
Structure-Enhanced Pop Music Generation via Harmony-Aware
Learning

Xueyao Zhang∗
The Chinese University of Hong

Kong, Shenzhen
zhangxueyao1998@gmail.com

Jinchao Zhang†
Pattern Recognition Center, WeChat

AI, Tencent Inc
dayerzhang@tencent.com

Yao Qiu
Pattern Recognition Center, WeChat

AI, Tencent Inc
yasinqiu@tencent.com

Li Wang∗
Communication University of China

wwli@cuc.edu.cn

Jie Zhou
Pattern Recognition Center, WeChat

AI, Tencent Inc
withtomzhou@tencent.com

ABSTRACT
Pop music generation has always been an attractive topic for both
musicians and scientists for a long time. However, automatically
composing pop music with a satisfactory structure is still a chal-
lenging issue. In this paper, we propose to leverage harmony-aware
learning for structure-enhanced pop music generation. On the one
hand, one of the participants of harmony, chord, represents the
harmonic set of multiple notes, which is integrated closely with
the spatial structure of music, the texture. On the other hand, the
other participant of harmony, chord progression, usually accompa-
nies the development of the music, which promotes the temporal
structure of music, the form. Moreover, when chords evolve into
chord progression, the texture and form can be bridged by the har-
mony naturally, which contributes to the joint learning of the two
structures. Furthermore, we propose the Harmony-Aware Hierar-
chical Music Transformer (HAT), which can exploit the structure
adaptively from the music, and make the musical tokens interact
hierarchically to enhance the structure in multi-level musical ele-
ments. Experimental results reveal that compared to the existing
methods, HAT owns a much better understanding of the structure
and it can also improve the quality of generated music, especially
in the form and texture.1

CCS CONCEPTS
• Applied computing→ Sound and music computing.

∗This work was accomplished when Xueyao Zhang and Li Wang worked as interns at
Pattern Recognition Center, WeChat AI, Tencent Inc.
†Corresponding author.
1The code and generated pieces are available at https://github.com/RMSnow/HAT.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’22, October 10–14, 2022, Lisboa, Portugal
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9203-7/22/10. . . $15.00
https://doi.org/10.1145/3503161.3548084

KEYWORDS
algorithmic composition, music generation, structure, hierarchy,
transformer
ACM Reference Format:
Xueyao Zhang, Jinchao Zhang, Yao Qiu, Li Wang, and Jie Zhou. 2022.
Structure-Enhanced Pop Music Generation via Harmony-Aware Learn-
ing. In Proceedings of the 30th ACM International Conference on Multimedia
(MM ’22), October 10–14, 2022, Lisboa, Portugal. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3503161.3548084

1 INTRODUCTION
Composing music by computational means (also known as algorith-
mic composition or automatic music generation) is a longstanding
human desire to explore the frontiers of computational creativ-
ity [3]. As an essential attribute to music, structure is inherently
tied to human perception and cognition [2, 27], but is hard for the
computer to recognize and identify [19, 21]. Moreover, automati-
cally composing a music with balanced, coherent, and integrated
structure is an attractive, such as the early researches tens of years
ago [5, 26], but still challenging issue [1, 9].

In musicology, usually we can analyze the structure from two
aspects, form and texture. Horizontally, form reveals the temporal re-
lationship and dependency among the music, such as the repetition
of motives, the transition between phrases, and the development
between sections [34]. Vertically, texture represents the spatial re-
lationship and the organized way between the multiple parts or
instruments of music [36]. For example, the typical texture of pop
music is that themelody stands out prominently and the others form
a background of harmonic accompaniment, i.e. homophony [33].

Overall, the characteristics of the musical structure lie in the
three aspects: (1) Firstly, the structure depends largely on the mu-
sical context and is hard to be described clearly and defined ac-
curately [19]. (2) Secondly, the structure exists in various musical
elements and appears the hierarchy, ranging from the low-level
motif to the high-level phrase and section [7]. (3) Thirdly, the form
and the texture are connected closely and support to each other.
Specifically, it is common in pop music that the texture is consis-
tent within a specific phrase or section, while is changed with the
development of the form. For example, in Figure 1a, the accompani-
ment texture is pillar chords in the first phrase of the intro, while
is changed into broken chords in the second phrase (as the blue

ar
X

iv
:2

10
9.

06
44

1v
2

 [
cs

.S
D

]
 1

2
Ju

l 2
02

2

https://github.com/RMSnow/HAT
https://doi.org/10.1145/3503161.3548084
https://doi.org/10.1145/3503161.3548084

MM ’22, October 10–14, 2022, Lisboa, Portugal Xueyao Zhang, Jinchao Zhang, Yao Qiu, Li Wang, and Jie Zhou

With the development of the phrases, the
accompaniment texture is changed from
pillar chords into broken chords.

The appearance of scale texture propels the
beginning of the next section.

The groove of the texture changes at the end of
the phrase.

Example 1

Example 2

Example 3

The accompaniment textures
appear in chords.

Phrase1Phrase2Phrase1

Phrase4 Phrase2Phrase1

Intro Verse

Chorus

           
         

           
   



















 


  

 = 70



 


Primary
Melody

Secondary
Melody

Harmonic and
Rhythmic
Support

F#m A Bm F#m F#m A Bm F#m F#m E F#m 11

…

…

…

…

…

…                   
                             

       
                 








 


    









22 31A F#m E C#m F#m F#m E A F#m C#m F#m E A

(a) Part of the score.

Intro Verse Chorus

Bridge Outro

Different
chords

Phrase

Repeat Repeat

A common harmonic cadence, “V - I”,
appears in the end of the music.

(b) The chord progressions of each phrases within the sections.

Figure 1: A motivating example: the Chinese pop song, Yi Jian Mei. It reveals that: (1) The chord is integrated closely with the
texture structure (see the red blocks of Figure 1a); (2) The chord progression accompanies with the formation of the form struc-
ture (Figure 1b); (3) There is a highly mutual dependency between the texture and the form (see the blue blocks of Figure 1a).

solid block “Example 1" shows). The mutual dependency can be
also observed in “Example 2" and “Example 3".

Therefore, a model aiming to produce well-structured music
should meet the three corresponding requirements:

• R1: It should mine the contextual pattern of structure from
the music data adaptively.
• R2: It should exploit the appropriate musical elements to
represent structure units.
• R3: It should capture the highly mutual dependency between
form and texture.

Based on the aforementioned requirements, we propose to lever-
age harmony-aware learning for structure-enhanced pop music
generation. In musicology, the study of harmony involves chords
and their construction, and chord progressions and the principles
of connection that govern them [8]. The reasons to learn harmony
are that for R1, harmony represents the consonance of the musi-
cal context, so we can mine the musical contextual information
by learning it. For R2, not only harmony itself is an important
structure element, but also it combines the many musical elements
organically, from the low-level notes to the high-level phrase and
sections. Specifically, one of the participants of harmony, chord,
represents the harmonic set of multiple notes, which is integrated
closely with the texture. As the red hollow blocks in Figure 1a show,
the accompaniment textures always appear in chords. Besides, the
other participant, chord progression, usually promotes the develop-
ment of the music, contributing to the formation of the form (such

as the harmonic cadences [24] in Figure 1b). Moreover, for R3, we
can model the evolution from chord to chord progression to bridge
between texture and form, which reveals the feasibility to the joint
learning of the two structures.

In the paper, our contributions are summarized as follows:

• We propose to learn the musical prior knowledge, harmony,
for structure-enhanced pop music generation. To the best of
our knowledge, our work is the first to learn form and texture
jointly bridged by harmony in algorithmic composition.
• We design an end-to-end model, Harmony-Aware Hierar-
chical Music Transformer (HAT), to produce well-structured
pop music. It can model the musical structure by rendering
musical elements interact at the hierarchical levels.
• We develop two objective metrics for evaluating the structure
of music from the perspective of the harmony.
• Experimental results verify the effectiveness of HAT on both
music understanding and generation, especially in the form
and texture.

2 RELATEDWORK
2.1 Structure-Enhanced Music Generation
Improving the quality of the musical structure is always the focus
in music generation. Because of the difficulty of modeling structure,
some researchers deal with the task in pipelines with multiple
models [6, 11, 37], like designing a single model to modulate the
structure and the others to generate the music based on it. For the

Structure-Enhanced Pop Music Generation via Harmony-Aware Learning MM ’22, October 10–14, 2022, Lisboa, Portugal

end-to-end methods, quite a few researchers consider the structure
at only high-level like section, and still use templated- or rule-based
methods. For example, Zhou et al. use a predefined section sequence,
such as "AABA", to generate a structured music [40]. And others
utilize the chord progressions as the constraint rules, making them
as explicit input to generate structure-enhanced music [4, 31, 41].

As for the end-to-end generators mining the structure adaptively,
in StructureNet [18], the authors leverage the RNN to exploit the
structural repeat in the music. However, the definition of structure
in [18] is simple (just two types of repeat), and the StructureNet
focuses on producing the monophony music, whose texture is only
a single melodic line. In MusicVAE [25] and TransformerVAE [15],
the authors aim to mine the structure dependency between the bars.
However, bar as a structure unit is not flexible, compared to other
elements such as motif, phrase or section. Besides, the generators
of the two are not capable of producing the song-length music.
In Music Transformer [13], the researchers introduce the relative
attention to model the position relationships between the notes,
hoping to learn the long-term structure at the note level. However,
it lacks the explicit modeling for more abstract structure including
the transition and the development of phrases and sections. Recently,
the designs of most advanced generation models are Transformer-
architecture [12, 14, 39]. Most of them leverage the self ability of the
Transformer to learn the long-term dependency, but there is almost
none explicit modeling for the structure-enhanced generation.

2.2 Harmony Learning
In the field of music representation learning, there are researches
aiming to learn the representation of the harmony [30, 32]. Never-
theless, these works focus more on representation learning than
producing well-structured music pieces. Moreover, the generators
of these works are designed to learn just several bars of music, but
hard to handle the song-length music.

In a word, for structure-enhanced pop music generation, our
proposed HAT is the first end-to-end generator that learns form and
texture jointly bridged by harmony to the best of our knowledge.

3 METHODOLOGY
3.1 Overview
In the paper, we propose the Harmony-Aware Hierarchical Music
Transformer (HAT) for structure-enhanced pop music generation
(Figure 2). Firstly, we adopt the event-based tokenization to repre-
sent the symbolic music data as input (Figure 2a). Subsequently, we
utilize the three Transformer-based [28] blocks (Song Transformer,
Texture Transformer, and Form Transformer) to make the tokens
interact at the hierarchical levels (Figure 2b).

Aiming to capture the mutual dependency between form and
texture, we design the hierarchical structure-enhanced mechanisms
(Hierarchical Structure-Enhanced Module, HSE) in particular (Fig-
ure 2b). As is described in Section 1, usually the textures staywithin
phrases, but change on their boundaries. To model this charac-
teristic, therefore, firstly we group the chord tokens within every
phrase, which means the chord progression of the current phrase,
and use Texture Transformer to learn the local texture. Then we in-
put the texture of every phrase’s last chord into Form Transformer
to learn the global form.

The workflow of HAT is as follows. During training:
(1) The bottom Song Transformer handles all the musical tokens.
(2) The HSE module treat chords and phrases as the special

structure indicators and update their representations.
(3) The top Song Transformer make all the tokens interact again,

which can broadcast the explored information of structure
to the multi-grained elements.

(4) Do the predictions by the structure-enhanced tokens.
During the generation, the HAT can produce pieces from scratch

or with the guidance of the specific prompts.

3.2 Music Tokenization
In order to represent the symbolic music, we adopt the event-based
tokenization (Figure 2a). It can serialize the multi-type musical
information into a sequence of one-hot encoded events [22], which
is applied broadly for music generation [12–14].

Table 1: Nine events in music tokenization.

Level Event Description

Token type Type The type of the token

Metrical
Bar The bar position of the token
Beat The beat position in a bar of the token
Tempo The tempo of the token

Structure Phrase The phrase that the token belongs with
Chord The chord that the token belongs with

Note
Track The track (or the instrument) of the token
Pitch The pitch of the token

Duraion The duration time of the token

We employ an nine-event set C (Table 1).2 Specially, it contains
two structure-level events, Phrase and Chord, which will be the
structure-enhanced indicators in HAT.

Given the musicM = [𝑡1, 𝑡2, ..., 𝑡𝐿], where 𝑡𝑖 is the 𝑖𝑡ℎ token and
𝐿 is the length of the music. For the token 𝑡𝑖 , we embed its each
event values and concatenate them to obtain E𝑡𝑖 :

E𝑡𝑖 = Concat([Emb𝑐 (𝑡𝑐𝑖), for every 𝑐 ∈ C]), (1)
where Concat means the concatenation, 𝑡𝑐

𝑖
is the value of 𝑡𝑖 on the

category 𝑐 , and Emb𝑐 (·) is the embedding layer for the category 𝑐 .

3.3 Bottom Song Transformer
To make all the tokens aware of the global musical contexts, we
make them interact at the song-level transformer block, the bottom
Song Transformer (Figure 2b).

The architecture of Song Transformer is the same as the original
Transformer [28], except that it is implemented to be autoregressive.
Besides, we use the triangular mask strategy of the Transformer
Decoder [28] to guarantee the token at position 𝑖 can depend only
on the tokens at positions less than 𝑖 .

2In this paper, we focus on producing the symbolic music, so we leave the performance
musical attributes like "velocity" for the future research, i.e. performance generation.

MM ’22, October 10–14, 2022, Lisboa, Portugal Xueyao Zhang, Jinchao Zhang, Yao Qiu, Li Wang, and Jie Zhou

Tokenize the score

Primary
Melody

Secondary
Melody

12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70




















Harmonic and

Rhythmic
Support

Phrase1
F#m A Bm F#m

…

…

…

[BOS] Phrase1 …M

12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70






















12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70






















F#m …

Duration

Pitch

Track

Chord

Phrase

Tempo

Beat

Bar

Type

<BOS>

Bound

70

0

1

Tempo

1

<CONT>

0

<CONT>

Phrase

1

61

SM

<UNK>

<CONT>

<CONT>

14

<CONT>

Note

…

F#m

<CONT>

<CONT>

0

1

Chord

…

(a) Music Tokenization.

S0
M

[BOS] F#m A Bm F#m F#m A Bm F#mPhrase2 A D C#m F#mPhrase1

12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70






















12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70






















Phrase1 … … … … … … … … … … …

Update Token
Representations

[BOS] F#m A Bm F#m F#m A Bm F#mPhrase2 A D C#m F#mPhrase1

12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70






















12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70






















Phrase1 … … … … … … … … … … …

…EM

[BOS] F#m A Bm F#m F#m A Bm F#mPhrase2 A D C#m F#mPhrase1

12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70






















12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70






















Phrase1 … … … … … … … … … … … …SM

Song Transformer

F#m A Bm

Texture Transformer
add

CPT
p1

F#m A Bm

Texture Transformer

A D C#mF#m F#m F#m

Texture Transformer
add add

CPT
p2

CPT
pLM

F#m F#m F#m

Form Transformer

PT F

Song Transformer

[BOS] F#m A Bm F#m F#m A Bm F#mPhrase2 A D C#m F#mPhrase1

12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70






















12


       

    

      

      

       

 

      



   

   

  

  

   

   

  

 

    

           

    

   

       









































 





 









  



  

  

  



  



 = 70






















Phrase1 … … … … … … … … … … …S00
M

Positional Encoding

…

…

…

Hierarchical
Structure-Enhanced

Module

Bottom Song
Transformer

Top Song
Transformer

Embedding

…

…

(b) Musical tokens interact at the hierarchical levels.

Figure 2: The architecture of Harmony-AwareHierarchical Music Transformer (HAT). Firstly, we tokenize the symbolicmusic,
where every token ismapped to nine events (Figure 2a). Then, we use the bottom Song Transformer, theHierarchical Structure-
Enhanced Module, and the top Song Transformer to obtain the structure-enhanced tokens (Figure 2b).

Given the tokenized representation EM = [E𝑡0 ,E𝑡1 , ...,E𝑡𝐿],
we get the updated representation after the bottom Song Trans-
former, notating SM = [S𝑡1 , S𝑡2 , ..., S𝑡𝐿] ∈ R𝐿×𝐷𝑆 , where 𝐷𝑆 is
the embedding dimension of Song Transformer:

SM = Transformer(PosEnc(EM)), (2)
where PosEnc(·) means the input is added by the sinusoidal posi-
tion embeddings of Transformer [28].

3.4 Hierarchical Structure-Enhanced Module
As is mentioned in Section 3.1, the HSE module (Figure 2b) is de-
signed for learning the mutual dependency between form and tex-
ture. Specifically, we enhance the attention of chord and phrase
tokens in a hierarchical way in this module.

3.4.1 Texture Transformer. Firstly, we group the chord tokenswithin
every phrase, which means the chord progression of the phrase, and
use Texture Transformer to learn the local texture. The architecture
of Texture Transformer is the same as the Song Transformer, ex-
cept for the hyperparameters such as the number of layers or the
number of heads.

Given the chord progression of the phrase 𝑝𝑖 , notating CP𝑝𝑖 =

[S𝑝1
𝑖
, S𝑝2

𝑖
, ..., S

𝑝
𝐿𝑝𝑖
𝑖

] ∈ R𝐿𝑝𝑖 ×𝐷𝑆 , where 𝐿𝑝𝑖 is the number of chords
of the phrase 𝑝𝑖 , we can obtain the texture-enhanced chords repre-
sentation after the Texture Transformer,CPT𝑝𝑖 = [T𝑝1

𝑖
,T𝑝2

𝑖
, ...,T

𝑝
𝐿𝑝𝑖
𝑖

]:

CPT𝑝𝑖 = Transformer(PosEnc(S𝑝𝑖 +CP𝑝𝑖)) . (3)
In Equation 3, we add the phrase 𝑝𝑖 ’s representation S𝑝𝑖 into the

chord progression CP𝑝𝑖 before the Texture Transformer, aiming

to fuse the form’s dependency when learning texture. For the local
texture of every phrase, T𝑝𝑖 , we use the last chord of the phrase
to represent the local texture, i.e., T𝑝𝑖 = T

𝑝
𝐿𝑝𝑖
𝑖

. And we can get

the phrases’ texture representation, PT = [T𝑝1 ,T𝑝2 , ...,T𝑝𝐿M
] ∈

R𝐿M×𝐷𝑆 , where 𝐿M is the phrases num of the musicM.

3.4.2 Form Transformer. Next, we aim to learn the global form
from the local phrase texture by Form Transformer. Like Texture
Transformer, the architecture of Form Transformer is also homoge-
neous with the Song Transformer.

Given the phrases’ texture representation PT , we obtain the
form-enhanced representation after the Form Transformer, PTF =

[TF𝑝1 ,TF𝑝2 , ...,TF𝑝𝐿M
] ∈ R𝐿M×𝐷𝑆 :

PTF = Transformer(PosEnc(PT)) . (4)

3.4.3 Update Tokens Representations. Finally, we update the chord
and phrase tokens, which merges the raw representation with
the learned texture-enhanced and form-enhanced representation.
Specifically, for the phrase tokens (except the first phrase), we add
them with the previous both texture and form context information:

S′𝑝𝑖 =
{
S𝑝𝑖 𝑖 = 1,

TF𝑝𝑖−1 + S𝑝𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(5)

For the chord tokens, we enhance them with their form context
information. Besides, we also add them with the previous texture of
their chord progression context information (except the first chord
of every phrase). Namely, for every 𝑖 ∈ [1, 2, ..., 𝐿M],

Structure-Enhanced Pop Music Generation via Harmony-Aware Learning MM ’22, October 10–14, 2022, Lisboa, Portugal

S′
𝑝
𝑗

𝑖

=


S′𝑝𝑖 + S𝑝 𝑗

𝑖

𝑗 = 1,

S′𝑝𝑖 +T𝑝
𝑗−1
𝑖

+ S
𝑝
𝑗

𝑖

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(6)

We leave the other tokens representations unchanged, and ob-
tain the music tokenize representation S′M = [S′𝑡1 , S

′
𝑡2
, ..., S′𝑡𝐿] ∈

R𝐿×𝐷𝑆 after the HSE module.

3.5 Top Song Transformer
After the HSE module, we have obtained the structure-enhanced
chord and phrase tokens. To broadcast the explored structure infor-
mation into various musical elements of the whole context, we use
another Song Transformer block to interact on all the tokens again,
getting S′′M = [S′′𝑡1 , S

′′
𝑡2
, ..., S′′𝑡𝐿] ∈ R

𝐿×𝐷𝑆 :

S′′M = Transformer(PosEnc(S′M)) . (7)

3.6 Training and Generation
3.6.1 Training. In training, we formulate the music generation as
a “next token prediction" task. For the musicM = [𝑡1, 𝑡2, .., 𝑡𝐿],
we set the boundary token 𝑡1 = <BOS> and 𝑡𝐿+1 = <EOS>. Let the
input X = [x1, x2, ..., x𝐿] = [𝑡1, 𝑡2, .., 𝑡𝐿], and the ground truth y =

[y1, y2, ..., y𝐿] = [𝑡2, 𝑡3, .., 𝑡𝐿+1]. we aim to learn a model 𝐺 (X) →
ŷ such that it maximizes the predictive accuracy w.r.t y, where
ŷ = [ŷ1, ŷ2, ..., ŷ𝐿].

Given the token representations after the top Song Transformer
S′′M , we adopt a two-stage prediction setting to make it easier for
the model to fit, following [12]:

ŷ
𝑡𝑝

𝑖
=Softmax(MLP𝑡𝑝 (S′′𝑡𝑖)), 𝑖 = 1, 2, ..., 𝐿

ŷ𝑐𝑖 =Softmax(MLP𝑐 (Concat([S′′𝑡𝑖 ,Emb𝑡𝑝 (y𝑡𝑝𝑖)]))),
𝑖 = 1, 2, ..., 𝐿; 𝑐 ∈ C 𝑎𝑛𝑑 𝑐 ≠ 𝑡𝑝

(8)

where ŷ𝑐
𝑖
means the prediction value on the category 𝑐 of the token

ŷ𝑖 , 𝑡𝑝 means the category Type, Softmax(·) means the softmax
function,MLP𝑐 (·) means the Multi-Layer Perceptron on the cate-
gory 𝑐 , and y𝑐

𝑖
means the ground truth value on the category 𝑐 of

the token y𝑖 .
During training, we minimize the sum of every cross-entropy

loss between the prediction ŷ and the label y on every category 𝑐:

L(y, ŷ) =
𝐿∑︁
𝑖=1

∑︁
𝑐∈C

𝜆𝑐CELoss(y𝑐𝑖 , ŷ
𝑐
𝑖), (9)

where 𝜆𝑐 is the loss weight on the category 𝑐 , and CELoss(·, ·)
means the cross-entropy loss function.

3.6.2 Generation. During the generation, we get the music tokens
recurrently. Take the generation from scratch as an example: given
the input x1 = <BOS>, the HAT can produce ŷ = [ŷ1, ŷ2, ..., ŷ𝐿𝐺]
recurrently, until ŷ𝐿𝐺 = <EOS>, where 𝐿𝐺 is the length of the gener-
ated piece. To obtain the final predictivemusic tokens [𝑡1, 𝑡2, ..., 𝑡𝐿𝐺],
we adopt the stochastic temperature controlled sampling [10] to
increase the diversity and avoid degeneration:

𝑡𝑐𝑖 = Sampling𝑐 (ŷ𝑐𝑖), (10)

where 𝑡𝑐
𝑖
is the value of predictive token 𝑡𝑖 on the category 𝑐 , and

Sampling𝑐 (·) means the sampling function on the category 𝑐 . Here
we employ different sampling policies for different categories, fol-
lowing [12].

4 EXPERIMENTS
In the section, we conduct experiments to answer the following
evaluation questions:

EQ1: Does HAT have a better perception and understanding of
the musical structure compared to the existing models?

EQ2: How to evaluate the quality of the structure of generated
music pieces, especially from a harmony perspective?

EQ3: Can HAT improve the quality of generated music, espe-
cially on the form and texture? How effective are the proposed
hierarchical structure-enhanced mechanisms?

4.1 Dataset
We adopt POP909 [29]3 as our experimental dataset because it con-
tains sufficient annotations information of structure. There are 909
MIDI files of pop songs of the dataset, in which every song is ar-
ranged by professional musicians as piano. For texture, there are
three tracks in everyMIDI, which can respectively represent the typ-
ical pop music texture elements, Primary Melody (PM), Secondary
Melody (SM), and Harmonic and Rhythmic Support (HRS) [36],
which is shown in Figure 1a. For form, other researches have an-
notated the phrase-level structure (melodic or non-melodic phrases
and their bar-level durations) on POP909 [7]4.

When preprocessing, we select the songs that are 4/4 time signa-
ture as our training data, including 857 MIDI files. We quantize the
duration and the beat positions under the resolution of the 16𝑡ℎ
note. And we stay only the first tempo value as the tempo of every
song, to reduce the burden of model learning.

4.2 Experimental Setup
4.2.1 Compared Methods. We consider the two end-to-end meth-
ods that can handle the full-song-length pop music as baselines:
• Music Transformer [13] (HAT-base w/ relative atten-
tion): The authors employ the improved relative atten-
tion to model the relationship between the notes to exhibit
long-term structure. It is explained that the original tok-
enize methods of Music Transformer is hard to handle the
full-song-length pop music [12, 14]. So we adopt the rela-
tive attention in our proposed basic Transformer of HAT
(HAT-base, which will be described later on).
• CP-Transformer [12]: It is one of the SOTA end-to-end
methods for pop music generation. The authors propose
the "Compound Word" tokenization to compress the input
sequence length prominently for Transformer-based models.

Moreover, we also adopt the three variants of HAT to study the
effectiveness of our proposed components.
• HAT-base (HAT w/o Structure-enhanced): To verify the
necessity of the HSE Module, we remove the whole module

3https://github.com/music-x-lab/POP909-Dataset
4https://github.com/Dsqvival/hierarchical-structure-analysis

https://github.com/music-x-lab/POP909-Dataset
https://github.com/Dsqvival/hierarchical-structure-analysis

MM ’22, October 10–14, 2022, Lisboa, Portugal Xueyao Zhang, Jinchao Zhang, Yao Qiu, Li Wang, and Jie Zhou

Table 2: Results of the Next Token Prediction task. (The best and the second best results of every column are bold and italic.)

Model Accuracy Mean Square Error (↓)
Note Chord Phrase Avg. Note Chord Phrase Avg.

CP-Transformer [12] 0.406 0.368 - 0.387 0.132 0.135 - 0.134
Music Transformer [13] 0.587 0.488 0.256 0.444 0.078 0.084 0.121 0.094
HAT-base 0.485 0.417 0.228 0.377 0.099 0.099 0.124 0.107
HAT-base w/ Form 0.564 0.500 0.309 0.458 0.082 0.082 0.116 0.093
HAT-base w/ Texture 0.571 0.503 0.268 0.447 0.081 0.084 0.122 0.096
HAT 0.594 0.518 0.323 0.478 0.076 0.080 0.116 0.090

(a) Note (b) Chord (c) Phrase

Figure 3: The trends of the next token prediction’sMSE as the prompts’ lengths increase (i.e. as themusic "listened" bymodels is
going). The horizontal axes of Figure 3a, 3b, and 3c indicate the proportions of Note, Chord, and Phrase tokens in the prompts.

and get the variant HAT-base, which can be treated as a basic
Transformer using HAT’s music tokenization.
• HAT-base w/ Form: In the HSE module, we only group all
the phrase-level tokens and input them into the Form Trans-
former. In other words, we only enhance the form structure
on the basis of HAT-base.
• HAT-base w/ Texture: In the HSE module, we only group
all the chord-level tokens and input them into just one Tex-
ture Transformer. It means that we only enhance the texture
structure on the basis of HAT-base.

4.2.2 Implementation Details. In HAT, the numbers of layers and
heads are 6 and 8 for Song Transformer, 6 and 4 for Texture Trans-
former, and 12 and 8 for Form Transformer. The max sequence
length is 2560 (Song Transformer), 60 (Texture Transformer), and
30 (Form Transformer). The embedding dim 𝐷𝑆 is 512. When train-
ing, the loss weights 𝜆𝑐 are 5 (for Type and Bar), 10 (for Tempo
and Phrase), and 1 (for the others). The batch size is 8, the learning
rate is 10−4, and we use Adam [17] for optimization with 𝜖 = 10−8,
𝛽1 = 0.9, 𝛽2 = 0.999. For generation, we adopt the models of
training loss at 0.05 level to generated pieces.

4.3 Performance of Music Understanding (EQ1)
To evaluate HAT’s ability to understand the constitution of the
music, especially the musical structure, we employ the Next To-
ken Prediction – a music understanding task. Specifically, given
the prompt P = [𝑡1, 𝑡2, .., 𝑡𝐿P

] (where the 𝐿P is the length of the

prompt), the model is expected to predict the next musical token
𝑡𝐿P+1. And we adopt Accuracy and Mean Square Error (MSE) as
the criteria.

In Table 2, we report the evaluation results of three particular
types of tokens: Note, Chord, and Phrase. It can be observed that:

• The effectiveness of our music tokenization for phrases: com-
pared to CP-Transformer [12] that does not consider to to-
kenize the phrase tokens, other five models own a better
understanding of music, which verifies our tokenization is
proper to model the phrases’ signals.
• The superiority of HAT: among the models, HAT has the
highest accuracy and the lowest MSE on any types of tokens.
• The advantage of the hierarchical structure-enhanced mech-
anisms: on the one hand, enhancing form (HAT-base w/
Form), texture (HAT-base w/ Texture), or the both (HAT) all
behave better when predicting chords and phrases than Mu-
sic Transformer [13] and HAT-base. On the other hand, form-
or texture-enhanced mechanism respectively improves the
understanding of phrase or chord more.

Furthermore, in order to explore the changes of the model’s intel-
lect as the music is going, we visualize the trends of its prediction’s
MSE as the prompt’s length increases for the five models using our
tokenization (Figure 3). We can see that for Note (Figure 3a) and
Chord (Figure 3b), the MSEs of HAT and its three variants descend
first, but then ascend until the music ends. This is mostly likely be-
cause that the intellects of these models increase as they gradually

Structure-Enhanced Pop Music Generation via Harmony-Aware Learning MM ’22, October 10–14, 2022, Lisboa, Portugal

perceive the first-half music usually repeat. On the contrary, model-
ing the relative attention between notes (Music Transformer [13])
can not understand more as the music goes. However, when the
music is coming to the end, all the models are helpless since the
music at that time often doesn’t appear before.

For Phrase (Figure 3c): (1) Initially, the five models understand
little, which indicates that they don’t know where the music will
go by listening just the beginning of the music - maybe a intro or a
verse. (2) Gradually, they behave better and better during the first-
half music, which seems that they have perceived the repeating
phrases and the similar sections. (3) Yet after that time, the models’
intellects tend to be worse again. We speculate that there appears
to be some new sections like post-chorus [35]. (4) When the music
has progresses about 90%, however, except for HAT-base, the other
four structure-enhanced models (especially HAT) are conscious of
the music is approaching to the end. Combining the analysis of
Note and Chord before, in a word, these four models know more
"when to end", but less "how to end".

4.4 Evaluation Metrics of Music Generation
(EQ2)

4.4.1 Objective Evaluation. For algorithmic composition, it is still
very hard to measure the quality of the generated pieces’ structure,
especially by the quantitative analysis. In the paper, we explore to
develop two metrics to evaluate the texture and form structure of
music. Particularly, we research to assess the two from the perspec-
tive of harmony.

Accompaniment Groove Stability. For texture, we design the
Accompaniment Groove Stability (AGS) to measure the stability of
the grooves between the accompaniment textures. As the Figure 1a
shows, the accompaniment textures of pop music usually appear in
chords, and the grooves of the adjacent chords of the same durations
are highly similar. On this observation, we formulate the grooves
of the 𝑖𝑡ℎ chord as g𝑖 , which is a binary vector ∈ R𝐷𝑢 , where 𝐷𝑢 is
the dimension of the chord’s duration . Then we can calculate the
AGS as follows:

AGS𝑖,𝑖+1 = 1 − Sum(XOR(g𝑖 , g𝑖+1))
Sum(OR(g𝑖 , g𝑖+1))

,

AGS = Avg (
∑︁
𝑖

AGS𝑖,𝑖+1),
(11)

where AGS𝑖,𝑖+1 means the 𝑖𝑡ℎ chord and its next adjacent (𝑖 + 1)𝑡ℎ
chord with the same duration. XOR(·, ·) and OR(·, ·) are the exclu-
sive OR and the OR operation respectively, and Sum(OR(g𝑖 , g𝑖+1))
is the scaling factor. And the AGS value ranges from 0 to 1.

To obtain the grooves of the 𝑖𝑡ℎ chord, g𝑖 , motivated by [38], we
scan the every frame of the chord (by the resolution of 16𝑡ℎ note),
and the value of the 𝑗𝑡ℎ frame, 𝑔 𝑗

𝑖
= 1 if there are notes onsetting

in the frame, otherwise 𝑔 𝑗
𝑖
= 0. Besides, we remove those adjacent

chord pairs that g𝑖 = 0 and g𝑖+1 = 0 during calculating AGS.
Ideally, the stabler of the accompaniment grooves (during the

adjacent chord pairs) among the entire piece, the higher AGS is,
which means the texture of the piece is better structured.

Chord Progression Realism. For form, we design the Chord
Progression Realism (CPR) to evaluate the realism of the chord pro-
gressions of a generated piece. As the Figure 1b shows, the chord
progression of a real piece often repeats within the phrases and the
sections, resulting in a low Chord Progression Irregularity (CPI)
that proposed in [38]. However, we found only CPI [38] not suit-
able enough to evaluate the quality (or the realism) of the chord
progressions of the music. For example, if there is only one chord
repeating during the entire piece, the CPI will be very low, but the
music maybe like several notes’ meaningless loop.

For pop music, within the repeating outline of chord progres-
sions, there are also rich appropriate variations featuring the mu-
sical details and dynamics. Based on that, therefore, we propose
the Chord Progression Variation Rationality (CPVR) to measure
the rationality when the chords change. Furthermore, we balance
CPI (i.e., stability) and CPVR (i.e., diversity) to obtain the final CPR
value of a piece:

CPR = 𝜆CPI + (1 − 𝜆)CPVR. (12)

where 𝜆 is the hyperparameter of trade-off weight. In the experi-
ments, we simply set 𝜆 = 0.5.

To calculating CPVR, when a new unique n-grams chords appears,
wemeasure the probability of the appearance of this variation under
the current harmony context. Given the 𝑛-grams chord progression
is 𝐶𝑖+𝑛

𝑖
, where 𝑖 is the index of the first chord, we traverse all the

𝐶𝑖+𝑛
𝑖

from 𝑖 = 1, and when a new unique 𝑛-grams appear, we define
𝑉𝑖 as the variation rationality value:

𝑉𝑖 = p (𝐶𝑖+𝑛
𝑖 |𝐶

𝑖−1+𝑛
𝑖), (13)

where p(·|·) is the conditional probability, and we use the ap-
pearance frequency during the real data (i.e., all the pieces of
POP909 [29]) to get the approximation. Finally, the CPVR value of
a piece is obtained by averaging all the 𝑉𝑖 : CPVR = Avg(∑𝑖 𝑉𝑖).

It is noted that the ranges of CPI, CPVR, and CPR are all from 0
to 1. Ideally, a piece with a good form will own a high CPR value.

4.4.2 Subjective Evaluation. Qualitative evaluation by humans is
always an important evaluation metric and is adopted widely [12,
13, 37, 38, 41] in music generation. In the paper, we invited 15 vol-
unteers to conduct the following human study. The volunteers are
from the music conservatory or in the music production industry.
All of them are good at at least one instrument and are engaged in
the musical activity for over 5 hours every day. Firstly, the subjects
need to score the Overall Performance (OP) of the music:
• Melody (M): Does the melody sound beautiful?
• Groove (G): Does themusic sound fluent and pause suitably?
Is the groove of the music unified and stable?

Next, the subjects are asked to evaluate the quality of texture
and form respectively. For texture, there are two metrics:
• PrimaryMelody (PM): Is there a distinct and clear primary
melody line in the music? Is the primary melody easy to
remember? Is it suitable for singing with lyrics?
• Consonance (CO): Do the several layers of sound balance
and combine organically? Is the composition of individual
sounds harmonious?

MM ’22, October 10–14, 2022, Lisboa, Portugal Xueyao Zhang, Jinchao Zhang, Yao Qiu, Li Wang, and Jie Zhou

Table 3: Results of the objective evaluation. The best results
of every column (except those from Real) are bold, and the
second best results are italic.

Model

Texture Form

AGS CPR

2-grams 3-grams 4-grams

Real 0.572 0.504 0.564 0.551
CP-Transformer [12] 0.193 0.312 0.250 0.132
Music Transformer [13] 0.256 0.413 0.384 0.267
HAT-base 0.382 0.403 0.369 0.264
HAT-base w/ Form 0.422 0.439 0.421 0.307
HAT-base w/ Texture 0.456 0.434 0.417 0.310
HAT 0.474 0.447 0.435 0.320

For form, there are also two metrics:
• Coherence (C): Are the transitions and the developments
between the contiguous phrases natural and coherent?
• Integrity (I): Does the music own the complete section struc-
ture, such as intro, verse, chorus, bridge, and outro? Are the
boundaries between the sections clear?

4.5 Performance of Music Generation (EQ3)
4.5.1 Results of Objective Evaluation. To evaluate the generated
pieces on the proposed objective metrics, we produced 100 pieces
from scratch for each model. Also, we adopt all the human 857
pieces (our training data) as a "Real" model for a comparison. We
obtain every model’s score by averaging its pieces’ scores.

The results of the objective evaluation are exhibited in Table 3.
It is observed that: (1) The Real model owns the highest AGS and
CPRs, though whose scores are only 0.5-0.6. It indicates that our
proposed AGS and CPR can be considered as reasonable descriptive
metrics at least, which can measure the generator’s ability in style
imitation; (2) For texture, HAT is much significantly better than
the two baselines on AGS (Music Transformer: 𝑝 = 0.0022; CP-
Transformer: 𝑝 = 6.59 × 10−5; one-tailed 𝑡-test); (3) For form, on
the one hand, HAT is significantly better on any grams of CPR. On
the other hand, when the gram increases, the CPR values of any
algorithmicmusic all drop a lot, but that is barely seen for real pieces.
It reveals the challenge of generating longer and more abstract
structures. (4) Among the HAT’s three variants, it can be seen that
based on HAT-base, the form or texture enhancement respectively
behaves quite well on AGS or CPR. That verifies the effectiveness
of our proposed hierarchical structure-enhanced strategies.

4.5.2 Results of Subjective Evaluation. For subjective evaluation,
we generated 10 pieces from scratch for each model and ask our
volunteers to give a mark for all the pieces. The source of pieces are
concealed from the subjects and we guarantee that each piece is
rated by 3 different subjects. The results of the subjective evaluation
are displayed in Table 4, where we scaled the scores and every value
in it lies from 0 to 1. We can see that the general quality (the average
score 0.601) and the form quality of HAT’s pieces are the best, and
those of HAT-base w/ Form are the second best.

Table 4: Results of the subjective evaluation. OP: Overall Per-
formance, M: Melody, G: Groove, PM: Primary Melody, CO:
Consonance, C: Coherence, I: Integrity.

Model
OP Texture Form Avg.

M G PM CO C I

CP-Transformer [12] 0.356 0.356 0.385 0.403 0.419 0.380 0.383
Music Transformer [13] 0.417 0.375 0.700 0.562 0.550 0.375 0.496
HAT-base 0.267 0.550 0.680 0.400 0.400 0.450 0.458
HAT-base w/ Form 0.638 0.504 0.511 0.641 0.557 0.574 0.571
HAT-base w/ Texture 0.436 0.477 0.514 0.539 0.538 0.504 0.501
HAT 0.592 0.552 0.598 0.661 0.585 0.618 0.601

(a) Real piece (b) Music Transformer

(c) CP-Transformer (d) HAT

Figure 4: The fitness scape plots of the real piece (the Chi-
nese pop song, Guang Yin De Gu Shi), and other three gen-
erated pieces prompted by the intro of the real piece.

5 CASE STUDY
To figure out the characteristics of the pieces generated by HAT, we
visualize the fitness scape of the structure segments that are applied
in the fields of Music Structure Analysis [19, 20]. In Figure 4, we
can see that: (1) compared with the two baseline-generated pieces,
the HAT-generated piece owns the less but the longer duration
segments, which is similar to the real piece; (2) compared with the
real piece, the HAT’s piece already has the three main segments like
the real one, but it lacks the musical details between the structure
segments (appearing as blank in the small segments). It reveals that
although HAT has been capable of imitating the outline structure
of the real music, it is still too hard for it to polish and refine the
generated pieces to pursue a real work of art.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose the harmony-aware learning for structure-
enhanced pop music generation. Bridged by the harmony, we com-
bine the texture and the form structure organically, and we design

Structure-Enhanced Pop Music Generation via Harmony-Aware Learning MM ’22, October 10–14, 2022, Lisboa, Portugal

the HAT for their joint learning. Both experimental results of music
understanding and generation verify the significant effectiveness
of the HAT. In the future work, on the one hand, we will explore
new methods to polish and refine the musical details of generated
pieces. On the other hand, based on the generated symbolic music,
we will research on the performance generation, hoping to merge
the human performance techniques into the generated music.

ACKNOWLEDGEMENT
We thank Ziniu Li, Ke Xue, Qiang Sheng, and the anonymous re-
viewers for their insightful comments and suggestions. We appreci-
ate the efforts of all the volunteers during the subjective evaluation.

REFERENCES
[1] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. 2020. Deep

Learning Techniques for Music Generation. Springer.
[2] Michael J. Bruderer, Martin F. McKinney, and Armin Kohlrausch. 2006. Structural

boundary perception in popular music. In ISMIR 2006, 7th International Conference
on Music Information Retrieval. 198–201.

[3] Filippo Carnovalini and Antonio Rodà. 2020. Computational Creativity andMusic
Generation Systems: An Introduction to the State of the Art. Frontiers Artif. Intell.
3 (2020), 14.

[4] Ke Chen, Weilin Zhang, Shlomo Dubnov, Gus Xia, and Wei Li. 2019. The Effect
of Explicit Structure Encoding of Deep Neural Networks for Symbolic Music
Generation. In 2019 International Workshop on Multilayer Music Representation
and Processing (MMRP). IEEE Computer Society, 77–84.

[5] David Cope. 1987. An Expert System for Computer-Assisted Composition. Com-
puter Music Journal 11, 4 (1987), 30–46.

[6] Shuqi Dai, Zeyu Jin, Celso Gomes, and Roger B. Dannenberg. 2021. Control-
lable deep melody generation via hierarchical music structure representation.
In Proceedings of the 22nd International Society for Music Information Retrieval
Conference, ISMIR 2021. 143–150.

[7] Shuqi Dai, Huan Zhang, and Roger B Dannenberg. 2020. Automatic analysis and
influence of hierarchical structure on melody, rhythm and harmony in popular
music. In Proc. of the 2020 Joint Conference on AI Music Creativity, CSMC-MuMe
2020.

[8] George Grove. 1883. A Dictionary of Music and Musicians. Vol. 3. Macmillan.
[9] Dorien Herremans, Ching-Hua Chuan, and Elaine Chew. 2017. A Functional

Taxonomy of Music Generation Systems. ACM Comput. Surv. 50, 5 (2017), 69:1–
69:30.

[10] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The
Curious Case of Neural Text Degeneration. In 8th International Conference on
Learning Representations, ICLR 2020.

[11] Dominik Hörnel and Wolfram Menzel. 1998. Learning Musical Structure and
Style with Neural Networks. Computer Music Journal 22, 4 (1998), 44–62.

[12] Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang. 2021. Compound
Word Transformer: Learning to Compose Full-SongMusic over Dynamic Directed
Hypergraphs. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021. 178–186.

[13] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis
Hawthorne, Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Din-
culescu, and Douglas Eck. 2019. Music Transformer: Generating Music with
Long-Term Structure. In 7th International Conference on Learning Representations,
ICLR 2019.

[14] Yu-Siang Huang and Yi-Hsuan Yang. 2020. Pop Music Transformer: Beat-based
Modeling and Generation of Expressive Pop Piano Compositions. In MM ’20: The
28th ACM International Conference on Multimedia. 1180–1188.

[15] Junyan Jiang, Gus Xia, Dave B. Carlton, Chris N. Anderson, and Ryan H.
Miyakawa. 2020. Transformer VAE: A Hierarchical Model for Structure-Aware
and Interpretable Music Representation Learning. In 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2020. 516–520.

[16] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. 2020. Transformers are
RNNs: Fast Autoregressive Transformers with Linear Attention. In Proceedings
of the International Conference on Machine Learning (ICML).

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Op-
timization. In 3rd International Conference on Learning Representations, ICLR
2015.

[18] Gabriele Medeot, Srikanth Cherla, Katerina Kosta, Matt McVicar, Samer Abdallah,
Marco Selvi, Ed Newton-Rex, and Kevin Webster. 2018. StructureNet: Inducing
Structure in Generated Melodies. In Proceedings of the 19th International Society
for Music Information Retrieval Conference, ISMIR 2018. 725–731.

[19] Meinard Müller. 2015. Fundamentals of Music Processing - Audio, Analysis, Algo-
rithms, Applications. Springer.

[20] Meinard Müller and Nanzhu Jiang. 2012. A Scape Plot Representation for Vi-
sualizing Repetitive Structures of Music Recordings. In Proceedings of the 13th
International Society for Music Information Retrieval Conference, ISMIR 2012. 97–
102.

[21] Tim O’Brien. 2016. Musical Structure Segmentation with Convolutional Neural
Networks. In Proceedings of the 17th International Society for Music Information
Retrieval Conference, ISMIR 2016.

[22] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Simonyan.
2020. This time with feeling: learning expressive musical performance. Neural
Comput. Appl. 32, 4 (2020), 955–967.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019.
8024–8035.

[24] DonMichael Randel. 1999. The Harvard Concise Dictionary of Music andMusicians.
Harvard University Press.

[25] Adam Roberts, Jesse H. Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck.
2018. A Hierarchical Latent Vector Model for Learning Long-Term Structure in
Music. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018. 4361–4370.

[26] Peter M Todd. 1989. A Connectionist Approach to Algorithmic Composition.
Computer Music Journal 13, 4 (1989), 27–43.

[27] Takao Umemoto. 1990. The Psychological Structure of Music. Music Perception 8,
2 (1990), 115–127.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, NIPS 2017. 5998–
6008.

[29] Ziyu Wang, Ke Chen, Junyan Jiang, Yiyi Zhang, Maoran Xu, Shuqi Dai, and Gus
Xia. 2020. POP909: A Pop-Song Dataset for Music Arrangement Generation.
In Proceedings of the 21th International Society for Music Information Retrieval
Conference, ISMIR 2020. 38–45.

[30] Ziyu Wang, Dingsu Wang, Yixiao Zhang, and Gus Xia. 2020. Learning Inter-
pretable Representation for Controllable Polyphonic Music Generation. In Pro-
ceedings of the 21th International Society forMusic Information Retrieval Conference,
ISMIR 2020. 662–669.

[31] Ziyu Wang and Gus Xia. 2018. A Framework for Automated Pop-song
Melody Generation with Piano Accompaniment Arrangement. arXiv preprint
arXiv:1812.10906 (2018).

[32] Ziyu Wang, Yiyi Zhang, Yixiao Zhang, Junyan Jiang, Ruihan Yang, Gus Xia,
and Junbo Zhao. 2020. PIANOTREE VAE: Structured Representation Learning
for Polyphonic Music. In Proceedings of the 21th International Society for Music
Information Retrieval Conference, ISMIR 2020. 368–375.

[33] Wikipedia contributors. 2022. Homophony — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Homophony. [Online].

[34] Wikipedia contributors. 2022. Musical form —Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Musical_form. [Online].

[35] Wikipedia contributors. 2022. Post-chorus — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Post-chorus. [Online].

[36] Wikipedia contributors. 2022. Texture (music) — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/wiki/Texture_(music). [Online].

[37] Jian Wu, Xiaoguang Liu, Xiaolin Hu, and Jun Zhu. 2020. PopMNet: Generating
structured pop music melodies using neural networks. Artif. Intell. 286 (2020),
103303.

[38] Shih-Lun Wu and Yi-Hsuan Yang. 2020. The Jazz Transformer on the Front
Line: Exploring the Shortcomings of AI-composed Music through Quantitative
Measures. In Proceedings of the 21th International Society for Music Information
Retrieval Conference, ISMIR 2020. 142–149.

[39] Shih-Lun Wu and Yi-Hsuan Yang. 2021. MuseMorphose: Full-Song and Fine-
Grained Music Style Transfer with Just One Transformer VAE. arXiv preprint
arXiv:2105.04090 (2021).

[40] Yichao Zhou, Wei Chu, Sam Young, and Xin Chen. 2019. BandNet: A Neu-
ral Network-based, Multi-Instrument Beatles-Style MIDI Music Composition
Machine. In Proceedings of the 20th International Society for Music Information
Retrieval Conference, ISMIR 2019. 655–662.

[41] Hongyuan Zhu, Qi Liu, Nicholas Jing Yuan, Chuan Qin, Jiawei Li, Kun Zhang,
Guang Zhou, Furu Wei, Yuanchun Xu, and Enhong Chen. 2018. XiaoIce Band: A
Melody and Arrangement Generation Framework for Pop Music. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018. 2837–2846.

https://en.wikipedia.org/wiki/Homophony
https://en.wikipedia.org/wiki/Musical_form
https://en.wikipedia.org/wiki/Post-chorus
https://en.wikipedia.org/wiki/Texture_(music)

MM ’22, October 10–14, 2022, Lisboa, Portugal Xueyao Zhang, Jinchao Zhang, Yao Qiu, Li Wang, and Jie Zhou

A GENERATING A PIECE FROM THE
SCRATCH

In Section 3.6, we describe the generating procedure of HAT from
the scratch. The detailed algorithm can be seen in Algorithm 1.

B DATASET OF MUSIC UNDERSTANDING
For the next token prediction task (Section 4.3), we split the 857
MIDIs (Section 4.1) into training (773 MIDIs), validation (41 MIDIs),
and testing sets (43 MIDIs). We select the best model on the val-
idation set, and exhibit the results of the testing set (Table 2 and
Figure 3).

C SUPPLEMENTARY IMPLEMENTATION
DETAILS

C.1 Computing Platform
All experiments in the paper are conducted on NVIDIA V100 GPUs
with PyTorch [23]. And we employ the library developed by [16]5
for the implementation of transformer.

C.2 HAT
In Section 3.6.2, we use the sampling function Sampling𝑐 (·) for
the different category 𝑐 of the tokens during generating. For the
hyperparameters, we follow the setting of [12] for all the categories
except Phrase (that is not modeled in [12]). And we employ the
sampling function with 𝜏 = 1.0 and 𝜌 = 0.99 for Phrase.

C.3 HAT’s three variants
All the hyperparameters of them are the same to HAT. And we use
the models of training loss at 0.05 level for generating, following
HAT.

C.4 Music Transformer
As is mentioned in Section 4.2.1, we adopt HAT-base w/ relative
attention for the implementation of Music Transformer. We repro-
duce the relative attention based on some public codes6. And we
use the models of training loss at 0.05 level for generating, following
HAT.

C.5 CP-Transformer
We follow the official implementation of CP-Transformer [12]7. We
merge the three-track training data into single-track data, because
the original tokenize method of “Compound Word" is proposed
on the single-track setting. To be fair with HAT, we use the basic
Transformer [28] but rather than linear Transformer [16] for the
backbone architecture.

C.6 Objective Evaluation
C.6.1 Chord Detection. In Section 4.4.1, the proposed AGS and
CPR are both dependent on the chord signals. In order to get the

5https://github.com/idiap/fast-transformers. This library is originally developed for
“fast attention" [16] for transformers. But we only use its implementation of the basic
Transformer [28] during all the experiments.
6https://github.com/jason9693/MusicTransformer-pytorch
7https://github.com/YatingMusic/compound-word-transformer

Algorithm 1 Generate a music piece from scratch.
Input: x1 = <BOS>
Output: ŷ = [ŷ1, ŷ2, ..., ŷ𝐿𝐺]
1: 𝑖 ← 0 ⊲ the token index
2: 𝑝𝑖 ← 0 ⊲ the phrase index
3: 𝑝 𝑗

𝑖
← 0 ⊲ the chord index of the phrase

4:
5: T

𝑝
𝑗

𝑖
−1 ← 0 ⊲ the output of Texture Transformer

6: TF𝑝𝑖−1 ← 0 ⊲ the output of Form Transformer
7:
8: do
9: 𝑖 ← 𝑖 + 1
10: Calculate Ex𝑖 and Sx𝑖 using Equation 1-2.
11: if x𝑡𝑝

𝑖
= 𝑝ℎ𝑟𝑎𝑠𝑒 then

12: S𝑝𝑖 ← Sx𝑖
13: Sx𝑖 ← TF𝑝𝑖−1 + Sx𝑖 ⊲ Refer to Equation 5
14: S′𝑝𝑖 ← Sx𝑖
15: if 𝑝𝑖 ≠ 0 then
16: Given T

𝑝
𝑗

𝑖
−1, calculate TF𝑝𝑖−1 using Equation 4.

17: end if
18: 𝑝𝑖 ← 𝑝𝑖 + 1
19: 𝑝

𝑗
𝑖
← 0

20: T
𝑝
𝑗

𝑖
−1 ← 0

21: else if x𝑡𝑝
𝑖

= 𝑐ℎ𝑜𝑟𝑑 then
22: S

𝑝
𝑗

𝑖

← Sx𝑖

23: Sx𝑖 ← S′𝑝𝑖 +T𝑝
𝑗

𝑖
−1 + Sx𝑖 ⊲ Refer to Equation 6

24: Given S
𝑝
𝑗

𝑖

and S𝑝𝑖 , calculate T𝑝
𝑗

𝑖
−1 using Equation 3.

25: 𝑝
𝑗
𝑖
← 𝑝

𝑗
𝑖
+ 1

26: end if
27: S′x𝑖 ← Sx𝑖
28: Given S′x𝑖 , calculate S

′′
x𝑖 using Equation 7.

29: Given S′′x𝑖 , calculate ŷ𝑖 using Equation 8, where we only
replace y𝑡𝑝

𝑖
with ŷ

𝑡𝑝

𝑖
.

30: while ŷ𝑖 ≠ <EOS>

chord annotations, we use the chord detection tool8 of [12] to
extract the chords of the evaluated pieces.

C.6.2 Chord Progression Irregularity (CPI). To calculate CPI [38]
(Equation 12), the 𝑛-grams chord progression is notated as 𝐶𝑖+𝑛

𝑖
,

where 𝑖 is the index of the first chord, then we can obtain CPI value
as follows:

CPI =
Count({𝐶𝑖+𝑛

𝑖
| 𝑖 = 1, 2, ..., 𝐿𝑐 − 𝑛 + 1})
𝐿𝑐 − 𝑛 + 1

,

where Count(·) means the size of the set, and 𝐿𝑐 is the number of
the chords of the music.

8https://github.com/joshuachang2311/chorder

https://github.com/idiap/fast-transformers
https://github.com/jason9693/MusicTransformer-pytorch
https://github.com/YatingMusic/compound-word-transformer
https://github.com/joshuachang2311/chorder

	Abstract
	1 Introduction
	2 Related Work
	2.1 Structure-Enhanced Music Generation
	2.2 Harmony Learning

	3 Methodology
	3.1 Overview
	3.2 Music Tokenization
	3.3 Bottom Song Transformer
	3.4 Hierarchical Structure-Enhanced Module
	3.5 Top Song Transformer
	3.6 Training and Generation

	4 Experiments
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Performance of Music Understanding (EQ1)
	4.4 Evaluation Metrics of Music Generation (EQ2)
	4.5 Performance of Music Generation (EQ3)

	5 Case Study
	6 Conclusion and Future Work
	References
	A Generating a piece from the scratch
	B Dataset of Music Understanding
	C Supplementary Implementation Details
	C.1 Computing Platform
	C.2 HAT
	C.3 HAT's three variants
	C.4 Music Transformer
	C.5 CP-Transformer
	C.6 Objective Evaluation

