modeling VideoQA’s multi-modal
nature, such as fostering the vision-language alignment [17, 26]
and revisiting the visual input structure [6, 19]. However, existing
VideoQA models usually operate as black boxes, which fail to ex-
hibit the working mechanism behind the predictions and hardly
exhibit “What knowledge should the model use to answer the ques-
tion about the video?”. As a result, the black-box nature causes
concern for the model’s reliability, especially in applications to
safety and security.

The concern on the black-box nature calls for better transparency
of VideoQA models. Here we focus on visual-explainability [4, 33],
aiming to reveal “Which part of the video should the model look at
to answer the question?”. It requires us to find a subset of visual
scenes — rationale — that support the answering as evidence in way
of human interpretation [33]. Taking Figure 1 as an example, when
answering the question “What is the girl doing?”, the rationale
should focus on the “girl-riding on-horse” scene in the first two
clips. Towards this end, existing studies [8, 23, 41] dwell mainly
on the paradigm of post-hoc explainability [32, 35], which dis-
tributes the predictive answer of the target model to the input
visual features via an additional explainer method. They visualize
the attention weights or gradient-like signals toward the visual fea-
tures, and then identify a salient pattern as the rationale. However,
post-hoc explainability has several major limitations: (1) It fails to
make the target model intrinsically interpretable [34, 43, 51], only
approximating the decision-making process of the model. As a re-
sult, the identified rationale cannot faithfully reveal how the model
leverages the multi-modal information. (2) Such visual inspections
are fragile against input perturbations, since some artifacts can be
easily captured as explanations instead of genuine knowledge from
the data [9, 12, 18, 38].

The limitations of post-hoc explainability inspire us to explore
the paradigm of intrinsic interpretability [9, 34], which embeds a
rationalization module into the model to make the decision-making
process transparent. Surprisingly, the intrinsic interpretability of
VideoQA models is until-now lacking. To fill the void, we draw
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Figure 1: Illustration of equivariant and invariant grounding,.
The causal-equivariant principle (left) asks that the semantic
change T; applied to the causal scene C and question Q should
be faithfully reflected in the answer change. In contrast, the
environment-invariant principle (right) outputs the same
answer, regardless of changes T, on the environment scene E.
Here, f 4 maps input to answer space.

on causal theory [27, 29] to formulate the interpretability task as
disclosing “Which part of the video is critical/causal to answering
the question?”. Concretely, we aim to identify the causal compo-
nent of input video on-the-fly, which holds the question-response
information and filters out the question-irrelevant cues. Following
this essence, one straightforward realization is to ground the in-
put video into two segments: (1) causal scene, which retains the
question-critical visual content and sufficiently approaches the an-
swer, thus naturally serving as the rationale; and (2) environment
scene, which holds the question-irrelevant visual content and can
be seen as the rationale’s complement.

However, discovering causal scene without the supervision of
ground-truth rationale is challenging. With a causal look at the
reasoning process (cf: Section 3.1), we argue that the crux of intrinsic
interpretability is to amplify the connection between the causal
scene and the answer, while blocking the non-causal effect of the
environment scene. Following this line, we propose two principles
to guide the grounding of the rationale:

e Causal-Equivariance. By “equivariance”, we mean that answer-
ing should be sensitive to the semantic changes on the causal
scene and question (termed E-intervention), e.g., any change on
the causal scene and question should be faithfully reflected on
the predicted answer. For example, in Figure 1, the “girl-riding
on-horse” and “man-surfing in-ocean” scenes are the oracle ratio-
nales of “What is the girl doing?” and “What is the man doing?”,
respectively. The intervention [22] applied on the input (i.e., mix-
ing the “girl-riding on-horse” and “man-surfing in-ocean” scene,
and combining two questions as “What is the girl doing? What
is the man doing?”) should set off an equivariant change in the
answer (i.e.,, changing from “Ride” to “Ride+Surf”).

Environment-Invariance. By “invariance”, we mean that an-
swering should be insensitive to the changes in the environment
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scene (termed I-intervention), conditioning on the causal scene
and question. Considering Figure 1 again, the intervention ap-
plied to the environment (i.e., mixing the “meadow” and “ocean”
scenes) implies no impact towards answering “What is the girl
doing?”, reflecting a homogeneity in the answer space.

To impose these two principles for intrinsic interpretability, we
propose a new framework, Equivariant and Invariant Grounding
for Interpretable VideoQA (EIGV). EIGV equips the VideoQA back-
bone model with three additional modules: a grounding indicator,
an intervener, and a disruptor. First, the grounding indicator learns
to attend the causal scene based on the input question, while leaving
the rest as the environment. Then, the intervener parameterizes the
proposed principles to guide the grounding. Specifically, towards
the causal-equivariance principle, it conducts the E-intervention
on the causal scene and question — that is, mix them with the
counterparts from another video-question pair — and encourages
the predictive answer to be anticipated accordingly. Towards the
environment-invariance principle, when leaving the causal scene
and question untouched, it applies the I-intervention on the envi-
ronment — that is, mix it with the environmental stratification of a
memory bank — and enforces the predictive answer to be invari-
ant. Moreover, we build an unified sight of two principles via the
lens of contrastive learning. Concretely, on top of each intervened
video-question pair, the disruptor constructs the positive views
by disrupting the environment scene randomly, while creating the
negative views by substituting the causal scene with random scenes.
Training with these two principles allows the backbone model to
distinguish the causal scene from the environmental cues, and hinge
on the critical visual-linguistic alignment.

Briefly put, our contributions are:

We propose EIGV, a model-agnostic VideoQA framework that
distills the causal visual-linguistic alignment to generate answers
in a self-interpretable manner.

We investigate the soundness of grounding rationale by posing
the equivariant-invariant principle on visual grounding.

We justify the superiority of EIGV on three popular benchmark
datasets (i.e., MSVD-QA [50], MSRVTT-QA [50], NExT-QA [48])
with extensive experiments, where our design outmatches the
state-of-the-art models. Moreover, our EIGV is a model-agnostic
framework that can be applied to different VideoQA models.

2 PRELIMINARIES

Here we provide a holistic view of VideoQA by summarizing a com-
mon paradigm throughout existing works. Specifically, we denote
a variable and its deterministic value by upper-cased (e.g., A) and
lower-cased (e.g., a) letters, respectively.

Modeling. Given the video V, the VideoQA model f;(-) answers
the question Q by formulating the visual-linguistic alignment:

A=f(v.0Q). (1)
where A is the predictive answer. Typically, f 1 () is a combination
of two modules:

o Video-question encoder, which warps up the visual content and
linguistic semantics via two encoders: (1) the video encoder
capsules the video content by methods like hierarchical design
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[6, 19, 30], enhanced memory architecture [7, 8] and structural
graph representation [10, 14, 17, 46]; (2) the question encoder
embeds the contextual information into linguistic representation
through multi-scale semantic integration [17, 36, 42] or gram-
matical dependencies parsing [26].

Answer decoder, which abridges the encoded visual-linguistic
information via cross-modal interaction methods like graph align-
ment [26] and progressive attention [30, 36], then generates the
prediction accordingly.

Learning. To optimize the video-question encoder and answer
decoder, current VideoQA models usually adopt the scheme of
empirical risk minimization (ERM) [8, 17, 19, 30], which measures
and minimizes the risk between the ground-truth answer A and
predictive answer A:

min Lgrm (A, A). (2)

In essence, ERM recklessly takes the video content as a whole and
enforces the risk deduction over compassion of question and every
video frame, which hardly discovers a reliable interpretation to
exhibit the visual-linguistic alignment.

3 VIDEOQA REFORMULATION

Here we argue that disclosing “Which part of the video is critical
to answering the question?” is the key to presenting the visual-
linguistic alignment explicitly. To this end, we take a causal [27]
look at the reasoning process of VideoQA, then formalize it as
a Structure Causal Model (SCM) [29] by investigating the causal
relationships among five variables: input video V, question Q, causal
scene C, environment scene E, ground-truth answer A.

3.1 Causal Graph of VideoQA

Figure 2 illustrates the causal graph, where each link depicts the
cause-effect relationship between two variables:

e QO — C,E « V. Given the question of interest Q, the video V
can be partitioned into two parts: (1) the causal scene C, which
retains the question-critical information and naturally serves as
the rationale for answering, (2) the environment scene E, which
gathers the cues irrelevant to the question-answering. For exam-
ple, to answering “What is the girl doing?” in Figure 1, C should
be the first two clips describing the “girl-riding on-horse” scene,
while E should be the last clip about the “meadow” scene. More-
over, the varying semantics of different questions will emphasize
different C.

Q — A « C. The visual knowledge in the causal scene C and the
linguistic semantics in the question Q collaborate together to de-
termine the answer A. Furthermore, this path, which presents the
visual-linguistic alignment, internally interprets the reasoning.
E ¢---» C. The dashed arrow sketches additional probabilistic
dependencies [28] between C and E, which typically arise from
selection bias [39]. For example, the “meadow” scene is frequently
collected as a common environment for the “horse-riding” scene.

3.2 Beyond ERM

With inspections on prior VideoQA studies, we investigate their
inability to distinguish the causal and non-causal effects of scenes.
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Figure 2: Causal Graph of VideoQA

Specifically, in conventional VideoQA models, video and question
are directly paired together to model their interaction and approach
the golden answer, consequently. Inevitably, taking video as a whole
leaves the contributions of scenes untouched, thus failing to differ-
entiate C from E and forgoing their function divergence towards
the answer. Worse still, ERM enforces these models to blindly cap-
ture the statistical correlations between the video-question pairs
and answers. As such, the visual-linguistic alignment hinges eas-
ily on the spurious correlations between E and A, owing to the
backdoor paths [29], which hinders the generalization of models
[25, 47]. Therefore, identifying the causal scene C is the critical to
addressing these limitations.

4 METHODOLOGY

To ground the causal scene C in the video V, we take a closer look
at the VideoQA SCM (i.e., Figure 2a), and emphasize the essential
differences between C and E. Specifically, given the causal scene
C and question Q, the answer A is determined, regardless of the
variations in the environment scene E:

ALE|CQ, (3)

where L denotes the probabilistic independence.

Rationalization. During training, the oracle grounding rationale C
is out of reach, while only the input (V, Q) pair and training target
A are observed. Such an absence motivates VideoQA to embrace
video grounding in its modeling. Specifically, in light of question
Q, the estimated causal scene Cis grounded from the massive
V to approach the oracle C and then generate prediction A via
Q — A « C. To systematize this relation, the causal-equivariance
principle introduces an equivariant transformation T¢ to each of the
parent variables (i.e., C and Q), and expects a proportionate change
in the response variable (i.e., A). On top of SCM, we formally present
such notions as:

Te(A) = f4(Te(C), Te(Q))- 4)
Meanwhile, environment-invariant principle formulated Equation
(3) in the sense that imposing an invariant-transformation T, on the
estimated environment E should not trigger variation of answer A:

A = fi(T.(E), Q). ®)
To this end, we parameterize our learning framework, EIGV, as a
combination of equivariant and invariant principles, which com-
prises three additional modules on top of the ERM-guided backbone:
grounding indicator, intervener, and disruptor. In a nutshell, we
display our EIGV framework in Figure 3.

Data representation. Following previous efforts [10, 17], we en-
code video instance v as a sequence of K fixed visual clips, while
question instance q is encoded into a similar form with a fixed
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Figure 3: Overview of EIGV. It comprises three additional modules on top of the conventional VideoQA backbone: 1) Grounding
indicator, 2) Intervener, and 3) Disrupter. First, the grounding indicator learns the estimation of causal scene ¢ and environment
é. Next, two interventions are imposed on the causal and non-causal factors to compose the intervened pair (v, ¢*). Finally,
based on the re-grounded result, the disruptor creates contrastive samples, which are further feed into the VideoQA backbone.

length of language tokens L. Then, visual and linguistic features
are applied with a linear layer and an LSTM [13], respectively, to
align their dimension. As a result, we acquire the output of linear
layer v € Rk*d a5 the final video representation and the last hidden
state of LSTM q € R as the holistic question representation.

4.1 Grounding Indicator

Scene partition is fundamental to the rationale discovery, whose
core is to estimate the value of C and E via a hard split on video
V. Given an input sample (v, q), the grounding indicator aims to
access the causal scene and environment scene via their estimated
value ¢ and é according to question Q. Concretely, we first construct
two cross-modal attention modules to indicate the probability of
each visual clip of being causal scene (p; € RK) and environment
scene (p; € RK):

pé = Softmax(FCy(v) - FC2(q)T), (6)
p; = Softmax(FC3(v) - FC4(q)T), (7)

where FC1, FCy, FC3, FCy4 are fully connected layers that align cross-
modal representations. However, gathering messages via a soft
mask still makes the visual information on different clips overlap. As
discussed in Section 3.2, guided by ERM, the conventional attention
mechanism is unable to block the influence of é, thus undermining
the veracity of ¢. As a correction, the grounding indicator makes a
discrete selection over the clip-wise attention result to generate a
disjoint group of the causal scene. We leverage Gumbel-Softmax
[16] to manage a differentiable selection on attentive probabilities
and compute the indicator vector I € RK*2 on the two attention
scores over each clip (i.e., P Peis i € K). Formally, I is derived as:

I = Gumbel-Softmax([p¢; psl), (8)

where [;] denote concatenation. The first and second column of I
(i.e, Ip and I1) index the attribution of ¢ and é over k clips, respec-
tively. To this end, we estimate ¢ and € as follows:

é=Il-v, é=IL-v, sto=¢+é. 9)

4.2 Intervener

In absence of clip-level supervision, learning grounding indicators
requires dedicated exploitation of the equivariance-invariance prin-
ciple. On this demand, we propose the intervener, which prompts

the estimated rationale to the oracle by intervening ¢ and é. Figure
4 describes the functionality of do(-) — the intervention operator
that successively manipulated SCM over E and C. Concretely, two
intervention operations are configured to realize the equivariant
and invariant transformation defined in Equations (4) and (5).

To fulfill the causal-equivariant principle, we design the E-
intervention on the causal scene ¢, which applies a linear interpo-
lation between two data points on their causal factors — C, Q and
A. By casting the same mixing ratio A9 ~ Beta(a, &) on all causal
factors, the equivariant intervener learns to capture the causal con-
nection of C,Q — A. In particular, we attain the intervened causal
scene ¢* € RKX4 question ¢* € R? and answer a* € R as follow:

"=+ (1-2) ¢, (10)
g =2 q+(1-2) ¢, (11)
a*=X-a+(1-1X)- d, (12)

where ¢’, ¢’ and a’ are causal factors from a second sample.

To achieve the environment-invariant principle, we devise the
I-intervention that adopts a similar mixing strategy to the envi-
ronment scene é. Notably, by drawing the mixing ratios A; from a
second distribution that is distinct from the equivariant one (i.e.,
A1 ~ U(0,1)), the invariant intervention learns to rule out the
influence of environment scene on the answer, which essentially
refines the ERM-guided scheme at our will. Formally, we arrive the
intervened environment scene e* by:

ef=A-e+(1-1)-¢, (13)

where é’ is the estimated environment scene of a second sample.
In practice, the equvariant and invariant intervention operations

are performed in parallel on different parts of v, and the intervened

video v* € RK*4 js composed of do(C = ¢*) and do(E = €*):

o' =c* +e*. (14)

4.3 Disruptor

To fully exploit the privilege of the proposed principles, we employ
contrastive learning as an auxiliary objective to establish a good
representation that maintains the desired properties of ¢ and é.
Specifically, we first compose a memory bank 7 as a collection of vi-
sual clips from other training videos. Then, we apply the grounding
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indicator a second time on top of the intervened variables, where
the re-grounded causal and environment scene are manipulated to
set up the contrastive twins as follows:

o In light of the environment-invariance principle, positive video
is developed in the sense that changing the environment scene
will not provoke disagreement in answer semantics. Thus, the
disruptor synthesizes a positive video o* by disrupting the o* on
its environment part — that is, replacing the environment scene
with a random stratification sampled from the memory bank.!
Built upon the causal-equivariance principle, the negative coun-
terpart v~ is created by a similar disruption but on the causal
scene of v*, where substitution on the question-critical causal
part should raise inconsistency in answer space. Apart from the
visual negatives, the disruptor also creates linguistic alternatives
to enhance the distinctiveness of the vision-language alignment.
Specifically, it disrupts the combination of the intervened input
(v*, ¢*) and pairs the video with random sample question g, to
create a second view of negative samples (v*, g;).

To this end, we attain the answer representation of anchor a and
its contrastive counterparts a*, a” by feeding the paired positive
and negative samples to backbone VideoQA model f5:

a=fi(v".q"), (15)
a’ = f1(0",q"), (16)
a” = fi([(v7.q"); (v, 9r)]), (17)

where [; ] denotes concatenation.
Notably, EIGV is designed to be model-agnostic, which aims to
promote any VideoQA backbone built on frame-level visual inputs.

4.4 Optimization

By far, we set up the intervened vision-language instance (v*, ¢*) for
a pair of input (v, g), and further constitute its contrastive counter-
parts based on the estimated grounding result. To steer the learning
process away from the conventional ERM pitfall, we establish two
learning objectives on top of their output a,a™,a™:

e Contrastive loss. To reflect the invariant property of the envi-
ronment scene while maintaining the distinctiveness of the causal
scene, we borrow the definition of InfoNCE [40], and construct
the contrastive objective as follows:

exp(a'at)

Ler = —log( ), (18)

exp(aTa®) + YN exp(aTay)
where N is the number of negative samples, a,, denotes negative
anwer generated by one of negative samples.

ERM loss. Estimating the rationale requires a robust causal
connection from V, Q to A. Thus, we imposed an entropy-based
risk function XE(-) on (v*, g*) to approach the intervened answer

a*:

Lerm = XE(f3(0%.9%), a"), (19)

!Note that the environment substitutes will not involve the question-relevant scenes,
to avoid creating additional paths from E to A.
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Figure 4: We illustrate the invariant and equivariant interven-
tions in the second and third rows, respectively. The effects
on Q and A are omitted for illustration purposes.

As a result, the overall training objective of EIGV is the aggrega-
tion of the forgoing risks:

Leigv = E g0 co0LErm + LcL. (20)

where O is the set of training instances (v, ) alongside their ground-
truth answer a; f is the hyper-parameter that balances the strength
of contrastive learning. The joint optimization disentangles the
mischief of environment scene, thus fulfilling the desired inter-
pretation by locating the causal pattern. During inference, EIGV
generates the predication d without the intervener and disruptor
involved, and gives the interpretation ¢ as the partition result of
the grounding indicator.

5 EXPERIMENT

In this section, we show the experimental results to answer the
following research questions.

e RQ1 How effective is EIGV in discovering the causal pattern and
improving the model generalization across different settings?

e RQ2 How does the sub-module and feature setting contribute to
the performance?

e RQ3 What pattern does EIGV capture in rationale discovery?

5.1 Settings

Datasets. We conduct experiments on three benchmark datasets
that challenge the model’s reasoning capacity from different aspects:
MSVD-QA [50] and MSRVTT-QA [50] mainly emphasize the
recognition ability by asking the descriptive questions, where 50K
and 243K question-answer pairs are automatically generated from
the human-labeled video captions, respectively. NExT-QA [48]
pinpoints the causal and temporal relations among objects in the
video. It contains 47.7K questions with answers in the form of
multi-choice, which are manually annotated from 5.4K videos.

Baseline. We validate the effectiveness of EIGV across backbone
VideoQA models of three kinds: 1) Memory-based methods that
foster a storage of input sequence via auxiliary memory design, such
as AMU [50], HME [7] and Co-Mem [8]. 2) Graph-based methods
that leverage the expressiveness of graph network to model the
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Table 1: Comparison with SoTAs. Our results are highlighted.

Model | MSVD-QA  MSRVTT-QA  NExT-QA
AMU [50] 32.0 32.0 -
HME [7] 33.7 33.0 49.2
B2A [26] 37.2 36.9 -
. L-GCN[14] 34.3 33.7 49.5
<
(5 HCRN [19] 36.1 35.6 48.9
¥ PGAT [30] 39.0 38.1 -
HOSTR [6] 39.4 35.9 -
HQGA [49] 412 38.6 518
IGV [21] | 40.8 38.3 51.3
Co-Mem [8] 34.6 35.3 48.5
+EIGV 39.8 2 B R 50.7 +22
»  HGA[17] 36.6 36.7 50.0
3 +EIGV 40.8 *42 385 118 53.7 +3.7
MSPAN [10] 403 38.0 50.7
+EIGV 42.6 *23 39.3 13 52.9 +2.2

interaction between visual and language elements, which involves
methods like L-GCN [14], B2A [26] and HGA [17]. 3) Hierarchy-
based methods include HCRN [19], PGAT [30], HOSTR [6], MSPAN
[10] and HQGA [49]. In common, they exploit the multi-granularity
nature of visual elements and realize the hierarchical reasoning via
bottom-up architecture. In Specific, we test the generalization of
EIGV by marrying our learning principles to three backbones of
different categories: memory-based Co-Mem [8], graph-based HGA
[17] and hierarchy-based MSPAN [10].

Implementation Detail. For input representation, we encode
the video instance as a sequence of K=16 clips, where each clip is
represented as a combination of appearance and motion features
extracted from the pre-trained ResNet-152 and 3D ResNeXt-101. For
the linguistic feature, we follow [48] and obtain the contextualized
word representation using the fine-tuned BERT model. In the hyper-
parameters setting, we set d = 512 for cross-modal alignment, then
train the model for 80 epochs with an initial learning rate of 5e-5.
During optimization, EIGV is trained with Adam optimizer and
we decay the learning rate when validation stops improving for 5
epochs. The balance ratio f is set to 0.75.

5.2 Main Result (RQ1)

Table 1 shows the overall result of our method and the SoTAs on
three benchmark datasets: MSVD-QA, MSRVTT-QA and NExT-QA.
Our observations are summarized as follows:

o Across all three benchmark datasets, the proposed EIGV outper-
forms SoTA by a distinct margin (+1.2%~2.3%). Such prevailing
performance indicates the overall effectiveness of our design,
which underpins the theoretical soundness of the equivariant
and invariant principles.

Narrowing the inspection to each of the three backbones, EIGV
brings each backbone model a sharp gain across all bench-
mark datasets (+1.3%~5.2%), which evidences its model-agnostic
property. Nevertheless, we notice that the improvements fluctu-
ate across the backbones. As a comparison, on MSVD-QA and
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Table 2: Evaluation on the effectiveness of sub-modules

' MSVD-QA NExT-QA

Ablation MSPAN HGA | MSPAN HGA
SoTA Backbone | 40.3 36.6 | 50.7 50.0
+ Mixup [53] 41.0 38.3 52.0 51.8
+ Intervener 41.5 39.6 52.5 52.7
+ Disruptor 40.9 37.6 51.0 51.1
+ Disrupt-Q 40.6 37.0 50.8 51.0

+ Disrupt-V | 407 37.3 51.0 50.8
EIGV | 426 408 52.9 53.7

MSRVTT-QA benchmarks, EIGV acquires more favorable gains
with backbone Co-Mem and HGA than it does with MSPAN. This
is because the multi-granularity hierarchy empowers the MSPAN
with robustness, especially to questions of the descriptive type.
Therefore, it achieves stronger backbone performances on bench-
marks that focus on the descriptive question (i.e., MSVD-QA and
MSRVTT-QA), which, in turn, account for the contribution of
EIGV to some extent, thus makes improvement of MSPAN less
remarkable. In contrast, when it comes to the causal and temporal
question (i.e, NExT-QA) where the inherit advantage of MSPAN
backbone vanishes, EIGV shows equivalent improvements on all
three backbones (+2.2%~3.7%).

e Comparing the average improvement across different bench-
marks, we notice that EIGV achieves the best improvement
on MSVD-QA (+2.3%~5.2%) while relatively moderate gains on
MSRVTT-QA (+1.3%~1.9%) and NEXT-QA (+2.2%~3.7%). The rea-
son for such discrepancy is that MSVD-QA is relatively small
in size, which constrains the reasoning ability of the backbone
models by limiting their exposure to training instances. As a
comparison, MSVD-QA is five-time smaller than MSRVTT-QA
in terms of QA pairs (43K vs 243K), and three-time smaller than
NExXT-QA in terms of video instances (1970 vs 5440). However,
such deficiency caters to the focal point of EIGV that develops bet-
ter in a less generalized situation, thus leading to more preferable
growth on MSVD-QA.

5.3 In-Depth Study (RQ2)

5.3.1 What are the effect of EIGV’s components? To com-
prehensively understand the reasoning mechanism of EIGV, we
poke its structure with careful scrutiny. Specifically, we explore the
effectiveness of the proposed intervener and disruptor by analyzing
their performance with different backbones on two benchmarks. We
report the corresponding performances in Table 2 and summarize
our findings as follows:

o Effectiveness of Intervener. We first testify the substan-
tial efficacy of the intervener by comparing its permanence (
“+Intervener” ) to the backbone. This brings constant gains across
different settings (+1.2%~3%), which demonstrates the stability
of our design. Then, we compare the result of the intervener
with the conventional mixup augmentation [53], which can be
considered as a simplified case of the interventer that only ap-
plies the equivariant intervention to the entire training video.
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Table 3: Study of feature setting. “APP” and “MOT” denotes
using appearance and motion feature individually.

MSVD-QA NExT-QA
Method MSPAN HGA | MSPAN HGA
a, SoTA Backbone 40.1 35.0 49.7 48.3
& +EIGV | 410 395 | 520 524
S SoTA Backbone 37.8 33.6 49.4 47.5
= +EIGV 393 385 | 511 517

The result shows that our design outperforms the conventional
mixup in all cases. This manifests that the benefit of invariant
intervention is fundamental, and the functionality of invariance
and equivariance principle are mutually reinforced.

Effectiveness of Disruptor. We validate the disruptor design
by investigating its components — the substitution on video
(“+Disrupt-V”) and the permutation on question (“+Disrupt-Q”),
respectively. Albeit moderate, improvement on (“+Disrupt-V”)
shows that stressing causal scene can benefit visual robustness.
A similar trend also applies to “+Disrupt-Q” as well, the constant
improvement in all settings shows that acknowledging artifi-
cial corrosion in (v, g) matching can strengthen vision-language
alignment, which is in line with the current finding in the cross-
model pre-train literature [31]. Furthermore, the overall result
on “+Disrupt” shows that the advancement of “+Disrupt-V” and
“+Disrupt-Q” can be amplified by further integration.

5.3.2 What are the effects of different feature settings? To
answer this question, we perform uni-feature tests for the visual rep-
resentation. Concretely, instead of combining the appearance and
motion features together and then manipulating them as a whole,
we run ablative experiments on each of them solely. As shown in
Table 3, under all circumstances, EIGV can improve models trained
with appearance and motion features in equivalent magnitude, even
though the appearance feature is demonstrated to be more visually
informative in backbone comparison. This verifies that our improve-
ment is ascribed to both feature modes rather than accessing only
one of them.

5.3.3 What are the effects of hyper-parameters? Justifying a
reliable design requires a sensitivity test on its hyper-parameters. As
shown in Figure 5, we probe the potency of EIGV by investigating
the distribution of the equivariance mixing ratio and the number
of negative samples. Our observations are as follows:

o Figure 5a shows how EIGV performs compared to the SoTA back-
bone and the conventional mixup augmentation. Specifically,
we adjust a to vary the distribution that the equivariant mix-
ing ratio Ao draws from, and cross-check the performance of
EIGV (“+EIGV”) against its counterparts (“SoTA Backbone” and
“+HGA”) on two backbone models. Mixup, despite some improve-
ment, its generalization is limited by the choice of the backbone.
For MSPAN backbone, even the heavily tuned « fails to make
a reasonable improvement. In contrast, EIGV successively out-
performs mixup augmentation and backbone methods in every
a setting, which recalls our finding in Section 5.3.1 and justifies
the necessity of the environment-invariance principle.
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Figure 5: Hyperparameter analysis. (a) Study of @ on MSVD-
QA, which controls the equivariant mixing ratio by 1o ~
Beta(a, ). Performance of two EIGV enhanced models —
HGA (top) and MSPAN (bottom) are reported, alongside the
SoTA backbone and mixup augmented performances. (b)
Study on the impact of the negative sample number N, where
EIGV with two backbones (i.e, MSPAN and HGA) on two
benchmark datasets (NExT-QA and MSVD-QA) are reported.

e Figure 5b demonstrates how the performance of EIGV varies
as the number of negative sample increase. We notice that the
predictive curves keep rising until N reaches around five, which
indicates that EIGV learns distinctive grounding rationale as
more negative samples are considered. This is in line with the
finding in the contrastive learning community that additional

negative pairs bring about more desirable outcome [11].

5.4 Quantitative Study (RQ3)

By nature, EIGV is equipped with intrinsic visual interpretability.
To capture the learning insight of EIGV, we inspect the predictive
answer of some video instances along with their grounded inter-
pretations and show the visualization in Figure 6, where each row
provides a video instance and two questions that emphasize the
visual content in different temporal spans. Notably, even for the
same video instance, EIGV is able to accredit different scenes for
the different questions. Nonetheless, we also observe the insuffi-
cient grounding result in Row 3 Q1, where the grounding result
partially covers the dog swimming scene, while the whole video is
answerable to the question.

6 RELATED WORK

Video Question Answering. Established to answer the question
in dynamic visual content, VideoQA is bred through the task of
ImageQA but has broadened its definition by assembling a temporal
dimension. To make the task intriguing, the VideoQA benchmark
has gone beyond the problem of description [50] and built several
datasets to challenge temporal reasoning and even causal reflection
[48]. As a result, VideoQA has experienced an aggressive expan-
sion in the architecture design. Chronologically, early efforts tend
to enact alignment through cross-modal attention [20, 52] or en-
hanced memory design [7, 8, 50], while more recent works leverage
the expressiveness of the graph neural network and perform the
relation reasoning as node propagation [17, 30] or graph alignment
[26]. In addition, current designs modify the representation of video
and manipulate the temporal sequence from a hierarchical angle.
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Q1. how does the man in white prevent the white and black dog from running away?
1. fenced up give food 2. use collar strap 3. running behind 4. put dog in cage

—a-
Q2. why is the man in white bent down in the middle?
1. carry the brown dog 2. look at the ants 3. pick up the white item 4. protect against the chemical 5. caress the dog

Q1. how did the boy stand up in the middle of the video?

1.lady pull him up 2. push himself up sideways 3. use rope 4. in crutches 5. hinge on the man’s feet

-
Q2. what did the girl in white do after she was at the top of the slide?
1. switch on it 2. prepares to slide 3. push boy on swing 4. jump off seat and spread arms 5. happy

Q1. what is the dog doing?

1. on the right 2. swimming 3. lick baby’s hand 4.playing with sticks 5. play with ball

e
Q2. what did the lady in blue do when she reached the stairs?
1. put head on table 1.sit on stairs 2. goes to get food 3. move hands around 5. jump downstairs
Figure 6: Visualization of discovered grounding rationale. Each row comes with a video instance and two questions that target

at different scene. The green and

Following this line, HCRN [19] first came out with the conditional
relation module as building blocks that operate through different
video intervals, whereas HOSTR and PGAT made their advance-
ment by incorporating visual content from different granularity.
MSPAN, however, established cross-scale feature interaction on top
of the hierarchy. Despite effective, their intrinsic rationale has long
been overlooked. To the best of our knowledge, EIGV is the first
work that probes intrinsic interpretation.

Invariant Learning. Given a encoder f(-) and input x, a represen-
tation f(x) is invariant to operation T, if Vx : f(G(x)) = f(x). In
practice, this invariant property has a long history in presenting vi-
sual content (e.g., HOG [15]), which has recently been renovated by
deep learning in form of risk minimization. As its most prevailing
form, IRM [2] fosters this philosophy by posing an environment
invariant prior and discovering the underlying causal pattern by re-
ducing cross-environment variance. Different from previous studies
that create environment via inductive re-grouping [1] or adversarial
inference [5, 43-45], our method conducts causal intervention that
perturbs the original sample distribution to form a new one. The
most relvant work is [21], where an invariant framework is intro-
duced as a model-agnostic framework. However, EIGV gains better
generalization ability by marrying equivariance as complementary
learning principle.
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windows indicate the rationales for the corresponding questions.

Visual Interpretability Machine interpretability can be achieved
in various methods, such as clustering [24] or disentanglement
[37]. Our design can be vested in the category of attribution discov-
ery, which investigates the contribution of different input elements
toward the prediction. Based on whether the prediction and inter-
pretation are yielded simultaneously, two categories are further
defined: 1) post-hoc methods that generated the interpretation af-
ter prediction, such as backpropagation methods (e.g., grad-CAM
[35]). 2) self-interpretable method that cast prediction and interpre-
tation at the same stage. Unlike the post-hoc method that traces
the interpretative clue from the output of the black-box, the self-
interpretable model builds a transparency model via methods such
as prototype generation [3] or structural delineation [47]. In fact,
previous works tend to focus on static image. EIGV, however, ap-
proaches the video interpretation in a multi-modal situation.

7 CONCLUSION

In this paper, we present EIGV — a model-agnostic explainer, that
empowers the SOTA VideoQA model with intrinsic interpretability.
In the light of the causality, we formulate our learning principles —
causal-equivariance and environment-invariance by incorporating
three constituents, the grounding indicator, the intervener, and
the disruptor, which manage a robust rationale discovery. Experi-
ments across three benchmarks validate EIGV’s fulfillment in both
interpretation and accuracy.
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