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ABSTRACT
Sequential Recommendation (SR) characterizes evolving patterns
of user behaviors by modeling how users transit among items.
However, the short interaction sequences limit the performance
of existing SR. To solve this problem, we focus on Cross-Domain
Sequential Recommendation (CDSR) in this paper, which aims to
leverage information from other domains to improve the sequential
recommendation performance of a single domain. Solving CDSR
is challenging. On the one hand, how to retain single domain pref-
erences as well as integrate cross-domain influence remains an
essential problem. On the other hand, the data sparsity problem
cannot be totally solved by simply utilizing knowledge from other
domains, due to the limited length of the merged sequences. To ad-
dress the challenges, we propose DDGHM, a novel framework for
the CDSR problem, which includes two main modules, i.e., dual dy-
namic graph modeling and hybrid metric training. The former cap-
tures intra-domain and inter-domain sequential transitions through
dynamically constructing two-level graphs, i.e., the local graphs
and the global graphs, and incorporating them with a fuse attentive
gating mechanism. The latter enhances user and item representa-
tions by employing hybrid metric learning, including collaborative
metric for achieving alignment and contrastive metric for preserv-
ing uniformity, to further alleviate data sparsity issue and improve
prediction accuracy. We conduct experiments on two benchmark
datasets and the results demonstrate the effectiveness of DDGHM.
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1 INTRODUCTION
Sequential Recommendation (SR) has attracted increasing attention
due to its significant practical impact. SR aims to find the potential
patterns and dependencies of items in a sequence, and understand
a user’s time-varying interests to make next-item recommendation
[7, 10, 29, 32, 34]. Though some SR models have been proposed,
they face the difficulty in characterizing user preferences when
behavior sequences are short, e.g., data sparsity [13]. Therefore, it
is necessary to utilize more information, e.g., side information or
data from other domains, to mitigate the above problem.

In this paper, we focus on the Cross-Domain Sequential Recom-
mendation (CDSR) problem, which considers the next-item predic-
tion task for a set of common users whose interaction histories are
recorded in multiple domains during the same time period. Similar
as how traditional Cross-Domain Recommendation (CDR) helps
leverage information from a source domain to improve the recom-
mendation performance of a target domain [46], CDSR shows its
superiority by incorporating sequential information from different
domains [18]. Intuitively, a user’s preference could be reflected by
his behaviors in multiple domains. We motivate this through the
example in Figure 1, where a user has some alternating interactions
in a movie domain and a book domain during a period of time.
From it, we can easily observe that the user’s choice for the next
movie ‘Harry Potter’ depends not only on his previous interest for
mystery and fantasy movies (intra-domain), but also on his reading
experience of the original book ‘Harry Potter’ (inter-domain).

Solving the CDSR problem is challenging. On the one hand,
complex sequential item transitions exist simultaneously inside
domains and across domains, which makes it difficult to capture
and transfer useful information. On the other hand, although trans-
ferring auxiliary information from another domain helps explore
sequential patterns, data sparsity problem still exists because a large
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Figure 1: A motivating example.
number of items in both domains never or rarely appear in histor-
ical sequences. Thus, how to effectively represent and aggregate
both intra-domain and inter-domain sequential preferences as well
as further alleviate data sparsity problem remains a crucial issue.

Existing researches on SR, CDR, and CDSR cannot overcome
these challenges well. First, various methods have been proposed
for SR [7, 10, 26, 29, 33, 38], but most of them only focus on the
transition correlations in a single domain without considering the
auxiliary information from other domains. Second, although several
representative CDR approaches [2, 9, 15, 47] address the data spar-
sity and cold-start problem by transferring knowledge within do-
mains, they cannot take full advantage of sequential patterns. Third,
existing CDSR methods [1, 4, 14, 18, 30] reach the breakthrough of
exploring sequential dependencies and modeling structure informa-
tion that bridges two domains. However, these CDSRmodels cannot
extract and incorporate both the intra-domain and the inter-domain
item transitions in a dynamical and synchronous way. Besides, the
long-standing data sparsity problem is still overlooked.

To overcome the above limitations, we propose DDGHM, a dual
dynamic graphical model with hybrid metric training, to solve the
CDSR problem. The purpose of DDGHM is twofold: (1) exploit
and fuse the evolving patterns of users’ historical records from two
aspects, i.e., intra-domain and inter-domain. (2) Enhance represen-
tation learning to address the remaining data sparsity problem so
as to further improve sequential recommendation performance. To
do that, we build two modules inDDGHM, i.e., dual dynamic graph
modeling and hybrid metric training. (i) The dual dynamic graph
modeling module simultaneously constructs separate graphs, i.e.,
local dynamic graphs and global dynamic graphs, to encode the
complex transitions intra-domain and inter-domain respectively.
The structure of directed graph equipped with gated recurrent units
makes it possible to integrate users’ long-term and short-term inter-
est discriminatively into the sequential representation. Meanwhile,
a novel gating mechanism with specialized fuse attention algorithm
is adopted to effectively filter and transfer cross-domain informa-
tion that might be useful for single domain recommendation. Dual
dynamic graph modeling generates both item representations and
complete sequence representations that indicate users’ general pref-
erences, and send them into (ii) the hybrid metric training module.
Hybrid metric training not only completes estimating recommen-
dation scores for each item in both domains, but also alleviates
the impact of data sparsity in CDSR by employing representation
enhancement in two perspectives, i.e., a) collaborative metric for re-
alizing alignment within similar instances and b) contrastive metric
for preserving uniformity of feature distributions.

We summarize our main contributions as follows. (1) We propose
an innovative framework DDGHM that effectively leverages cross-
domain information to promote recommendation performance un-
der CDSR scenario. (2) We design a dual dynamic graph modeling
module which captures both intra-domain and inter-domain transi-
tion patterns and attentively integrate them in an interpretable way.
(3) We develop a hybrid metric training module which weakens the
data spasity impact in CDSR by enhancing representation learning
of user preferences. (4) We conduct experiments on two real-word
datasets and the results demonstrate the effectiveness of DDGHM.

2 RELATEDWORK
Sequential Recommendation. Sequential Recommendation (SR)
is built to characterize the evolving user patterns by modeling se-
quences. Early work on SR usually models the sequential patterns
with the Markov Chain assumption [26]. With the advance in neu-
ral networks, Recurrent Neural Networks (RNN) based [3, 6, 7, 37],
Convolutional Neural Networks (CNN) based [32], Graph Neural
Networks (GNN) based [24, 38, 43, 44] methods, and Transformers
[10, 29] have been adopted to model the dynamic preferences of
users over behavior sequences. Recently, unsupervised learning
based models [23, 39] are introduced to extract more meaning-
ful user patterns by deriving self-supervision signals. While these
methods aim to improve the overall performance via representation
learning for sequences, they suffer from weak prediction power
for cold-start and data sparsity issues when the sequence length is
limited.
Cross-Domain Recommendation. Cross-Domain Recommenda-
tion (CDR) is proposed to handle the long-standing cold-start and
data sparsity problems that commonly exist in traditional single
domain recommender systems [12, 21]. The basic assumption of
CDR is that different behavioral patterns from multiple domains
jointly characterize the way users interact with items [45]. Accord-
ing to [46], existing CDR have three main types, i.e., transfer-based,
multitask-based, and clustered-based methods. Transfer-based meth-
ods [19, 42] learn a linear or nonlinear mapping function across do-
mains. Multitask-based methods [9, 16, 47] enable dual knowledge
transfer by introducing shared connection modules in neural net-
works. Clustered-based methods [35] adopt co-clustering approach
to learn cross-domain comprehensive embeddings by collectively
leveraging single-domain and cross-domain information within a
unified framework. However, conventional CDR approaches can-
not perfectly solve the CDSR problem, because they fail to capture
sequential dependencies that commonly exist in transaction data.
Cross-Domain Sequential Recommendation. Existing researches
on CDSR can be divided into three categories, i.e., RNN-based, GNN-
based, and attentive learning based methods. First, RNN-based
methods, e.g., 𝜋-Net [18] and PSJNet [30], employ RNN to generate
user-specific representations, which emphasize exploring sequen-
tial dependencies but fail to depict transitions among associated
entities. Second, GNN-based method DA-GCN [4] devises a domain-
aware convolution network with attention mechanisms to learn
node representations, which bridges two domains via knowledge
transfer but cannot capture inter-domain transitions on the item
level. Third, attentive learning based methods [1, 14] adopt dual
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attentive sequential learning to bidirectionally transfer user pref-
erences between domain pairs, which show the effectiveness in
leveraging auxiliary knowledge but cannot excavate structured
patterns inside sequential transitions. To summary, the existing
CDSR methods cannot extract and integrate both inter-domain
and intra-domain information dynamically and expressively, and
they all neglect the data sparsity issue which still remains after
aggregating information from multiple domains.

3 THE PROPOSED MODEL
3.1 Problem Formulation
CDSR aims at exploring a set of common users’ sequential pref-
erence with given historical behavior sequences from multiple
domains during the same time period. Without loss of general-
ity, we take two domains (A and B) as example, and formulate
the CDSR problem as follows. We represent two single-domain
behavior sequences of a user as 𝑆𝐴 = {𝐴1, 𝐴2, ..., 𝐴𝑖 , ...} and 𝑆𝐵 =
{𝐵1, 𝐵2, ..., 𝐵 𝑗 , ...}, where 𝐴𝑖 and 𝐵 𝑗 are the consumed items in do-
main 𝐴 and 𝐵 respectively. Then the cross-domain behavior se-
quence 𝑆 is produced by merging 𝑆𝐴 and 𝑆𝐵 in the chronolog-
ical order, for which the above example can be given as 𝑆𝑀 =
{𝐵1, 𝐴1, 𝐵2, ..., 𝐴𝑖 , 𝐵 𝑗 , ...}. Given 𝑆𝐴 , 𝑆𝐵 , and 𝑆𝑀 , CDSR tries to pre-
dict the next item that will be consumed in domain 𝐴 and 𝐵.

3.2 An overview of DDGHM
The aim of DDGHM is providing better sequential recommenda-
tion performance for a single domain by leveraging useful cross-
domain knowledge. The overall structure of our proposedDDGHM is
illustrated in Figure 2. DDGHM consists of two main modules: (1)
dual dynamic graph modeling and (2) hybrid metric training. In the
dual dynamic graphmodeling module, we explore intra-domain and
inter-domain preference features in parallel, and then transfer the
information recurrently at each timestamp. Thus, this module has
two parts, i.e., dual dynamic graphs and fuse attentive gate. In the
dual dynamic graphs part, we build two-level directed graphs : a) lo-
cal dynamic graphs for extracting intra-domain transitions; b) global
dynamic graphs for extracting inter-domain transitions. After it, we
propose a fuse attentive gate which adopts attention mechanism
to integrate item embeddings from global graphs into local graphs.
To this end, cross-domain information is effectively leveraged to
enrich the single domain representations. Later, sequence represen-
tations that combine intra-domain and inter-domain features are
sent into the hybrid metric training module.

Though cross-domain information has been utilized, the data
sparsity problem still exists. Thus, in the hybrid metric training
module, we propose the representation enhancement for optimizing
representation learning so as to reduce data sparsity impact. The
enhancement is twofold : a) adopt collaborative metric learning
to realize alignment between similar instance representations; b)
employ contrastive metric learning to preserve uniformity within
different representation distributions. Finally, the model outputs
the probability of each item to be the next click for both domains.

3.3 Dual Dynamic Graph Modeling
The prime task for solving the CDSR problem is exploiting the
expressive sequential representations to depict user interests from

the cross-domain behavior sequences. To this end, we propose a
dual dynamic graph modeling module that extracts the latent item
embeddings from both local and global dynamic graphs.

3.3.1 Dual dynamic graphs. Wefirst introduce dual dynamic graphs,
i.e., local dynamic graphs and global dynamic graphs.
Local dynamic graphs. In this part, we apply a dynamic GNN
to capture the intra-domain sequential transitions that represent
user preference patterns in each single domain [38, 41]. The graph
modeling has two steps: Step 1: local dynamic graph construction,
and Step 2: local dynamic graph representation.

Step 1: local dynamic graph construction. We first introduce how
to convert the single-domain behavior sequence into a dynamic
graph. Taking domain𝐴 as example, a sequence can be represented
by 𝑆𝐴 = [𝑣1, 𝑣2, ..., 𝑣𝑖 , ...], where 𝑣𝑖 represents a consumed item of
the user within the sequence 𝑆𝐴 . The local dynamic graphs can be
defined as {G1

𝐴,G2
𝐴, ...,G𝑡

𝐴, ...}, where G𝑡
𝐴 = {V𝑡

𝐴, E𝑡
𝐴} is the graph

at snapshot 𝑡 ,V𝑡
𝐴 is the node set that indicates items, and E𝑡

𝐴 is the
edge set that shows the transitions between items. When the user
of the sequence 𝑆𝐴 acts on item 𝑣𝑖 at time 𝑡 , an edge 𝑒 is established
from 𝑣𝑖−1 to 𝑣𝑖 in the graph G𝑡

𝐴 . The local dynamic graph G𝑡
𝐵 in

domain 𝐵 could be constructed similarly.
Step 2: local dynamic graph representation. Thenwe describe how

to achieve message propagations and generate the sequence embed-
dings in local dynamic graphs. A common way to model dynamic
graphs is to have a separate GNN handle each snapshot of the graph
and feed the output of each GNN to a peephole LSTM, like GCRN
[28] and DyGGNN[31]. Since we aim to provide a general dual
graph modeling structure for CDSR, the choice of GNN and LSTM
is not our focus. In this special sequential setting, the challenge is
how to encode the structural information as well as the sequential
context of neighbors in the graph. Thus, we adopt SRGNN [38] here,
a GNN that uses gated recurrent units (GRU) to unroll the recur-
rence of propagation for a fixed number of steps and then obtain the
node embeddings after updating. In this way, the message passing
process decides what information to be preserved and discarded
from both graphical and sequential perspectives. After updating, the
node embeddings can be denoted as H𝑡

𝑎𝑙
= {h𝑡𝑎𝑙,1,h𝑡𝑎𝑙,2, ...,h𝑡𝑎𝑙,𝑖 },

where h𝑡𝑎𝑙,𝑖 ∈ R𝐷 indicates the latent vector of the item 𝑣𝑖 in G𝑡
𝐴 .

Later, we aggregate the item embeddings in the sequence with an
attention mechanism which gives each item a specific weight that
indicating their different influences to the current interest. Finally,
the complete sequence representation is denoted as SE𝑡

𝑎𝑙
. We simply

describe the propagation and representation generation mechanism
of SRGNN in Appendix A and more details can be found in [38].
Similarly, in the local dynamic graph G𝑡

𝐵 of domain 𝐵, we obtain the
node embeddings asH𝑡

𝑏𝑙
= {h𝑡𝑏𝑙,1,h𝑡𝑏𝑙,2, ...,h𝑡𝑏𝑙, 𝑗 } and the sequence

representation as SE𝑡
𝑏𝑙
.

Global dynamic graphs. Besides intra-domain transitions, it is
also necessary to model inter-domain transitions to leverage cross-
domain knowledge. To this end, we apply global dynamic graphs
to capture diverse trends of user preferences in a shared feature
space. We also introduce this part in two steps. For step 1, the
global dynamic graph construction is similar as that of local dy-
namic graphs. The only difference is that we model all the items
of two domains in a shared graph and the training target becomes
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Figure 2: An overview of DDGHM . Local dynamic graph for domain 𝐴 is shown in orange, domain 𝐵 is shown in blue, and
global dynamic graph is shown in gray. Section 3.2 contains a walkthrough of the model.

the merged sequence, such as 𝑆𝑀 = {𝐵1, 𝐴1, 𝐵2, ..., 𝐴𝑖 , 𝐵 𝑗 , ...}. As a
user acts on the items from two domains, we add the directed edges
accordingly, then consequently get a set of graphs modeling merged
sequences as {G1

𝑀 ,G2
𝑀 , ...,G𝑇

𝑀 }. For step 2, the way to generate
the global dynamic graph representation is the same as that of local
dynamic graphs. We denote the node embeddings in G𝑡

𝑀 as H𝑡
𝑔 =

{h𝑡𝑔,1,h𝑡𝑔,2, ...,h𝑡𝑔,𝑘 }. Then item embeddings from domain 𝐴 and do-
main 𝐵 in the global graph G𝑡

𝑀 could be extracted fromH𝑡
𝑔 , defined

as H𝑡
𝑎𝑔 = {h𝑡𝑎𝑔,1,h𝑡𝑎𝑔,2, ...,h𝑡𝑎𝑔,𝑖 } and H𝑡

𝑏𝑔
= {h𝑡𝑏𝑔,1,h𝑡𝑏𝑔,2, ...,h𝑡𝑏𝑔,𝑗 },

respectively. Finally, the sequence embeddings of the global dy-
namic graph from two domains can be obtained as SE𝑡𝑎𝑔 and SE𝑡

𝑏𝑔
.

3.3.2 Fuse attentive gate. We then introduce how to build the trans-
ferring bridge between local graphs and global graphs. The purposes
of transferring lay in two folds : (1) users’ general evolving interest
patterns in local graphs and global graphs should be incorporated
both in item-level and sequence-level. (2) Due to the structured
encoding technique used in graph modeling, the influence of neigh-
bours in the graph should also be considered to avoid the loss of
context information.

To achieve these purposes, we innovatively design a fuse atten-
tive gate (FAG), which is illustrated in Figure 3. The transferring
procedure can be divided into four steps: 1) sequence-aware fusion,
2) self-attentive aggregation, 3) neighbour-attentive aggregation,
and 4) updated state generation. Here we take the merged sequence
{𝐵1, 𝐴1, 𝐵2, 𝐴2, 𝐵3, ...} for example. At timestamp 𝑡 , a direct edge
from 𝐵2 to 𝐵3 is added into the local graph G𝑡

𝐵 , and we can get the
transferring node set, i.e., the nodes that exist both in G𝑡−1

𝐵 and
G𝑡−1
𝑀 , as {𝐵1, 𝐵2}. First, we generate the sequence embeddings on

the global graph and the local graph to achieve the sequence-aware
fusion. Second, we apply self-attentive aggregation between {𝐵1, 𝐵2}
themselves in G𝑡−1

𝑀 and G𝑡−1
𝐵 . Third, we apply neighbour-attentive

aggregation between {𝐵1, 𝐵2} in G𝑡−1
𝐵 and their neighbour node

set in G𝑡−1
𝑀 , such as 𝐵1 with its neighbour {𝐴1} and 𝐵2 with its

neighbours {𝐴1, 𝐴2}. Finally, the results of two aggregations are
integrated by a GRU unit to complete the updated state generation.
Taking the transfer between the global graph𝑀 and the local graph
of domain 𝐵 for example, we show details of each step as follows.
Sequence-aware fusion. Firstly, we take the sequence embedding
SE𝑡−1

𝑏𝑔
and SE𝑡−1

𝑏𝑙
generated from the global graphG𝑡−1

𝑀 and the local
graph G𝑡−1

𝐵 respectively to obtain the sequence-aware attention
weight: W𝑡

𝑎𝑡𝑡 = W𝑡
𝑔𝑒𝑛 [SE𝑡−1𝑏𝑔

, SE𝑡−1
𝑏𝑙

] + b𝑡𝑔𝑒𝑛 .
To efficiently and accurately fuse the structural information,

we consider the feature aggregation in two perspectives, i.e., self-
attentive aggregation and neighbour-attentive aggregation.
Self-attentive aggregation. The self-attentive aggregation is de-
signed to retain the self-consistency information by transferring
self-feature of all nodes in G𝑡−1

𝐵 from the global space to the local
space. We take the local embedding h𝑡−1𝑏𝑙,𝑥 of a node 𝑥 from G𝑡−1

𝐵 and
its global embedding h𝑡−1𝑏𝑔,𝑥 from G𝑡−1

𝑀 , then apply the self-attention:

𝛼𝑠𝑒𝑙 𝑓 −𝑙 = 𝑣⊤𝜎 (W𝑡
𝑎𝑡𝑡h

𝑡−1
𝑏𝑙,𝑥 +W𝑡

𝑠𝑒𝑙 𝑓 h
𝑡−1
𝑏𝑙,𝑥 )

𝛼𝑠𝑒𝑙 𝑓 −𝑔 = 𝑣⊤𝜎 (W𝑡
𝑎𝑡𝑡h

𝑡−1
𝑏𝑔,𝑥 +W𝑡

𝑠𝑒𝑙 𝑓 h
𝑡−1
𝑏𝑙,𝑥 )�h𝑡𝑏𝑙,𝑥 = 𝛼𝑠𝑒𝑙 𝑓 −𝑙 · h𝑡−1𝑏𝑙,𝑥 + 𝛼𝑠𝑒𝑙 𝑓 −𝑔 · h𝑡−1𝑏𝑔,𝑥 ,

(1)

where 𝛼𝑠𝑒𝑙 𝑓 −𝑙 and 𝛼𝑠𝑒𝑙 𝑓 −𝑔 are attention coefficients for local fea-
tures and global features respectively, and �h𝑡𝑏𝑙,𝑥 denotes the aggre-
gated self-aware feature of the node 𝑥 .
Neighbour-attentive aggregation. The neighbour-attentive ag-
gregation aims to transfer context information of neighbours from
the global graph to the local graph. To do this, we generate the first-
order neighbour set 𝑁 (𝑏𝑔, 𝑥) for each node 𝑥 in the transferring
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Figure 3: The structure of the fuse attentive gate. Here, we
take the transfer between the global graph 𝑀 and the local
graph of domain 𝐵 as an example.
node set. After that, we apply the neighbour-attention between the
node 𝑥 and its first-order neighbours in the global graph :

𝛼𝑖𝑛𝑒𝑖𝑔 =
𝑒𝑥𝑝 ((h𝑡−1𝑏𝑔,𝑖 )⊤W𝑡

𝑛𝑒𝑖h
𝑡−1
𝑏𝑙,𝑥 )∑

𝑖∈𝑁 (𝑏𝑔,𝑥) 𝑒𝑥𝑝 ((h𝑡−1𝑏𝑔,𝑖 )⊤W𝑡
𝑛𝑒𝑖h

𝑡−1
𝑏𝑙,𝑥 )

,

�h𝑡𝑏𝑙,𝑥 =
∑︁

𝑖∈𝑁 (𝑏𝑔,𝑥)
𝛼𝑖𝑛𝑒𝑖𝑔 ·W𝑡

𝑎𝑡𝑡h
𝑡−1
𝑏𝑔,𝑖 .

(2)

Here, 𝛼𝑖𝑛𝑒𝑖𝑔 indicates the attention coefficients for different neigh-

bours and �h𝑡𝑏𝑙,𝑥 denotes the aggregated neighbour-aware feature
of the node 𝑥 .
Updated state generation.With �h𝑡𝑏𝑙,𝑥 and �h𝑡𝑏𝑙,𝑥 , we then employ
a GRU-based gating mechanism as the recurrent unit:

𝑧𝑔𝑎𝑡𝑒 = 𝜎 (W𝑔𝑧 [�h𝑡𝑏𝑙,𝑥 ,�h𝑡𝑏𝑙,𝑥 ]),
𝑟𝑔𝑎𝑡𝑒 = 𝜎 (W𝑔𝑟 [�h𝑡𝑏𝑙,𝑥 ,�h𝑡𝑏𝑙,𝑥 ]),
h𝑥𝑔 = tanh(W𝑔ℎ [�h𝑡𝑏𝑙,𝑥 , 𝑟𝑔𝑎𝑡𝑒 ⊙ �h𝑡𝑏𝑙,𝑥 ],

h𝑡𝑏𝑙,𝑥 = (1 − 𝑧𝑔𝑎𝑡𝑒 ) ⊙ �h𝑡𝑏𝑙,𝑥 + 𝑧𝑔𝑎𝑡𝑒 ⊙ h𝑥𝑔,

(3)

whereW𝑔𝑧 ,W𝑔𝑟 ,W𝑔ℎ are weight matrices, and h𝑡𝑏𝑙,𝑥 is the output
of the gate.

With dual dynamic graphs and fuse attentive gates, we complete
extracting item and sequence embeddings of both domains. The
thorough algorithm of this module is show in Appendix B.

3.4 Hybrid Metric Training
With the final sequence representations from domain 𝐴 and 𝐵, the
hybrid metric training module makes the prediction. This module
mainly has two purposes, including (1) exploring user preferences
for different items in two domains, which is the prime purpose
of the model, (2) alleviating the remaining data sparsity problem.
For the first purpose, we apply the basic prediction loss, similar as
existing researches. To achieve the second purpose, we optimize
the representation learning process with two enhancements, i.e.,
collaborative metric for retaining representation alignment and

contrastive metric for preserving uniformity, to further improve the
recommendation performance.
Basic prediction. Motivated by previous studies [4, 18, 30], we
calculate thematching between sequence-level embeddings SE𝑎𝑙,𝑆𝐴 ,
SE𝑏𝑙,𝑆𝐵 and item embedding matrices H𝑎𝑙 , H𝑏𝑙 in corresponding
domains, to compute the recommendation probabilities:

𝑃 (𝐴𝑖+1 |𝑆𝐴, 𝑆𝐵, 𝑆𝑀 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝑎𝑙 · SE⊤𝑎𝑙,𝑆𝐴 + b𝐴),
𝑃 (𝐵 𝑗+1 |𝑆𝐵, 𝑆𝐴, 𝑆𝑀 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝑏𝑙 · SE⊤𝑏𝑙,𝑆𝐵 + b𝐵),

(4)

where b𝐴 and b𝐵 are bias items. Then the negative log-likelihood
loss function is employed as follows:

L𝐴 = − 1
|S|

∑︁
𝑆𝐴∈S

∑︁
𝐴𝑖 ∈𝑆𝐴

log 𝑃 (𝐴𝑖+1 |𝑆𝐴, 𝑆𝐵, 𝑆𝑀 ),

L𝐵 = − 1
|S|

∑︁
𝑆𝐵 ∈S

∑︁
𝐵 𝑗 ∈𝑆𝐵

log 𝑃 (𝐵 𝑗+1 |𝑆𝐵, 𝑆𝐴, 𝑆𝑀 ),
(5)

where S denotes the training sequences in both domains.
Collaborative metric. The collaborative metric aims to achieve
representation alignment, which means that similar instances are
expected to have similar representations. Here, we model the ob-
served behavior sequences as a set of positive user-item pairs T and
learn a user-item joint metric to encode these relationships [8]. The
learned metric tries to pull the pairs in T closer and push the other
pairs further apart. Specifically, we learn the model parameters by
optimizing the large margin nearest neighbor objective [22]:

L𝑐𝑜𝑙 =
∑︁

(𝑖,𝑗 )∈T

∑︁
(𝑖,𝑘 )∉T

W𝑟𝑎𝑛𝑘
𝑖 𝑗 ·𝑚𝑎𝑥 (𝑚 +𝐷 (𝑖, 𝑗)2 −𝐷 (𝑖, 𝑘)2, 0), (6)

where 𝑗 is an item in the historical sequences of user 𝑖 , 𝑘 is an
item that never appears in these sequences. 𝐷 (𝑖, 𝑗) is defined as
the Euclidean distance between the sequence embedding of user
𝑖 and the embedding of item 𝑗 . Specifically, W𝑟𝑎𝑛𝑘

𝑖 𝑗 denotes the
Weighted Approximate-Rank Pairwise (WARP) loss [36], calculated
as 𝑙𝑜𝑔(𝑟𝑎𝑛𝑘𝐷 (𝑖, 𝑗) + 1) where 𝑟𝑎𝑛𝑘𝐷 (𝑖, 𝑗) indicates the rank of item
𝑗 in user 𝑖’s recommendations. Following [8], we empirically set
the safety margin𝑚 to 1.5 in our experiments.
Contrastive metric. The contrastive metric aims to realize repre-
sentation uniformity, which means that the distribution of repre-
sentations is preferred to preserve as much information as possible.
To do this, the contrastive loss minimizes the difference between
the augmented and the original views of the same user historical
sequence, and meanwhile maximizes the difference between the
augmented sequences derived from different users.

Here we apply a random Item Mask as the augmentation op-
erator. We take domain A for example. For each user historical
sequence 𝑆𝐴,𝑢 , we randomly mask a proportion of items and de-
note the masked sequence as 𝑆𝑚𝑎𝑠𝑘

𝐴,𝑢 . For a mini-batch of 𝑁 users
{𝑢1, 𝑢2, ...𝑢𝑁 }, we apply augmentation to each user’s sequence and
obtain 2𝑁 sequences

[
𝑆𝐴,𝑢1 , 𝑆

𝑚𝑎𝑠𝑘
𝐴,𝑢1

, 𝑆𝐴,𝑢2 , 𝑆
𝑚𝑎𝑠𝑘
𝐴,𝑢2

, ..., 𝑆𝐴,𝑢𝑛 , 𝑆
𝑚𝑎𝑠𝑘
𝐴,𝑢𝑛

]
.

For each user 𝑢, we treat (𝑆𝐴,𝑢 , 𝑆𝑚𝑎𝑠𝑘
𝐴,𝑢 ) as the positive pair and

treat other 2(𝑁 − 1) examples as negative samples. We utilize dot
product to measure the similarity between each representation,
𝑠𝑖𝑚(𝑢, 𝑣) = 𝑢⊤𝑣 . Then the contrastive loss function is defined using
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Table 1: Dataset statistics of Amazon.
Movie & Book Food & Kitchen

Movie #Items 58,371 Food #Items 47,520

Book #Items 104,895 Kitchen #Items 53,361

#Overlapped-users 12,746 #Overlapped-users 8,575

#Sequences 158,373 #Sequences 67,793
#Training-sequences 118,779 #Training-sequences 50,845
#Validation-sequences 23,756 #Validation-sequences 10,169

#Test-sequences 15,838 #Test-sequences 6,779

Sequence Avg Length 32.1 Sequence Avg Length 18.7

the widely used softmax cross entropy loss as:

L𝑐𝑜𝑛 =
∑︁
P∈P

− 1
|P |

∑︁
(𝑥,𝑦)∼P

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚 (SE𝑥 , SE𝑦 ))∑

𝑥
′∈{𝑦}∪X−

P
𝑒𝑥𝑝 (𝑠𝑖𝑚 (SE𝑥 , SE𝑥′ ))

, (7)

where P is the set of positive pairs, X−
P is the sampled negative set

for P.
Putting together. Finally, we combine the basic prediction loss
of both domains with collaborative and contrastive metrics via a
multi-task training scheme:

L = L𝐴 + L𝐵 + 𝜆𝑐𝑜𝑙L𝑐𝑜𝑙 + 𝜆𝑐𝑜𝑛L𝑐𝑜𝑛, (8)
where 𝜆𝑐𝑜𝑙 and 𝜆𝑐𝑜𝑛 are hyper-parameters to balance different types
of losses.

4 EXPERIMENTS AND ANALYSIS
In this section, we conduct experiments to answer the following
research questions: RQ1: How does our model perform compared
with the state-of-the-art SR, CDR, and CDSR methods? RQ2: How
does each component of the dual dynamic graph modeling module
contribute to the final performance? RQ3: How does each compo-
nent of the hybrid metric training module contribute to the final
performance? RQ4: How does our model perform with different
sequence lengths, i.e., with different data sparsity degree? RQ5:
How do hyper-parameters affect our model performance?

4.1 Experimental Setup
Datasets. We conduct experiments on the Amazon dataset [20],
which consists of user interactions (e.g. userid, itemid, ratings,
timestamps) from multiple domains. Compared with other rec-
ommendation datasets, the Amazon dataset contains overlapped
user interactions in different domain and is equipped with adequate
sequential information, and thus is commonly used for CDSR re-
search [4, 14, 18]. Specifically, we pick two pairs of complementary
domains "Movie & Book" and "Food & Kitchen" for experiments.
Following the data preprocessing method of [17, 18], we first pick
the users who have interactions in both domains and then filter
the users and items with less than 10 interactions. After that, we
order and split the sequences from each user into several small
sequences, with each sequence containing interactions within a pe-
riod, i.e, three months for "Movie&Book" dataset and two years for
"Food&Kitchen" dataset. We also filter the sequences that contain
less than five items in each domain. The detailed statistics of these
datasets are shown in Table 1.
Evaluation method. Following [4, 18, 30], we use the latest in-
teracted item in each sequence as the ground truth. We randomly

select 75% of the sequences as the training set, 15% as the validation
set, and the remaining 10% as the test set. We choose three evalua-
tion metrics, i.e., Hit Rate (HR), Normalized Discounted Cumulative
Gain (NDCG) and Mean Reciprocal Rank (MRR), where we set the
cut-off of the ranked list as 5, 10, and 20. For all the experiments,
we repeat them five times and report the average results.
Parameter settings. For a fair comparison, we choose Adam [11]
as the optimizer, and tune the parameters of DDGHM and the
baseline models to their best values. Specifically, we study the effect
of the hidden dimension 𝐷 by varying it in {16, 32, 64, 128, 256, 512},
and the effects of hyper-parameters 𝜆𝑐𝑜𝑙 and 𝜆𝑐𝑜𝑛 by varying them
in {0.1, 0.3, 0.5, 0.7, 1, 3, 5, 10}. And we set the batch size 𝑁 = 100.

4.2 Comparison Methods
Traditional recommendations. POP is the simplest baseline that
ranks items according to their popularity judged by the number of
interactions. BPR-MF [25] optimizes the matrix factorization with
implicit feedback using a pairwise ranking loss. Item-KNN [27]
recommends the items that are similar to the previously interacted
items in the sequence, where similarity is defined as the cosine
similarity between the vectors of sequences.
Sequential recommendations. GRU4REC [7] uses GRU to en-
code sequential information and employs ranking-based loss func-
tion. BERT4Rec [29] adopts a bi-directional transformer to extract
the sequential patterns. SRGNN [38] obtains item embeddings
through a gated GNN layer and then uses a self-attention mech-
anism to compute the session level embeddings. CL4SRec [39]
uses item cropping, masking, and reordering as augmentations for
contrastive learning on interaction sequences.
Cross-DomainRecommendations. NCF-MLP++ is a deep learn-
ing based method which uses multilayer perceptron (MLP) [5] to
learn the inner product in the traditional collaborative filtering
process. We adopt the implementation in [18]. Conet [9] enables
dual knowledge transfer across domains by introducing a cross
connection unit from one base network to the other and vice versa.
DDTCDR [15] introduces a deep dual transfer network that trans-
fers knowledge with orthogonal transformation across domains.
DARec [40] transfers knowledge between domains with shared
users, learning shared user representations across different domains
via domain adaptation technique.
Cross-domain sequential recommendations. 𝜋-Net [18] pro-
poses a novel parallel information-sharing network with a shared
account filter and a cross-domain transfer mechanism to simulta-
neously generate sequential recommendations for two domains.
PSJNet [30] is a variant of 𝜋-Net, which learns cross-domain rep-
resentations by extracting role-specific information and combining
useful user behaviors. DA-GCN [4] devises a domain-aware graph
convolution network with attention mechanisms to learn user-
specific node representations under the cross-domain sequential
setting. DAT-MDI [1] uses a potential mapping method based on
a slot attention mechanism to extract the user’s sequential prefer-
ences in both domains. DASL [14] is a dual attentive sequential
learning model, consisting of dual embedding and dual attention
modules to match the extracted embeddings with candidate items.
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Table 2: Experimental results on Amazon datasets.
Movie-domain Book-domain

HR@5 NDCG@5 MRR@5 HR@20 NDCG@20 MRR@20 HR@5 NDCG@5 MRR@5 HR@20 NDCG@20 MRR@20
POP .0107 .0052 .0044 .0165 .0058 .0047 .0097 .0033 .0026 .0146 .0041 .0035

BPR-MF .0479 .0402 .0254 .0584 .0430 .0373 .0374 .0320 .0245 .0546 .0385 .0304
Item-KNN .0745 .0513 .0428 .0758 .0557 .0456 .0579 .0442 .0367 .0663 .0495 .0420
GRU4REC .2232 .1965 .1772 .2456 .2078 .1830 .2012 .1648 .1498 .2145 .1672 .1520
SR-GNN .2362 .2073 .1836 .2592 .2289 .1950 .2189 .1733 .1578 .2254 .1745 .1611
BERT4Rec .2425 .2104 .1989 .2637 .2372 .2146 .2203 .1820 .1655 .2274 .1834 .1704
CL4SRec .2547 .2231 .2035 .2740 .2418 .2197 .2325 .1944 .1701 .2382 .1987 .1798

NCF-MLP++ .1038 .0679 .0557 .1283 .0746 .0675 .0972 .0550 .0484 .1080 .0607 .0535
Conet .1247 .0742 .0628 .1354 .0818 .0732 .1130 .0611 .0545 .1205 .0649 .0569

DDTCDR .1328 .0933 .0840 .1597 .1040 .0996 .1243 .0868 .0688 .1548 .0912 .0735
DARec .1564 .1179 .1053 .1796 .1283 .1164 .1475 .1089 .0849 .1735 .1122 .1004

DAT-MDI .2453 .2121 .2043 .2614 .2340 .2124 .2205 .1838 .1676 .2282 .1865 .1735
𝜋-Net .2665 .2243 .2108 .2803 .2565 .2433 .2385 .2024 .1815 .2433 .2134 .2042
PSJNet .2771 .2294 .2156 .2917 .2611 .2478 .2430 .2093 .1879 .2609 .2311 .2110
DASL .2835 .2314 .2225 .3012 .2682 .2510 .2479 .2133 .1937 .2694 .2382 .2201

DA-GCN .2821 .2342 .2276 .2989 .2719 .2615 .2392 .2156 .2038 .2658 .2430 .2327
DDGHM-L .2674 .2241 .2139 .2905 .2627 .2518 .2435 .2126 .1898 .2526 .2219 .2176
DDGHM-G .2320 .1978 .1744 .2542 .2175 .1901 .2092 .1695 .1510 .2192 .1709 .1589
DDGHM-GA .2895 .2423 .2329 .3068 .2716 .2648 .2486 .2234 .2004 .2673 .2414 .2321
DDGHM .3083 .2517 .2431 .3257 .2892 .2734 .2615 .2379 .2198 .2890 .2592 .2448

Food-domain Kitchen-domain
HR@5 NDCG@5 MRR@5 HR@20 NDCG@20 MRR@20 HR@5 NDCG@5 MRR@5 HR@20 NDCG@20 MRR@20

POP .0085 .0048 .0031 .0123 .0052 .0035 .0087 .0053 .0034 .0152 .0117 .0074
BPR-MF .0298 .0237 .0195 .0386 .0340 .0255 .0349 .0297 .0261 .0422 .0354 .0285
Item-KNN .0572 .0389 .0299 .0685 .0443 .0396 .0590 .0453 .0428 .0702 .0516 .0463
GRU4REC .1845 .1533 .1407 .2076 .1648 .1520 .1974 .1608 .1521 .2149 .1807 .1685
SR-GNN .1987 .1735 .1558 .2196 .1902 .1693 .2254 .1969 .1811 . 2390 .2078 .1874
BERT4Rec .2092 .1824 .1605 .2247 .2013 .1745 .2307 .2035 .1898 .2432 .2109 .1926
CL4SRec .2153 .1918 .1731 .2350 .2145 .1876 .2415 .2163 .1979 .2582 .2234 .2065

NCF-MLP++ .0801 .0565 .0433 .1043 .0672 .0548 .0947 .0680 .0573 .1166 .0889 .0654
Conet .0955 .0730 .0544 .1138 .0876 .0685 .1069 .0854 .0712 .1244 .1015 .0830

DDTCDR .1134 .0975 .0728 .1259 .1026 .0759 .1268 .1024 .0845 .1398 .1156 .0985
DARec .1210 .1025 .0899 .1304 .1118 .0925 .1331 .1146 .0933 .1445 .1280 .1053

DAT-MDI .2123 .1899 .1685 .2375 .2144 .1830 .2348 .2102 .1956 .2514 .2188 .2013
𝜋-Net .2348 .2054 .1834 .2469 .2286 .1945 .2575 .2220 .2135 .2644 .2290 .2206
PSJNet .2430 .2118 .1905 .2552 .2347 .2039 .2635 .2389 .2296 .2718 .2459 .2375
DASL .2572 .2248 .2145 .2689 .2430 .2255 .2743 .2515 .2483 .2869 .2608 .2501

DA-GCN .2524 .2197 .2089 .2664 .2415 .2240 .2785 .2593 .2495 .2926 .2682 .2574
DDGHM-L .2360 .2078 .1897 .2522 .2304 .2001 .2599 .2386 .2285 .2714 .2448 .2383
DDGHM-G .2187 .1851 .1644 .2282 .2199 .1902 .2404 .2167 .2038 .2569 .2235 .2072
DDGHM-GA .2632 .2348 .2159 .2677 .2426 .2250 .2764 .2582 .2397 .2816 .2605 .2444
DDGHM .2745 .2431 .2216 .2789 .2578 .2364 .2840 .2627 .2571 .3043 .2736 .2660

4.3 Model Comparison (for RQ1)
General comparison. We report the comparison results on two
datasetsMovie & Book and Food &Kitchen in Table 2. For space
save, we report the results when the cut-off of the ranked list is 10
in Appendix C. From the results, we can find that: (1)DDGHM out-
performs SR baselines, indicating that our model can effectively
capture and transfer the cross-domain information to promote
the recommendation performance of a single domain. (2) Com-
paring DDGHM with CDR baselines, the improvement in both
domains on two datasets is also evident. It proves the effectiveness
of DDGHM in dynamically modeling the intra-domain and the
inter-domain sequential transitions with a graphical framework. (3)
Compared with CDSR baselines, DDGHM achieves better perfor-
mance in terms of all metrics, which demonstrates thatDDGHM is
able to extract user preferences more accurately by leveraging com-
plementary information from both domains.

4.4 In-depth Analysis (for RQ2-RQ5)
Study of the dual dynamic graph modeling (RQ2). To study
how each component of the dual dynamic graph modeling module
contributes to the final performance, we compareDDGHMwith its

Table 3: Model performances of different sequence lengths.

Movie-domain Book-domain
L=10.7 L=21.5 L=32.1 L=10.7 L=21.5 L=32.1

CL4SRec .1192 .1848 .2740 .1063 .1679 .2382
DARec .0925 .1139 .1796 .0832 .1313 .1735
DASL .1352 .2528 .3012 .1372 .2128 .2694

DA-GCN .1467 .2496 .2989 .1391 .2119 .2658
DDGHM .1635 .2766 .3257 .1548 .2342 .2890

Imp. 11.5% 9.41% 8.13% 11.3% 10.1% 7.28%

several variants, includingDDGHM-L,DDGHM-G, andDDGHM-
GA. (a) DDGHM-L applies only the local graphs in dual dynamic
graph modeling to extract item and sequence embeddings. (b)
DDGHM-G applies only the global graph. (c)DDGHM-GA retains
the dual dynamic graph structure, but replaces FAG with a simple
GRU as cross-domain transfer unit (CTU) [18]. The comparison re-
sults are also shown in Table 2. From it, we can observe that: (1) Both
DDGHM-L and DDGHM-G perform worse than DDGHM, show-
ing that integrating intra-domain transitions with inter-domain
transitions can boost the performance. (2) DDGHM-L outperforms
DDGHM-G on two datasets, indicating that intra-domain collabo-
rative influences still take the dominant place when extracting user
preferences. And this is because that simply encoding inter-domain
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Table 4: Ablation results on two Amazon datasets.

Movie-domain Book-domain
HR@20 NDCG@20 HR@20 NDCG@20

DDGHM-col .3159 .2812 .2786 .2521
DDGHM-con .3205 .2848 .2835 .2554
DDGHM-cc .3045 .2786 .2704 .2489
DDGHM .3257 .2892 .2890 .2592

Food-domain Kitchen-domain
HR@20 NDCG@20 HR@20 NDCG@20

DDGHM-col .2740 .2518 .2959 .2698
DDGHM-con .2764 .2540 .2998 .2704
DDGHM-cc .2712 .2473 .2958 .2695
DDGHM .2789 .2578 .3043 .2736

(a) Movie & Book (b) Food & Kitchen

Figure 4: Effect of 𝜆𝑐𝑜𝑙 on DDGHM.

(a) Movie & Book (b) Food & Kitchen

Figure 5: Effect of 𝜆𝑐𝑜𝑛 on DDGHM.
transitions in a shared latent space ignores the domain feature dis-
tribution bias. (3) DDGHM shows superiority over DDGHM-GA,
which proves that the FAG completes transferring more effectively
than other CTUs in existing research and is especially applicable
in the dual dynamic graphical model.
Study of the hybrid metric training (RQ3). In order to verify
the effectiveness of each component of the hybrid metric train-
ing module, we further conduct more ablation studies, where (a)
DDGHM-col only employs collaborative metric, (b) DDGHM-con
only applies contrastive metric, and (c) DDGHM-cc trains the rec-
ommendation model without either metric. The results are shown
in Table 4, from which we can conclude that: (1) Both DDGHM-
con and DDGHM-col perform worse than DDGHM . The reasons
are two-folds. On the one hand, employing collaborative metric
loss augments the similarity of similar instance embeddings thus
achieving representation alignment. On the other hand, adopting
contrastive metric loss preserves the discrepancy of different fea-
ture distributions thus retaining representation uniformity. Both
of them play an important role in enhancing the representations.
(2) DDGHM significantly outperforms DDGHM-cc, which indi-
cates that the combination of two metrics effectively optimizes the
training module and further promotes model performance.
Influence of sequence length (RQ4).We report the comparison
results of HR@20 under different sequence average length settings
in Table 3. Here, for space save, we only report the results of several
baselines which perform best in each category, i.e., SR, CDR, and

(a) Movie & Book (b) Food & Kitchen

Figure 6: Effect of embedding dimension 𝐷 on DDGHM.
CDSR. And 𝐿 means the average length of sequences. From it, we
can observe that in both domains, the shorter the average length of
sequences is, the grater improvement our model brings. Therefore,
DDGHM is able to effectively alleviate the data sparsity problem
and performs well even when sequences are short.
Parameter analysis (RQ5). We now study the effects of hyper-
parameters on model performance, including 𝜆𝑐𝑜𝑙 , 𝜆𝑐𝑜𝑛 , and 𝐷 . We
first study the effects of 𝜆𝑐𝑜𝑙 and 𝜆𝑐𝑜𝑛 on the model, varying them
in {0.1, 0.3, 0.5, 0.7, 1, 3, 5, 10}, and then report the results in Fig. 4
and Fig. 5. The bell-shaped curves show that the accuracy will first
gradually increase with 𝜆𝑐𝑜𝑙 or 𝜆𝑐𝑜𝑛 and then slightly decrease. We
can conclude that when 𝜆𝑐𝑜𝑙 and 𝜆𝑐𝑜𝑛 approach 0, the collaborative
loss and contrastive loss cannot produce positive effects. But when
𝜆𝑐𝑜𝑙 and 𝜆𝑐𝑜𝑛 become too large, the metric loss will suppress the
negative log-likelihood loss, which also reduces the recommenda-
tion accuracy. Empirically, we choose 𝜆𝑐𝑜𝑙 = 1.0 and 𝜆𝑐𝑜𝑛 = 0.7 on
the datasetMovie & Book while 𝜆𝑐𝑜𝑙 = 1.0 and 𝜆𝑐𝑜𝑛 = 0.5 on the
dataset Food & Kitchen. Finally we perform experiments by vary-
ing dimension 𝐷 in range {16, 32, 64, 128, 256, 512}. The results on
two datasets are shown in Fig. 6. From them, we can see that the per-
formance gradually improves when 𝐷 increases and finally keeps
a fairly stable level after 𝐷 reaches 256. It indicates that a larger
embedding dimension can provide more accurate embeddings for
items thus enriching the representations of user preferences. Since
a too large embedding dimension will cause huge computational
and time cost, we choose 𝐷 = 256 here for both datasets.

5 CONCLUSION
In this paper, we proposeDDGHM , which includes a dual dynamic
graph modeling module and a hybrid metric training module, for
solving the Cross-Domain Sequential Recommendation (CDSR)
problem. In the dual dynamic graph modeling module, we firstly
construct dual dynamic graphs, i.e., global graphs and local graphs,
to explore intra-domain and inter-domain transitions, and then
adopt a fuse attentive gating mechanism to adaptively integrate
them. In the hybrid metric training module, we apply the repre-
sentation enhancement from two aspects, i.e., collaborative metric
for alignment and contrastive metric for uniformity, so that the
remaining data sparsity impact in CDSR is alleviated. Extensive
experiments conducted on two real-world datasets illustrate the
effectiveness of DDGHM and the contribution of each component.
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A PROPAGATION MECHANISM OF SRGNN
In the local dynamic graphs and the global dynamic graph, we
adopt SRGNN [38] to achieve message propagation. Here, we take
the local dynamic graph of the domain𝐴 for example, a sequence in
it can be represented by 𝑆𝐴 = [𝑣1, 𝑣2, ..., 𝑣𝑖 , ...], where 𝑣𝑖 represents
a consumed item of the user within the sequence 𝑆𝐴 . We embed
every item 𝑣 in domain 𝐴 into a unified embedding space and use
a node vector h𝑎𝑙 ∈ R𝐷 to denote the latent vector of the item 𝑣
learned via local dynamic graphs in domain𝐴, with 𝐷 denoting the
dimensionality. For the node 𝑣𝑖 of the graph G𝑡

𝐴 , the recurrence of
the propagation functions is given as follows:

𝑎𝑘𝑖 = A𝑡
𝑖: [h𝑘−1𝑎𝑙,1 , ...,h

𝑘−1
𝑎𝑙,𝑛]⊤Wℎ + bℎ, (9)

𝑧𝑘𝑖 = 𝜎 (W𝑧𝑎
𝑘
𝑖 + U𝑧h𝑘−1𝑎𝑙,𝑖 ), (10)

𝑟𝑘𝑖 = 𝜎 (W𝑟𝑎
𝑘
𝑖 + U𝑟h𝑘−1𝑎𝑙,𝑖 ), (11)

h̃𝑘𝑖 = tanh(W𝑜𝑎
𝑘
𝑖 + U𝑜 (𝑟𝑘𝑖 ⊙ h𝑘−1𝑎𝑙,𝑖 )), (12)

h𝑘𝑎𝑙,𝑖 = (1 − 𝑧𝑘𝑖 ) ⊙ h𝑘−1𝑎𝑙,𝑖 + 𝑧𝑘𝑖 ⊙ h̃𝑘𝑖 , (13)

where [h𝑘−1𝑎𝑙,1 , ...,h
𝑘−1
𝑎𝑙,𝑛] is the node embedding list in the current

sequence and 𝑘 denotes the propagation step. The matrix A𝑡 ∈
R𝑛×2𝑛 is the concatenation of two adjacencymatricesA𝑡

𝑖𝑛 andA𝑡
𝑜𝑢𝑡 ,

which represents weighted connections of outgoing and incoming
edges in the G𝑡

𝐴 at snapshot 𝑡 , respectively. And A𝑡
𝑖: are the two

columns inA𝑡 corresponding to node 𝑣𝑖 . which describes how nodes
in the graph communicate with each other. For example, consider a
sequence 𝑆𝐴 = [𝑣1, 𝑣2, 𝑣3, 𝑣1, 𝑣4, ...], the dynamic graphs G𝑡

𝐴 and the
corresponding matrix A𝑡 are illustrated in Figure. 7. We select the
snapshot 𝑡 = 4 and 𝑡 = 5 as examples, and every column in A𝑡 is
composed of the normalized outgoing and incoming edge weights.

Eq. (9) shows the step that passes information between different
nodes of the graph via edges in both directions. After that, a GRU-
like update, including update gate z𝑖 in Eq. (10) and reset gate r𝑖 in
Eq. (11), is adopted to determine what information to be preserved
and discarded respectively. 𝜎 (·) is the sigmoid function and ⊙ is
the element-wise multiplication operator. Then the candidate state
is generated by the previous state and the current state under the
control of the reset gate in Eq. (12). We combine the previous hidden
state with the candidate state using updating mechanism and get
the final state in Eq. (13).

After 𝐾 steps of updating, we can obtain the embeddings of
all nodes in G𝑡

𝐴 as H𝑡
𝑎𝑙

= {h𝑡𝑎𝑙,1,h𝑡𝑎𝑙,2, ...,h𝑡𝑎𝑙,𝑖 }. Then we adopt
a strategy which attentively combines long-term and short-term
preferences into the final sequential representation. As for long-
term preference, we apply the soft-attention mechanism to measure
the varying importance of previous items and then aggregate them
as a whole:

𝛼𝑡𝑎𝑙,𝑘 = 𝑝⊤𝑎𝑙,𝑡𝜎 (W𝑡
𝑎1h

𝑡
𝑎𝑙,𝑖 +W𝑡

𝑎2h
𝑡
𝑎𝑙,𝑘 + c𝑡 ),

SE𝑡𝑎𝑐 =
𝑖∑︁

𝑘=1
𝛼𝑡𝑎,𝑘h

𝑡
𝑎𝑙,𝑘 ,

(14)

where parameters 𝑝⊤𝑎,𝑡 ∈ R𝐷 and W𝑡
𝑎1,W

𝑡
𝑎2 ∈ R𝐷×𝐷 control the

weights of item embedding vectors. As for short-term preference,
we concatenate the last item embedding which represents the cur-
rent interest of the user with the above sequence embedding after

Algorithm 1: Dual Dynamic Graph Modeling
Input: user’s cross-domain behavior sequence

𝑆𝑀 ;single-domain behavior sequences: 𝑆𝐴 ,𝑆𝐵 .
Output: Item embeddings in local domain graphs : H𝑎𝑙 ,

H𝑏𝑙 ; Sequence embeddings : SE𝑎𝑙,𝑆𝐴 , SE𝑏𝑙,𝑆𝐵
1 Initialize node embeddings in local graphs as H0

𝑎𝑙
and H0

𝑏𝑙
.

2 Global node embeddings H0
𝑔 = H0

𝑎𝑙
⊕ H0

𝑏𝑙
3 for 𝑡 = 1 to 𝑇 do
4 Get the current item 𝑣𝑖 , 𝑣𝑖 ’s domain as 𝑋 ; previous item

in 𝑆𝑀 as 𝑣𝑀𝑖−1, in 𝑆𝑋 as 𝑣𝑋𝑖−1; previous item set as 𝑉𝑝𝑟𝑒 .
5 From local graph G𝑡−1

𝑋 :
6 𝐸𝑚𝑏 (𝑉𝑝𝑟𝑒 ) = h𝑡−1𝑥𝑙,𝑝𝑟𝑒 .
7 Get local sequence embedding SE𝑡−1

𝑥𝑙
with Eq. (6-7).

8 From global graph G𝑡−1
𝑀 :

9 Select 𝑉𝑝𝑟𝑒 ’s neighbor set as 𝑁𝑥𝑔 .
10 𝐸𝑚𝑏 (𝑉𝑝𝑟𝑒 ) = h𝑡−1𝑥𝑔,𝑝𝑟𝑒 , 𝐸𝑚𝑏 (𝑁𝑥𝑔) = h𝑡−1𝑥𝑔,𝑛𝑒𝑖𝑔 .
11 Get global sequence embedding SE𝑡−1𝑥𝑔 with Eq. (6-7).
12 Do Fuse Attentive Gating:
13 h𝑡−1𝑥𝑙,𝑝𝑟𝑒 = GATE (h𝑡−1𝑥𝑙,𝑝𝑟𝑒 ,h

𝑡−1
𝑥𝑔,𝑝𝑟𝑒 ,h𝑡−1𝑥𝑔,𝑛𝑒𝑖𝑔 , SE𝑡−1𝑥𝑔 , SE𝑡−1

𝑥𝑙
)

14 On local graph G𝑡
𝑋 do:

15 Update 𝑉𝑝𝑟𝑒 ’s embeddings to new state h𝑡−1𝑥𝑙,𝑝𝑟𝑒

16 Add a directed edge from 𝑣𝑋𝑖−1 to 𝑣𝑖 .
17 Update nodes on graph G𝑡

𝑋 with Eq. (1-5).
18 On global graph G𝑡

𝑀 do:
19 Add a directed edge from 𝑣𝑀𝑖−1 to 𝑣𝑖 .
20 Update nodes on graph G𝑡

𝑀 with Eq. (1-5).
21 end for
22 Get sequence embeddings SE𝑎𝑙,𝑆𝐴 , SE𝑏𝑙,𝑆𝐵 with Eq. (6-7).
23 return H𝑎𝑙 , H𝑏𝑙 ; SE𝑎𝑙,𝑆𝐴 , SE𝑏𝑙,𝑆𝐵

Figure 7: (a) and (b) are dynamic graphs and corresponding
connection matrices.

aggregation and then take a linear transformation over them to
generate the final sequence embedding:

SE𝑡𝑎𝑙 = W𝑡
𝑎3 [SE𝑡𝑎𝑐 ;h𝑡𝑎𝑙,𝑖 ] . (15)

B DUAL DYNAMIC GRAPH MODELING
We represent the thorough algorithm of the dual dynamic graph
modeling module in Algorithm 1. The input of this module includes
single-domain and cross-domain behavior sequences, and the out-
put consists of item embeddings and sequence embeddings. The
whole procedure of dual dynamic graph modeling can be divided
into two parts, i.e., 1) dual dynamic graphs and 2) fuse attentive
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Table 5: Experimental results on Amazon datasets when the cut-off of the ranked list is 10.

Movie-domain Book-domain Food-domain Kitchen-domain

HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR

POP .0125 .0056 .0045 .0115 .0038 .0031 .0097 .0049 .0033 .0128 .0089 .0050
BPR-MF .0513 .0418 .0316 .0457 .0359 .0266 .0345 .0278 .0214 .0382 .0319 .0435
Item-KNN .0752 .0527 .0433 .0604 .0468 .0395 .0614 .0412 .0341 .0628 .0497 .0443

GRU4REC .2320 .2014 .1785 .2068 .1651 .1510 .1910 .1587 .1482 .2034 .1745 .1591
SR-GNN .2468 .2159 .1923 .2226 .1738 .1599 .2048 .1834 .1569 .2298 .2014 .1856
BERT4Rec .2510 .2248 .2034 .2245 .1825 .1673 .2115 .1932 .1683 .2385 .2084 .1910
CL4SRec .2656 .2350 .2147 .2352 .1964 .1740 .2235 .2041 .1775 .2487 .2193 .2044

NCF-MLP++ .1142 .0718 .0614 .1015 .0578 . 0501 .0946 .0622 .0498 .1057 .0754 .0602
Conet .1287 .0788 .0725 .1182 .0624 .0550 .1043 .0795 .0592 .1138 .0940 .0775

DDTCDR .1433 .0984 .0936 .1327 .0893 .0712 .1182 .0980 .0736 .1299 .1087 .0923
DARec .1635 .1223 .1099 .1608 .1097 .0922 .1278 .1074 .0906 .1396 .1221 .0981

DAT-MDI .2526 .2235 .2097 .2247 .1848 .1698 .2237 .2054 .1728 .2458 .2163 .1989
𝜋-Net .2744 .2359 .2218 .2402 .2075 .1903 .2405 .2128 .1886 .2616 .2247 .2177
PSJNet .2862 .2429 .2347 .2516 .2161 .2035 .2512 .2233 .1964 .2682 .2412 .2326
DASL .2940 .2587 .2412 .2586 .2248 .2159 .2620 .2318 .2174 .2812 .2540 .2493

DA-GCN .2925 .2624 .2477 .2543 .2294 .2198 .2589 .2294 .2138 .2856 .2617 .2533

DDGHM-L .2786 .2425 .2297 .2468 .2183 .2099 .2415 .2187 .1934 .2655 .2410 .2330
DDGHM-G .2495 .2133 .1862 .2144 .1701 .1547 .2275 .2089 .1749 .2488 .2208 .2062
DDGHM-GA .2957 .2688 .2534 .2590 .2316 .2239 .2658 .2378 .2204 .2781 .2599 .2423
DDGHM .3148 .2745 .2630 .2754 .2418 .2343 .2762 .2515 .2284 .2931 .2689 .2642

gate. We describe how to construct dual dynamic graphs in line
14-20, and introduce how to transfer cross-domain information by
fuse attentive gating mechanism in line 5-13.

C EXPERIMENTAL RESULTS
Here, we additionally report the experimental results on two Ama-
zon datasets when the cut-off of the ranked list is 10. The results

show that: (1) DDGHM outperforms all the baselines of SR, CDR,
and CDSR. (2) DDGHM also shows the superiority over its vari-
ants, i.e., DDGHM-L, DDGHM-G, and DDGHM-GA, indicating
the effectiveness of each component in the dual dynamic graph
modeling module.
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A PROPAGATION MECHANISM OF SRGNN
In the local dynamic graphs and the global dynamic graph, we
adopt SRGNN [? ] to achieve message propagation. Here, we take
the local dynamic graph of the domain𝐴 for example, a sequence in
it can be represented by 𝑆𝐴 = [𝑣1, 𝑣2, ..., 𝑣𝑖 , ...], where 𝑣𝑖 represents
a consumed item of the user within the sequence 𝑆𝐴 . We embed
every item 𝑣 in domain 𝐴 into a unified embedding space and use
a node vector h𝑎𝑙 ∈ R𝐷 to denote the latent vector of the item 𝑣
learned via local dynamic graphs in domain𝐴, with 𝐷 denoting the
dimensionality. For the node 𝑣𝑖 of the graph G𝑡

𝐴 , the recurrence of
the propagation functions is given as follows:

𝑎𝑘𝑖 = A𝑡
𝑖: [h𝑘−1𝑎𝑙,1 , ...,h

𝑘−1
𝑎𝑙,𝑛]⊤Wℎ + bℎ, (1)

𝑧𝑘𝑖 = 𝜎 (W𝑧𝑎
𝑘
𝑖 + U𝑧h𝑘−1𝑎𝑙,𝑖 ), (2)

𝑟𝑘𝑖 = 𝜎 (W𝑟𝑎
𝑘
𝑖 + U𝑟h𝑘−1𝑎𝑙,𝑖 ), (3)

h̃𝑘𝑖 = tanh(W𝑜𝑎
𝑘
𝑖 + U𝑜 (𝑟𝑘𝑖 ⊙ h𝑘−1𝑎𝑙,𝑖 )), (4)

h𝑘𝑎𝑙,𝑖 = (1 − 𝑧𝑘𝑖 ) ⊙ h𝑘−1𝑎𝑙,𝑖 + 𝑧𝑘𝑖 ⊙ h̃𝑘𝑖 , (5)

where [h𝑘−1𝑎𝑙,1 , ...,h
𝑘−1
𝑎𝑙,𝑛] is the node embedding list in the current

sequence and 𝑘 denotes the propagation step. The matrix A𝑡 ∈
R𝑛×2𝑛 is the concatenation of two adjacencymatricesA𝑡

𝑖𝑛 andA𝑡
𝑜𝑢𝑡 ,

which represents weighted connections of outgoing and incoming
edges in the G𝑡

𝐴 at snapshot 𝑡 , respectively. And A𝑡
𝑖: are the two

columns inA𝑡 corresponding to node 𝑣𝑖 . which describes how nodes
in the graph communicate with each other. For example, consider a
sequence 𝑆𝐴 = [𝑣1, 𝑣2, 𝑣3, 𝑣1, 𝑣4, ...], the dynamic graphs G𝑡

𝐴 and the
corresponding matrix A𝑡 are illustrated in Figure. 1. We select the
snapshot 𝑡 = 4 and 𝑡 = 5 as examples, and every column in A𝑡 is
composed of the normalized outgoing and incoming edge weights.

Eq. (1) shows the step that passes information between different
nodes of the graph via edges in both directions. After that, a GRU-
like update, including update gate z𝑖 in Eq. (2) and reset gate r𝑖 in
Eq. (3), is adopted to determine what information to be preserved
and discarded respectively. 𝜎 (·) is the sigmoid function and ⊙ is
the element-wise multiplication operator. Then the candidate state
is generated by the previous state and the current state under the
control of the reset gate in Eq. (4). We combine the previous hidden
state with the candidate state using updating mechanism and get
the final state in Eq. (5).
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Figure 1: (a) and (b) are dynamic graphs and corresponding
connection matrices.

Algorithm 1: Dual Dynamic Graph Modeling
Input: user’s cross-domain behavior sequence

𝑆𝑀 ;single-domain behavior sequences: 𝑆𝐴 ,𝑆𝐵 .
Output: Item embeddings in local domain graphs : H𝑎𝑙 ,

H𝑏𝑙 ; Sequence embeddings : SE𝑎𝑙,𝑆𝐴 , SE𝑏𝑙,𝑆𝐵
1 Initialize node embeddings in local graphs as H0

𝑎𝑙
and H0

𝑏𝑙
.

2 Global node embeddings H0
𝑔 = H0

𝑎𝑙
⊕ H0

𝑏𝑙
3 for 𝑡 = 1 to 𝑇 do
4 Get the current item 𝑣𝑖 , 𝑣𝑖 ’s domain as 𝑋 ; previous item

in 𝑆𝑀 as 𝑣𝑀𝑖−1, in 𝑆𝑋 as 𝑣𝑋𝑖−1; previous item set as 𝑉𝑝𝑟𝑒 .
5 From local graph G𝑡−1

𝑋 :
6 𝐸𝑚𝑏 (𝑉𝑝𝑟𝑒 ) = h𝑡−1𝑥𝑙,𝑝𝑟𝑒 .
7 Get local sequence embedding SE𝑡−1

𝑥𝑙
with Eq. (6-7).

8 From global graph G𝑡−1
𝑀 :

9 Select 𝑉𝑝𝑟𝑒 ’s neighbor set as 𝑁𝑥𝑔 .
10 𝐸𝑚𝑏 (𝑉𝑝𝑟𝑒 ) = h𝑡−1𝑥𝑔,𝑝𝑟𝑒 , 𝐸𝑚𝑏 (𝑁𝑥𝑔) = h𝑡−1𝑥𝑔,𝑛𝑒𝑖𝑔 .
11 Get global sequence embedding SE𝑡−1𝑥𝑔 with Eq. (6-7).
12 Do Fuse Attentive Gating:
13 h𝑡−1𝑥𝑙,𝑝𝑟𝑒 = GATE (h𝑡−1𝑥𝑙,𝑝𝑟𝑒 ,h

𝑡−1
𝑥𝑔,𝑝𝑟𝑒 ,h𝑡−1𝑥𝑔,𝑛𝑒𝑖𝑔 , SE𝑡−1𝑥𝑔 , SE𝑡−1

𝑥𝑙
)

14 On local graph G𝑡
𝑋 do:

15 Update 𝑉𝑝𝑟𝑒 ’s embeddings to new state h𝑡−1𝑥𝑙,𝑝𝑟𝑒

16 Add a directed edge from 𝑣𝑋𝑖−1 to 𝑣𝑖 .
17 Update nodes on graph G𝑡

𝑋 with Eq. (1-5).
18 On global graph G𝑡

𝑀 do:
19 Add a directed edge from 𝑣𝑀𝑖−1 to 𝑣𝑖 .
20 Update nodes on graph G𝑡

𝑀 with Eq. (1-5).
21 end for
22 Get sequence embeddings SE𝑎𝑙,𝑆𝐴 , SE𝑏𝑙,𝑆𝐵 with Eq. (6-7).
23 return H𝑎𝑙 , H𝑏𝑙 ; SE𝑎𝑙,𝑆𝐴 , SE𝑏𝑙,𝑆𝐵

After 𝐾 steps of updating, we can obtain the embeddings of
all nodes in G𝑡

𝐴 as H𝑡
𝑎𝑙

= {h𝑡𝑎𝑙,1,h𝑡𝑎𝑙,2, ...,h𝑡𝑎𝑙,𝑖 }. Then we adopt
a strategy which attentively combines long-term and short-term
preferences into the final sequential representation. As for long-
term preference, we apply the soft-attention mechanism to measure
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Table 1: Experimental results on Amazon datasets when the cut-off of the ranked list is 10.

Movie-domain Book-domain Food-domain Kitchen-domain

HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR

POP .0125 .0056 .0045 .0115 .0038 .0031 .0097 .0049 .0033 .0128 .0089 .0050
BPR-MF .0513 .0418 .0316 .0457 .0359 .0266 .0345 .0278 .0214 .0382 .0319 .0435
Item-KNN .0752 .0527 .0433 .0604 .0468 .0395 .0614 .0412 .0341 .0628 .0497 .0443

GRU4REC .2320 .2014 .1785 .2068 .1651 .1510 .1910 .1587 .1482 .2034 .1745 .1591
SR-GNN .2468 .2159 .1923 .2226 .1738 .1599 .2048 .1834 .1569 .2298 .2014 .1856
BERT4Rec .2510 .2248 .2034 .2245 .1825 .1673 .2115 .1932 .1683 .2385 .2084 .1910
CL4SRec .2656 .2350 .2147 .2352 .1964 .1740 .2235 .2041 .1775 .2487 .2193 .2044

NCF-MLP++ .1142 .0718 .0614 .1015 .0578 . 0501 .0946 .0622 .0498 .1057 .0754 .0602
Conet .1287 .0788 .0725 .1182 .0624 .0550 .1043 .0795 .0592 .1138 .0940 .0775

DDTCDR .1433 .0984 .0936 .1327 .0893 .0712 .1182 .0980 .0736 .1299 .1087 .0923
DARec .1635 .1223 .1099 .1608 .1097 .0922 .1278 .1074 .0906 .1396 .1221 .0981

DAT-MDI .2526 .2235 .2097 .2247 .1848 .1698 .2237 .2054 .1728 .2458 .2163 .1989
𝜋-Net .2744 .2359 .2218 .2402 .2075 .1903 .2405 .2128 .1886 .2616 .2247 .2177
PSJNet .2862 .2429 .2347 .2516 .2161 .2035 .2512 .2233 .1964 .2682 .2412 .2326
DASL .2940 .2587 .2412 .2586 .2248 .2159 .2620 .2318 .2174 .2812 .2540 .2493

DA-GCN .2925 .2624 .2477 .2543 .2294 .2198 .2589 .2294 .2138 .2856 .2617 .2533

DDGHM-L .2786 .2425 .2297 .2468 .2183 .2099 .2415 .2187 .1934 .2655 .2410 .2330
DDGHM-G .2495 .2133 .1862 .2144 .1701 .1547 .2275 .2089 .1749 .2488 .2208 .2062
DDGHM-GA .2957 .2688 .2534 .2590 .2316 .2239 .2658 .2378 .2204 .2781 .2599 .2423
DDGHM .3148 .2745 .2630 .2754 .2418 .2343 .2762 .2515 .2284 .2931 .2689 .2642

the varying importance of previous items and then aggregate them
as a whole:

𝛼𝑡𝑎𝑙,𝑘 = 𝑝⊤𝑎𝑙,𝑡𝜎 (W𝑡
𝑎1h

𝑡
𝑎𝑙,𝑖 +W𝑡

𝑎2h
𝑡
𝑎𝑙,𝑘 + c𝑡 ),

SE𝑡𝑎𝑐 =
𝑖∑︁

𝑘=1
𝛼𝑡𝑎,𝑘h

𝑡
𝑎𝑙,𝑘 ,

(6)

where parameters 𝑝⊤𝑎,𝑡 ∈ R𝐷 and W𝑡
𝑎1,W

𝑡
𝑎2 ∈ R𝐷×𝐷 control the

weights of item embedding vectors. As for short-term preference,
we concatenate the last item embedding which represents the cur-
rent interest of the user with the above sequence embedding after
aggregation and then take a linear transformation over them to
generate the final sequence embedding:

SE𝑡𝑎𝑙 = W𝑡
𝑎3 [SE𝑡𝑎𝑐 ;h𝑡𝑎𝑙,𝑖 ] . (7)

B DUAL DYNAMIC GRAPH MODELING
We represent the thorough algorithm of the dual dynamic graph
modeling module in Algorithm 1. The input of this module includes
single-domain and cross-domain behavior sequences, and the out-
put consists of item embeddings and sequence embeddings. The
whole procedure of dual dynamic graph modeling can be divided
into two parts, i.e., 1) dual dynamic graphs and 2) fuse attentive
gate. We describe how to construct dual dynamic graphs in line
14-20, and introduce how to transfer cross-domain information by
fuse attentive gating mechanism in line 5-13.

C EXPERIMENTAL RESULTS
Here, we additionally report the experimental results on two Ama-
zon datasets when the cut-off of the ranked list is 10. The results

show that: (1) DDGHM outperforms all the baselines of SR, CDR,
and CDSR. (2) DDGHM also shows the superiority over its vari-
ants, i.e., DDGHM-L, DDGHM-G, and DDGHM-GA, indicating
the effectiveness of each component in the dual dynamic graph
modeling module.


