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Figure 1: Visual comparisons of our SPG-IM with other trimap-free matting methods (LFM [57] and MODNet [28]) on the

Real-World images.
ABSTRACT

Most automatic matting methods try to separate the salient fore-
ground from the background. However, the insufficient quantity
and subjective bias of the current existing matting datasets make it
difficult to fully explore the semantic association between object-
to-object and object-to-environment in a given image. In this paper,
we propose a Situational Perception Guided Image Matting (SPG-
IM) method that mitigates subjective bias of matting annotations
and captures sufficient situational perception information for better
global saliency distilled from the visual-to-textual task. SPG-IM can
better associate inter-objects and object-to-environment saliency,
and compensate the subjective nature of image matting and its
expensive annotation. We also introduce a textual Semantic Trans-
formation (TST) module that can effectively transform and integrate
the semantic feature stream to guide the visual representations. In
addition, an Adaptive Focal Transformation (AFT) Refinement Net-
work is proposed to adaptively switch multi-scale receptive fields
and focal points to enhance both global and local details. Extensive
experiments demonstrate the effectiveness of situational perception
guidance from the visual-to-textual tasks on image matting, and our
model outperforms the state-of-the-art methods. We also analyze
the significance of different components in our model. The code
will be released soon.
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1 INTRODUCTION

Image matting is a fundamental computer vision task with great
application value, which aims to separate the foreground from a
single image or video stream and then composites it with a new

background. It has been practically applied in the background re-
placement scenarios of the multimedia such as entertainment im-
age/video creation and special-effect film-making, without green
screen backgrounds. Due to the rapid development of the deep
neural networks in computer vision, automatic matting becomes
increasingly matured [10, 30, 33, 36, 38, 43, 45, 52, 57].

However, there still remain two big challenges in the matting
task. First, unlike some well-defined tasks such as object detection
or segmentation, image matting is an ill-posed problem that re-
quires a user input trimap or some interactive strokes/points to
clearly separate foreground from background, which leads to the
inconsistency matting annotation from the annotators’ subjective
understanding of the foreground. If we present the same image
to a group of subjects, it’s very natural that each individual will
interpret the foreground of this image a bit differently based on
his or her educational background, gender, ethnicity, or religious
beliefs. Such variation impacts image matting annotations, espe-
cially in the human-object interactive and multi-object scenes. For
example, as shown in Row 1 of Figure 1, annotator A is more willing
to interpret the fence as the foreground object together with the
man in this image, while annotator B justifiably prefers to only
highlight human. One of the most straightforward ways to learn
the underlining distribution of such variation is by introducing
large-scale data-driven training. Unfortunately, it is unrealistically
expensive to acquire such a representative dataset to cover the real
data distribution due to the fine pixel-level granularity annotation
of image matting. Recent existing image matting training datasets
like AIM [52] and Distinction-646 [43] are examples of such data
insufficiency.

Second, for most of the existing automatic matting models with-
out extra inputs (e.g. trimap, interactive strokes/points, or known
background), the learning of image saliency steams from object



detection or segmentation methodology but lacks the global situa-
tional awareness on multiple salient objects and their surrounding
environment. For example in Row 2 of Figure 1, although no touch
interaction with the girl, that bubble, which is critical for seman-
tic completeness, is indisputably salient. Unfortunately, previous
methods fail to extract such complete and meaningful saliency.

To address the above challenges, in this paper we propose a
Situational Perception Guided Image Matting (SPG-IM) network,
that aims to mitigate the subjective bias of matting annotations
and capture sufficient situational perception information for global
saliency learning. We seek semantic distilled information from
the visual-to-textual task to guide the visual features of image
matting, due to its large quantity but low-cost training samples. We
believe that visual representations from the visual-to-textual task,
e.g. image captioning, focus on more semantically comprehensive
signals between a)object to object and b)object to the ambient
environment to generate descriptions that can cover both the global
info and local details. In addition, compared with the expensive
pixel annotation of image matting, textual labels can be massively
collected at a very low cost.

The SPG-IM network consists of two stages: Situational Percep-
tion Distillation (SPD) and Situational Perception Guided Matting
(SPGM), both in an encoder-to-decoder fashion. In the first stage, we
first pretrain the visual front-end and transformer decoder jointly to
generate captions, and aim to learn visual representations including
situational perception from visual-to-textual feature transformation.
Then the visual front-end is spliced to a new back-end for saliency
foreground mask prediction. In the second stage, the SPGM mod-
ule takes both generated mask and the raw RGB image as inputs
and outputs the estimated alpha matte. To leverage situational per-
ception guidance, we propose a textual Semantic Transformation
module that transforms and integrates the visual feature stream of
the SPD module to guide the visual representations of the SPGM
module at multi-scale levels. In addition, we propose an Adaptive
Focal Transformation (AFT) Refinement Network that can adap-
tively select the size of the receptive field to process global context
and local details separately, aiming to reach a good balance between
complementary global information and local attributes when pro-
cessing the fused situational perception guided visual features. To
justify our solutions, we compare our algorithm, objectively and
subjectively, with other methods. Also, we demonstrate by ablation
study that the introduction of visual-to-textual transform as seman-
tic guidance can mitigate subjective annotation bias and improve
matting performance by leveraging inexpensive image captioning
labeling.

Overall, the contributions of this paper are as follows:

o To the best of our knowledge, we are the first to underscore
the subjective nature of foreground saliency in image/video
matting and accordingly introduce situational perception
guidance from the visual-to-textual transformation with low-
cost labeling to semantically guide the visual features to
compensate demographic bias and improve matting perfor-
mance.

e We build a large-scale matting dataset consisting of 1000 im-
ages and corresponding alpha mattes for multi-foreground-
object scenes. To the best of our knowledge, this is the first

large-scale and high-quality dataset for multi-foreground-
object scenes.

e We propose a textual Semantic Transformation (TST) mod-
ule to effectively transform and integrate more situational
perception information that guides the matting network.

e We propose an Adaptive Focal Transformation (AFT) Refine-
ment Network to adaptively select the size of receptive fields
and focal regions to simultaneously improve global and local
performance.

o Extensive experiments demonstrate the effectiveness of our
situational perception-guided image matting method, out-
performing the state-of-the-art (SOTA) approaches on both
synthetic and real-world images.

2 RELATED WORKS

Currently, the matting is generally formulated as an image compos-
ite problem, which solves the 7 unknown variables per pixel from
only 3 known values:

I = ajFi + (1 - a;)B; (1)

where 3 dimensional RGB color I; of pixel i, while foreground RGB
color Fj, background RGB color B;, and matte estimation «; are
unknown. In this section, we discuss the SOTA works trying to
solve this under-determined equation.

2.1 Classic methods

Classic foreground matting methods can be generally categorized

into two approaches: sampling-based and propagation-based. Sampling-

based methods [2, 12, 15, 25, 27, 56] sample the known foreground
and background color pixels, and then extend these samples to
achieve matting in other parts. Various sampling-based algorithms
are proposed, e.g. Bayesian matting[56], optimized color sampling [25],
global sampling method [27], and comprehensive sampling [15].
Propagation-based methods [3, 10, 20, 29, 30, 47] reformulate the
composite Eq. 1 to propagate the alpha values from the known
foreground and background into the unknown region, achieving
more reliable matting results. [26] provides a very comprehensive
review on various matting algorithms.

2.2 Deep learning-based methods

Classic matting methods are carefully designed to solve the com-
posite equation and its variant versions. However, these methods
heavily rely on chromatic cues, which leads to bad quality when the
color of the foreground and background show small or no noticeable
difference.

Trimap-based methods. Automatic and intelligent matting al-
gorithms are emerging, due to the rapid development of the deep
neural network in computer vision. Initially, some attempts were
made to combine deep learning networks with classic matting tech-
niques, e.g. closed-form matting [30] and KNN matting [10]. Cho
et al. [13] employ a deep neural network to improve the results of
the closed-form matting and KNN matting. These attempts are not
end-to-end, so not surprisingly the matting performance is limited
by the convolution back-ends. Subsequently, full DL image matting
algorithms appear [9, 19, 52]. Xu et al. [52] propose a two-stage
deep neural network (Deep Image Matting) based on SegNet [4] for
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Figure 2: The architecture of the Situational Perception Guidance Image Matting (SPG-IM) network. The SPG-IM network
consists of two branches: Situational Perception Distillation (SPD) and Situational Perception Guided Matting (SPGM). The
SPD branch takes an RGB image as input and outputs the semantic distilled saliency mask. The SPGM then revisits the raw
image input and combines it with the estimated saliency mask for alpha matte prediction, under the guidance of situational
perception from the SPD. Both SPD and SPGM employ ResNet-50 as the encoder for visual representation extraction. We utilize

ASPP [7] to extract and fuse multi-scale contextual information for semantic mask estimation.

alpha matte estimation and contribute a large-scale image matting
dataset (Adobe dataset) with ground truth foreground (alpha) matte,
which can be composited over a variety of backgrounds to produce
training data. We also use this data for the first-step pre-training
of our network. Lutz et al. [39] introduce a generative adversarial
network (GAN) for natural image matting and improve the results
of Deep Image Matting [52]. Cai et al. [5] investigate the bottleneck
of the previous methods that directly estimate the alpha matte from
a coarse trimap, and propose to divide the matting problem into
trimap adaptation and alpha estimation tasks. Hou et al. [23] em-
ploys two encoder networks to extract essential information for
matting, however it is not robust to faulty trimaps. Forte et al. [34]
propose a low-cost upgrade to alpha matting networks to also pre-
dict the foreground and background colours. They study variations
of the training regions and explore a wide range of existing and
novel loss functions for optimal prediction. Liu et al. [36] propose
a 3-branch encoder to accomplish comprehensive mining of the
input RGB image and its corresponding trimap, and then develop
a Tripartite Formation Integration (TI2) Module to transform and
integrate the interconnections between the different branches.
Additional natural background. Qian et al. [42] compute a
probability map to classify each pixel into the foreground or back-
ground by simple background subtraction. This algorithm is sensi-
tive to the threshold and fails when the colors of the foreground
and background are similar. Sengupta et al. [45] introduce a self-
supervised adversarial approach - Background Matting (BGM),

achieving state-of-the-art results. However, as a prerequisite, the
photographer needs to take a shoot of natural background first,
which is not friendly to the intensive multi-scene shooting ap-
plication. Liu et al.[33] propose the Background Matting V2 that
employs two neural networks: a base network computes a low-
resolution result which is refined by a second network operating at
high-resolution on selective patches.

Trimap-free methods. Currently, a majority of deep image
matting algorithms [5, 23, 39, 52] try to estimate a boundary that
divides the foreground and background, with the aid of a user-
generated trimap. Several trimap-free matting methods [9, 57] pre-
dict the trimap first, followed by alpha matting. Qiao et al. [43]
employ spatial and channel-wise attention to integrating appear-
ance cues and pyramidal features, they also introduce a hybrid
loss function fusing Structural SIMilarity (SSIM), Mean Square Er-
ror (MSE), and Adversarial loss to guide the network to further
improve the overall foreground structure in trimap-free matting.
Lin et al. [34] propose a robust real-time matting method (RVM)
training strategy that optimizes the network on both matting and
segmentation tasks. Ke et al. [28] present a lightweight matting
objective decomposition network (MODNet) by optimizing a series
of sub-objectives simultaneously via explicit constraints. They also
introduce an e-ASPP module to fuse multi-scale features, plus a
self-supervised sub-objectives consistency (SOC) strategy to ad-
dress the domain shift problem, which is common in trimap-free
methods.



Besides, most current trimap-free methods focus only on hu-
man/portrait matting but ignore the objects that are interacting
with or attached to people. In addition, they learn the saliency of
the images by data-driven training, which lacks the situational per-
ception between salient objects and the surrounding environment,
leading to biased or incomplete foreground prediction, especially
in multi-object scenes. This is the main reason why we propose the
method of Situational Perception Guided Image Matting. In this
paper, we quantitatively evaluate the performance of our model for
alpha matting in human-object interactive and multi-object scenes.

2.3 Image Captioning,.

The problem of generating natural language descriptions from
visual data has long been studied in computer vision. Early methods
use pre-defined templates, such as object detectors and attribute
predictors to generate captions [46, 53]. With the rise of Deep
Learning-based networks, RNNs [44, 51] are adopted as language
models to decode corresponding visual features.

Due to the wide success of transformers in natural language pro-
cessing and multi-media, image caption methods use transformers
to either generate captions directly or fuse visual and language fea-
tures. Herdade et al. [22] propose a object relation transformer and
build image captions based on inter-object relations. Liu et al. [31]
introduce an enTangled attention-based transformer that simulta-
neously exploits visual and semantic information. Huang et al. [24]
propose an attention model that first generates an information vec-
tor and an attention gate, and then adds secondary attention using
element-wise multiplication to aggregate the attended features.

Recent works have demonstrated that image captions can guide
feature learning on various visual tasks. Karan Desai et al. [14] pro-
pose a pre-train approach using semantic dense captions to learn
visual representations. We believe distilled semantic caption infor-
mation can guide the feature learning of salient object detection
tasks.

3 METHODOLOGY

The network architecture of the Situational Perception Guided
Image matting (SPG-IM) is designed to automatically extract the
accurate saliency foreground from an RGB image instead of using
interactive strokes/points or extra inputs, e.g. trimap and known
background. The SPG-IM network consists of two branches: Sit-
uational Perception Distillation (SPD) and Situational Perception
Guided Matting (SPGM). We pretrain the front-end of SPD under
an image caption generation framework before it is transferred
to the downstream semantic distilled saliency mask estimation
task. The SPGM then revisits the raw image input and combines it
with the estimated saliency mask for alpha matte prediction, under
the guidance of situational perception from the SPD. The overall
architecture of the SPG-IM network is shown in Figure 2.

3.1 Situational Perception Distillation

The front-end of our Situational Perception Distillation (SPD) branch
is pretrained joint with a transformer-based textual decoder [14] to
generate the textual description of an image.

At the visual-to-textual pretraining stage, the Transformer-based
textual decoder decodes the visual features output by the visual

front-end (captioning encoder) and generates a corresponding im-
age caption C = (co, ¢1, ..., cT, cT+1). The start of the image caption
is ¢g = [SOS],while cr4; = [EOS] indicates the end of a caption
sequence.

Visual front-end (captioning encoder). The visual encoder
uses a convolutional network to compute the downsampled visual
features. For the input image I, we use the ResNet-50 [21] as the
visual encoder to extract grid feature C € R2048X(7X7) followed by
a linear projection layer before sending it to the textual decoder.

Textual decoder: The textual decoder receives a set of grid
visual features and outputs the corresponding image caption. We
predict the captions in both forward and backward manner and
utilize Transformer [50] as the backbone of the textual decoder,
which adopts a self-attention and cross attention mechanism to
fuse visual features using textual queries.

The inputs of the textual decoder module are a set of image
features from the visual encoder and a list of caption tokens. Grid
visual features fed into the textual decoder are tokenized to a se-
quence of the patch features G € RPP*NI where each Ny = 7 x 7
patch has a feature vector with Dy—dimension.

The first token ¢y = [SOS] indicates the start of the sentence. The
transformer backbone iteratively predicts each word in the caption
sentence. The prediction ends when transformer output Cry; =
[EOS] label. We visualize the word-level attention maps in the cross
attention module, where the highlighted regions illustrate that the
visual representations from the visual-to-textual task can focus
more on the global situational perception. More implementation
details are described in the supplementary material.

Situational perception distillation. We transfer the visual fea-
tures learned by the visual-to-textual transformation to the down-
stream dense prediction task. We adopt an encoder-to-decoder
framework in the SPD network. An Atrous Spatial Pyramid Pool-
ing (ASPP) [6] module is set between the visual front-end and
decoder to enhance the fusion capabilities of multi-scale features
for semantic situational perception. The semantic distilled saliency
mask output by the SPD network is supervised by the Gaussian
transformed thumbnail of the ground truth alpha matte at a Ly loss:

Lspp = ||Ms = S(a*)|, )

where a* is the ground truth of alpha matte, S(a*) is a Gaussian
blur operation after the downsampling of a*. We utilize Ly loss to
smooth the boundary and details of the estimated semantic distilled
saliency mask M. Then M is fed into the SPGM branch along with
the raw image for alpha prediction.

3.2 Situational Perception Guided Matting

The situational perception guided matting (SPGM) branch receives
the RGB image I and the semantic distilled saliency mask M as
inputs to transfer the high-level semantic generalizations into fine-
grained foreground alpha mattes. The coarse foreground masks are
experimentally proven to be effective as semantic priors for image
matting in previous works [45, 55]. As for situational perception
guidance, we propose a textual Semantic Transformation (TST)
module that effectively transforms and integrates the visual feature
stream of the SPD module, and guides the visual representations of
the SPGM module at multi-scale levels.



Textual Semantic Transformation. The textual Semantic Trans-
formation (TST) module is performed in a non-local fashion, its
network architecture is shown in Figure 2. We first encode the
visual presentation F; of SPD and the visual representation F; of
SPGM separately into the key (k;, k;) maps and value (v}, v;) maps
at each feature scale. The fusion attention map f; is computed by
comparing the pixel-by-pixel similarity between k{ and k;:

fi = softmax(k’k") (3)

Then we utilize f; as indexes to retrieve the effective situational
perception information and concatenate it with v; to update the
visual representation of SPGM:

Fi=vi®(0]" 0f) 4

where © denotes an element-wise multiplication and & denotes the
concatenation. We conduct textual semantic transformation on the
features from ResNet50’s 2, 3,4 — th res blocks. Consequently, the
semantic distilled situational perception information can work as a
guiding role at multiple feature levels.

Adaptive Focal Transformation Refinement Network. As
described in previous dense prediction work [41], larger receptive
fields establish dense connections between feature maps and per-
pixel classifiers which improve the accuracy of internal regions,
while smaller receptive fields benefit the localization focus on local
fine-grained details near the object boundaries. It is impossible to
find correct and accurate local details if the network is already
confused on the global or regional level, which can only generate
fine-grained but semantically incorrect results at best. However,
it’s equally impossible to get good matting if the network is heavily
biased to global or regional features since that can only cause image
blur.

That holds also true for the human visual system. When humans
observe objects with their eyes, they usually use an adaptive focal
strategy to first capture the main body and then narrow their vi-
sion on the particular details, such as hair or other small texture.
After accumulating a few scrutinized details, the human in return
re-gauge or re-evaluate their general perception on those objects.
Inspired by this, we propose an Adaptive Focal Transformation
(AFT) Refinement Network that can adaptively switch dimensions
of receptive fields and focal regions, aiming to complement global
information and local attributes when processing the fused situ-
ational perception guided features. Specifically, we first generate
the focal region mask u; at ith level from the output a;—1 of the
previous feature level by the following formula:

1 if0<ai—1(xy) <1

ui(x,y) = {0 otherwise )

where we set the low confidence regions 0 < a;—1(x,y) < 1 which
consists mainly of boundary details as shown in Figure 2 and need
to be adaptively focused and progressively refined. Then we upsam-
ple aj—1 and a;_1 - u;, and concatenate them on the fused situational
perception guided feature F; respectively at ith level. As shown in
the pink box of Figure 2, we apply multi-size kernels, larger sizes
for (aj—1 T ®F;) to predict main body regions, and smaller sizes
for (aj—1 - u; T ®F;) to refine boundary regions. Then additional
convolutions are utilized to fuse of main body and refined boundary

details. To reduce the computation cost, we apply Atrous convolu-
tion [8] kernels along with spatially separable convolution kernels
for large receptive field at multi-scale features.

Loss function. For the supervision of the SPGM branch, we
only utilize alpha loss to supervise the outputs of different levels
in order to verify the validity of this pattern and to prevent bias
caused by other losses:

£= 3wl - ©

where 4; is the loss weight assigning to the output alpha a; of the
ith level, a* is the ground truth alpha.

4 EXPERIMENTS

We first describe the datasets used for training and testing. Sub-
sequently, we compare our results with existing state-of-the-art
(SOTA) foreground matting algorithms. Finally, we conduct ablation
experiments to show the effectiveness of each branch and module.
More implementation details are provided in the supplementary
material.

4.1 Datasets

Composition-1K [52]. The training set consists of 431 foreground
objects and each of them is composited over 100 random COCO [35]
images to produce 43.1k composited training images. For the test set,
we combine each foreground of Composition-1K with 20 random
VOC [16] images to produce 1k composited testing images. And
then we follow Eq. 2 in Section 3.1 to generate S(a*) for supervising
the training of the Situational Perception Distillation (SPD) branch.

Distinction-646 [43]. It includes 431 and 50 foreground objects
in training and test sets, respectively. We enforce the same rule and
composited ratio with the Composition-1K.

Human-2K [36]. It provides 2100 foreground images (2000
for training and 100 for testing). The same rules and ratios as
Composition-1K are used in the Human-2K to composite new im-
ages.

Multi-Object-1K. Although there are several typical datasets
we can use for the matting task, most of them include only single-
object foregrounds. To extend the image matting to the application
of multi-foreground-object scenes, we propose our Multi-Object
1K which consists of both single-foreground-object and multi-
foreground-object images. Consequently, this dataset can better
evaluate the semantic situational perception ability of our method,
especially in multi-object scenes.

Multi-Object-1K provides 1000+200 real-world images and high
accuracy alpha mattes, where 70% of the datasets are multi-object
scenes. We believe Multi-Object 1K can serve as a new challenging
benchmark in the image matting area. We also apply the same
rules and ratios as Composition-1K on our Multi-Object-1K for data
composition.

4.2 Comparative study on composition datasets
We conduct comparative study on three composition benchmarks:
Composition-1K [52], Distinction-646 [43], and Human-2K [36]
datasets. We report mean square error (MSE), sum of the absolute
difference (SAD), spatial-gradient (Grad), and connectivity (Conn)
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Figure 3: Visual comparison on public composition datasets. Trimap-based methods: FBA [17] and GCA [32]. Trimap-free
methods: LFM [57], MODNet [17], and ours.

Methods SAD| MSE| Grad| Conn], Methods SAD| MSE| Grad| Connl],

DIM [52] 50.4 0.014 31.0 50.8 DIM [52] 47.6 0.009 43.3 55.9

IndexNet [38] 45.8 0.013 25.9 43.7 HAttMatting [36] 49.0 0.009 41.6 49.9

SampleNet [49] 40.4 0.010 - - TIMI-Net [36] 22.3 0.011 14.4 20.5

CAM [23] 35.8 0.008 17.3 33.2 MODNet 46.2 0.009 39.0 43.5

LFM [57] 49.0 0.020 34.3 50.6 MG-Maskgpp [55] 23.6 0.007 16.1 21.0

HAttMatting [43] 44.0 0.007 29.3 46.4 Ours 20.9 0.006 11.2 19.8

MODNet [17] 43.7 0.012 29.1 42.0

GCA [32] 35.3 0.009 16.9 32.5 Table 2: The quantitative results on Distinction-646 [43].

HDMatt [54] 33.5 0.007 14.5 29.9

SIM [438] 28.0 0.006 10.8 24.8

FBA [17] 25.8 0.005 10.6 20.8

TIMI-Net [36] 29.1 0.006 115 25.4 Methods SAD| MSE|]  Gradl Conn|

MG-Maskspp [55] 30.2 0.007 12.9 26.6 DIM [52] 75 0.008 od o7

MODNet [17] 437 0012 291 420 TIMI-Net [36] 42 0003 21 3.0

Ours 23.2 0.004 8.9 18.6 MODNet 7.8 0.008 7.2 7.4
MG-Maskspp [55] 4.4 0.004 2.5 3.2

Table 1: The quantitative results on Composition-1K.
Maskspp denotes the guidance input for MG matting [55]. Ours 4.0 0.002 2.0 2.8

Table 3: The quantitative results on Human-2K [36].

between predicted and ground truth alpha mattes. Lower values of We compare our method with state-of-the-art (SOTA) trimap-
these metrics indicate better estimated alpha matte. based methods: DIM [52], IndexNet [38], CAM [23], GCA [32],



Single-object

Multi-object

Methods
SAD| MSE] Grad] Conn| SAD] MSE| Grad] Conn|,

TIMI-Net [36] 26.4 0.012 15.7 30.0 28.3 0.013 26.1 424
MODNet 51.5 0.014 36.1 56.9 69.2 0.024 60.8 81.3
MG-Maskspp 32.9 0.017 26.4 47.0 33.5 0.019 32.7 55.6
Basic 40.2 0.023 43.2 64.5 47.2 0.024 45.0 68.1
Basic+PRN g [55] 29.9 0.015 20.4 41.8 324 0.017 31.2 53.5
Basic+AFT 26.9 0.012 16.5 30.4 27.3 0.015 19.8 32.9
SPG-IM w/o AFT 33.7 0.018 30.6 50.9 26.7 0.014 16.0 323
SPG-IM 22.6 0.008 12.5 24.9 22.7 0.008 13.1 27.7

Table 4: The quantitative results on our Multi-object-1K.

FBA [17], and SIM [48]; mask-based method: MG Matting [55];
trimap-free methods: LFM [57], HAttMatting [43], and MODNet [17].
To fairly compare them for fully automatic matting, we utilize our
Situational Perception Distillation (SPD) branch to produce the
semantic distilled foreground mask Maskspp for MG matting. For
trimap-based methods, we generate trimaps from the ground truth
alpha mattes by thresholding and random dilation as discussed
in [52]. For methods without publicly available codes, we follow
their papers to reproduce the results with due diligence.

Table 1 to 4 show the quantitative results of our SPG-IM with
other SOTA models on four datasets. Our SPG-IM outperforms
all competing trimap-free methods (LFM [57], HAttMatting [43],
and MODNet [17]) by a large margin. Meanwhile, our model also
shows remarkable superiority over the state-of-the-art (SOTA)
trimap-based and mask-guided methods in terms of all four metrics
across the public datasets (i.e. Composition-1K, Distinction-646,
and Human-2K), and our Multi-Object-1K benchmark.

To give an intuitive understanding of the significance of the
situational perception guidance, we visualize sampled results from
our SPG-IM and other SOTA models in Figure 3 and 5. It can be
obviously observed that our method preserves fine details (e.g. hair
tip sites, transparent textures, and boundaries) without the guid-
ance of trimap. Moreover, compared to other competing trimap-free
models, our SPG-IM can retain better global semantic complete-
ness. For example in Row 2 of Figure 3, we composite a human
foreground from Distinction-646 into a train station scene with
luggage. Due to not directly touching the person, the saliency of
the luggage is challenging to capture. Fortunately, with the help
of the situational perception guidance, our SPG-IM explores the
semantic association between object-to-object (i.e. the person and
the luggage) and object-to-environment (i.e. the luggage and the
station), and then effectively identifies the saliency of the luggage
and considers it as part of the foreground, where other trimap-free
methods fail.

4.3 Ablation Study

We validate the effectiveness of our key components on the Multi-
Object-1K dataset, where more than 70% samples are multi-object
foregrounds. As summarized in Table 4, we conduct quantitative
comparisons in both single-object foreground and multi-object
foreground scenes respectively. The model settings of the ablation

< <
(a) Basic (b) Basic + AFT
i 9
r. [ TST g AFT ]
—» s - =3
< <
(¢) SPG-IM w/o AFT (d) SPG-IM

Figure 4: The settings of ablation study for our method.

study are illustrated in Figure 4, where Basic denotes the encoder-
to-decoder structure of the situational perception guidance matting
(SPGM) branch without situational perception guidance or Adaptive
Focal Transformation (AFT) refinement module. Basic + AFT refers
to performing adaptive focal transformation directly on multi-scale
features of the Basic network. SPG-IM w/o AFT indicates that the
fused situational perception guided feature F; is skip-connected
respectively to the decoder of SPGM at ith feature level without
adaptive focal transformation.

Adaptive Focal Transformation. We report the quantitative
comparison results of our model with and without the Adaptive
Focal Transformation (AFT) refinement module at dual settings, i.e.
Basic vs. Basic+AFT and SPG-IM w/o AFT vs. SPG-IM. As shown
in Table 4, both the baseline and its situational perception guided
variants show performance gains by applying our AFT module,
proving the necessity of the adaptive transformation of receptive
fields for focal regions in image matting. We also apply the Pro-
gressive Refinement Module (PRMys;) from the MG matting [55]
on our Basic network for comparison. The quantitative results in
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Figure 5: Visual comparisons on our Multi-Object-1K. Trimap-based methods: FBA [17] and SIM [48]. Trimap-free methods:

LFM [57], MODNet [17], and ours

Table 4 illustrate the superiority of our AFT which can better com-
plement the high-level semantic information completeness and the
low-level subtle detail refinement.

Textual Semantic Transformation. We also evaluate our model
under two ablation settings, i.e. Basic vs. SPG-IM w/o AFT and Ba-
sic + AFT vs. SPG-IM. The quantitative comparisons are shown in
Table 4. The proposed TST module improves the performance of
alpha estimation in both single-object and multi-object foreground
scenes, particularly the improvement in the latter is expectedly sig-
nificant. This is because the TST module can effectively transform
and integrate more situational perception information to guide
the matting network for better saliency association between inter-
objects and object-to-environment. Additionally, we demonstrate
the performance gain after combining textual semantic transfor-
mation and adaptive focal transformation. Some representative
visualized comparisons of the original real-world samples from our
Multi-Object-1K are provided in Figure 5, which also illustrate that
our SPG-IM can enhance both global semantic awareness and local
details.

5 CONCLUSION

In this paper, we present a situational perception guided matting
technique (SPG-IM) that can capture situational perception infor-
mation distilled from the visual-to-textual task for better global
saliency, aiming to compensate the subjective nature of the image
matting and mitigate the subjective bias of matting annotations
without the expensive pixel annotation.

For the implementation of situational perception guidance, we
introduce a Textual Semantic Transformation (TST) module to ef-
fectively transform and integrate more situational perception in-
formation that guides the matting network. Further, an Adaptive
Focal Transformation (AFT) Refinement Network is proposed to
adaptively select the size of receptive fields and focal regions to si-
multaneously improve global and local matting performance. Exten-
sive experiments demonstrate that our model outperforms current
state-of-the-art algorithms in both single-object and multi-object
foreground scenes without extra inputs, e.g. trimap, known back-
ground, and interactive strokes/points. For future works, we will
continue to focus on the study of multi-object foreground matting
and conduct research on the real-time versions.



Parameter Value

Optimizer Adam
SPD
Initial learning rate ~ 1.0x1072
Input image size 512 X 512
Batch size of SPD 16
SPGM
Initial learning rate 50x1073
Input image size 512 X 512
Batch Size of SPGM 4
Loss weight 14 1
Loss weight Ay 2
Loss weight A3 3

Table 5: Implementation details and hyper-parameter set-
ting.

A IMPLEMENTATION DETAILS
A.1 Implementation of the SPG-IM

The implementation of the Situational Perception Guided Image
Matting (SPG-IM) framework is based on the public PyTorch [40]
toolbox and trained on a single Tesla V100 GPU with 32GB memory.
The training details and all hyper parameters are outlined in Table 5.
The learning rate of SPD is decreased by a factor of 10 at the epoch
of {20, 40}, {30, 60}, and {60, 80}, and {40, 60, 80} for Composition-1K,
Distinction-646, and Human-2K, and our Multi-Object-1K, respec-
tively. Meanwhile, the learning rate of SPGM decays at a rate of 0.1
in the epoch of {20, 30, 40}, {40, 60, 80}, and {80, 100, 120}, and {60,
80, 100} for Composition-1K, Distinction-646, and Human-2K, and
our Multi-Object-1K, respectively.

A.2 Pretraining of the visual front-end in the
SPD branch.

At the pretraining stage, we train the visual-to-textual network
on the COCO Captions dataset [11] and use the SGD optimizer
with momentum 0.9 and weight decay 10™. Follow [14], we uti-
lize warmup [18] at the beginning iterations followed by cosine
decay [37] to zero. The max learning rates for the visual front-end
and textual decoder are set to 0.2 and 1073 respectively.

A.3 Model size comparison

We compare our model size with other trimap-based (e.g. GCA [32]
and FBA [17]), trimap-free (e.g. LFM [57]), and mask-guided (e.g.
MG [55]) methods. As shown in Figure 6, the total model size of our
method is smaller than GCAgy 0, FBAguto, and MGgyto. The SPD
branch contains 65.7% of the parameters in our SPG-IM. Similarly,
we observe that the automatic generation of higher-level semantic
priors (such as trimap and mask) tends to be more computationally
intensive for both trimap-based and mask-guided methods. For
future work, we will optimize the front-end semantic distillation
module to achieve the lightweight of the entire model.

Method Parameters (M) Size (MB)
LFM [57] 225.9 863.5
GCA [32] 25.3 96.6
GCAauto 80.0 305.3
FBA [17] 34.7 138.8
FBAsuto 89.4 347.5
MGauto [55] 84.4 322.7
SPD 40.2 153.7
SPG-IM 61.2 234.1

Table 6: Model size comparison. GCAgyr0, FBAgu10, and
MG,uro use DeepLabV3+ with Xception backbone for the
segmentation prior (automatic trimap or mask generation).
The implementation of LFM [57] network is based on the
TensorFlow [1] library.

B MORE VISUALIZATION RESULTS

We display more representative visualizations on our Multi-Object-
1K benchmark and real world images. Performance comparisons
in Figure 6, 7, and 8 demonstrate the effectiveness and generaliza-
tion of our situational perception guided image matting (SPG-IM),
especially in the multi-object foreground scenes. Meanwhile, our
SPG-IM can enhance both global semantic awareness and local de-
tails. The proposed Multi-Object-1K can further extend the image
matting from the single-object foreground scenes to the complex
multi-media situations.
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Figure 6: More visual comparisons on our Multi-Object-1K. Trimap-based methods: GCA [32] and SIM [48]. Trimap-free meth-
ods: LFM [57], MODNet [17], and ours.
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Figure 7: More visual comparisons on our Multi-Object-1K. Trimap-based methods: GCA [32] and SIM [48]. Trimap-free meth-
ods: LFM [57], MODNet [17], and ours.
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More visual comparisons between MODNet [17] and our SPG-IM on real world images.
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