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ABSTRACT
The Area Under ROC curve (AUC) is widely used as an evaluation
metric in various applications. Due to its insensitivity towards class
distribution, directly optimizing AUC performs well on the class
imbalance problem. However, existing AUC optimization methods
are limited to regular data such as text, images, and video. AUC
optimization on graph data, which is ubiquitous and important, is
seldom studied. Different from regular data, AUC optimization on
graphs suffers from not only the class imbalance but also topol-
ogy imbalance. To solve the complicated imbalance problem, we
propose a unified topology-aware AUC optimization (TOPOAUC)
framework, which could simultaneously deal with the topology and
class imbalance problem in graph learning.We develop amulti-class
AUC optimization work to deal with the class imbalance problem.
With respect to topology imbalance, we propose aTopology-Aware
Importance Learning mechanism (TAIL), which considers the topol-
ogy of pairwise nodes and different contributions of topology infor-
mation to pairwise node neighbors. Extensive experiments on three
real-world datasets demonstrate the effectiveness of our proposed
method.
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Figure 1: A simple illustration of topology imbalance. Here
different colors represent different classes. We can observe
that, with respect to a pair of positive-negative instance
(𝑣𝑎, 𝑣𝑏 ), there are two kinds of neighbors. 𝑣𝑐 is a common
neighbor for both 𝑣𝑎 and 𝑣𝑏 . The other nodes either belong
to the neighbor 𝑣𝑎 or that of 𝑣𝑏 . Such nodes like 𝑣𝑐 cannot
effectively differentiate 𝑣𝑎 and 𝑣𝑏 , and thus should not be
treated equally as other nodes during message-passing.

1 INTRODUCTION
The Area Under the ROC Curve (AUC), which measures the aver-
age classification performance of a scoring function under different
thresholds, is a widely-used performance metric in various appli-
cations such as classification [44] and bipartite ranking [38]. Com-
pared to accuracy, it is insensitive toward class distributions and
costs. Therefore, AUC is more suitable for long-tailed or imbalanced
datasets, where the quantity of the majority class is significantly
larger than those of the minority class. Motivated by its appealing
properties, in recent years, there has been a surge of studies trying
to optimize AUC directly [34, 42, 43].

Despite the great success they have achieved, existing AUC opti-
mization algorithms are limited to regular data such as texts, sta-
tistics features, and images. In real-world applications, many data
such as websites, social networks, and transportation networks are
usually characterized by the graph structure, where nodes represent
∗Corresponding authors.
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instances while edges indicate the relationship between instances.
In such cases, simply leveraging the existing AUC literature is in-
sufficient to attain a desirable performance since the imbalance
problem on graph data is generally more complicated than regular
ones. On the one hand, similar to regular data structures, graph
learning could suffer from the class imbalance problem in the
sense that the decision boundary may be dominated by the ma-
jority class. On the other hand, since graph learning methods [9]
learn from not only node attributes but also the topology of the
graph, it will suffer from another kind of imbalance, i.e., topol-
ogy imbalance. As shown in Figure 1, under this scenario, when
comparing a pair of positive/negative instances (𝑣𝑎, 𝑣𝑏 ), we have
two kinds of neighbors. 𝑣𝑐 is a common neighbor for both 𝑣𝑎 and
𝑣𝑏 . The other nodes either belong to the neighbor 𝑣𝑎 or that of
𝑣𝑏 . We argue that nodes like 𝑣𝑐 cannot effectively differentiate 𝑣𝑎
and 𝑣𝑏 , and thus should not be treated equally as other nodes dur-
ing message-passing. Moreover, the topological imbalance issue
and class imbalance issue are different in nature. Thus, we have to
consider them simultaneously in our setting.

Recently, ReNode [5] presented an early study targeting the
topology imbalance issues. They denoted topological position by
node influence conflicts, which described that the influence received
at a node is from different classes of nodes after label propagation
[49]. The nodes with high influence conflicts should pay less at-
tention during training and vice versa. Remarkable success as they
made, the weighting mechanism of ReNode is suited to instance-
wise objective and could not be directly applied to AUC optimiza-
tion, whose objective is pair-wise formulated. Besides, ReNode fo-
cuses on direct influences from labeled nodes, losing a fine-grained
investigation of the neighborhood of nodes.

With the above discussions, in this paper, we care about the
following challenge:

Facing the complicated imbalance problem on the graph, how to
develop an effective framework against topology and class imbalance
simultaneously?

To achieve this goal,we present a unified framework, called
unified topology-aware AUCoptimization TOPOAUC, which
relies on two specifically tailored components. First, motivated by
the great success of AUC optimization on the general imbalanced
classification problem, we conduct AUC optimization on the graph
to handle the class imbalance issue in graph learning. Since the task
of graph learning is usually multi-class, we formulate the multi-
class AUC metric as an average of binary AUC in terms of each
class pair. Subsequently, targeting the topology imbalance as shown
in Figure 1, we propose a Topology-Aware Importance Learning
(TAIL) mechanism to simultaneously consider the topology struc-
tures to boost the prediction performance. Concretely, instead of
directly aggregating the topology influence acted on the target
nodes, we investigate the fine-grained topology structure of paired
nodes. Finally, we unify the AUC optimization and the TAIL to
obtain our proposed TOPOAUC framework.

In summary, our contributions are three-fold:
• Wepresent an effective framework, named as unified topology-
aware AUC optimization, which could simultaneously deal
with the topology and class imbalance problem in the task
of graph learning.

• We present the early trial to introduce the AUC optimization
problem to the task of graph learning, which is an effective
way to handle the class imbalance in the graph.

• With respect to topology imbalance issues, we propose the
topology-aware importance learningmechanism,which gives
a fine-grained investigation of the node pair’s neighborhood
to pay different attention to the influences on different node
neighbors.

Empirical experiments on three real-world datasets demonstrate
the superiority of TOPOAUC.

2 RELATEDWORK
2.1 AUC optimization
Since the early study [6] shows that maximizing AUC should not
be replaced by minimizing error rate, it is necessary to explore the
direct AUC optimization methods. At the early stage, most studies
[3, 23, 47] pay attention to the full-batch off-line setting, which
processes all training examples at each iteration in the algorithmic
optimization. Later on, AUC optimization is extended to online
optimization for large-scale data analysis. There are two kinds of
methods for this online AUC maximization: online buffer-based
methods [21, 24, 36] and online statistics-based methods [10, 14, 29].
Subsequently, a mass of studies [8, 16, 41, 45] explore another family
of stochastic optimization algorithms for handling big data, which
process a mini-batch of examples at each iteration for updating the
model parameters.

Later on, since deep neural networks gain great success in com-
puter vision, natural language processing, etc, the applications of
AUC optimization in deep learning [20, 35, 46, 51] have begun to
come under the spotlight. However, to the best of our knowledge,
few works focus on non-Euclidean data such as graphs. We get the
first step to studying the application of AUC optimization for graph
learning.

2.2 Imbalance Classification
The imbalanced classification problem exists in many real scenarios,
such as fraud detection, disease prediction, and topic classification.
As for the regular data (e.g., texts and images), there is a class
imbalance issue where the label distribution is highly skewed. Ex-
isting studies for this issue fall in several directions: 1) re-sampling
methods [17, 19, 30] try to over-sample the minority classes and
under-sample the majority classes to build balanced datasets. This
method may over-fit these repeated samples drawn from the minor-
ity class, or discard the valuable information in the majority class;
2) re-weighting methods [1, 2, 50] punish training samples by the
labeling sizes of each class. Concretely, they attach high penalty
weights to the majority classes and low ones to the minority classes;
3) ensemble learning methods [13, 37] alleviate the problem of poor
classification ability in minority classes by combining a series of
weak classifiers; 4) manual-designed losses [4, 7, 27] attempt to
balance majority/minority classes or simple/hard samples.

Another specific data, i.e., the graph, faces the tougher class im-
balance challenge: the data has non-Euclidean properties, and there
are topological connections between nodes. Most of the studies
mentioned above are not suitable for graphs, which overlook the
topology structure. By borrowing similar ideas from previousworks,
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recently, some methods [31, 33, 40, 48] gain success to solve the
class imbalance on graphs. However, these models ignore another
imbalance problem caused by the topology property of graphs: the
topology imbalance arises from the asymmetry of node connections
shown in Figure 1. ReNode [5] is the first work focused on this issue,
which aggregates global topological information across the whole
graph to locate node positions, and calculate the values to weight
each sample. However, this method has two limitations. First, it
is designed for instance-wise loss functions such that it could not
be directly applied to AUC optimization. Second, it overlooks the
adjacency topology of target nodes. We argue that a fine-grained
investigation of nodes’ neighborhoods helps to better understand
the topology imbalance issues for paired nodes, so as to better solve
this issue.

3 PRELIMINARY
Before formally presenting our method, we first provide a brief
introduction to some important backgrounds.

3.1 Problem Definition
This paper deals with the node classification task. An undirected
graph is denoted byG = {V,E,L}, whereV = {𝑣𝑖 }𝑛𝑖=1 is the node
set of size 𝑛, E = {𝑒𝑖, 𝑗 }𝑖, 𝑗=1, · · · ,𝑛;𝑖≠𝑗 is the edge set, L ⊂ V is the
labeled node set. Usually, we have |L | ≪ |V |. Denote the adjacency
matrix as 𝑨 ∈ R𝑛×𝑛 , and 𝑨̃ = 𝑨 + 𝑰 is the adjacency matrix with
the self connections. Then 𝑨̂ = 𝑫̃

− 1
2 𝑨̃𝑫̃

− 1
2 is the adjacency matrix

normalized by the diagonal degreematrix 𝑫̃ = 𝑑𝑖𝑎𝑔(𝑨̃1𝑛), where 1𝑛
is a column vector with all values of one. The feature matrix of the
node set is denoted by 𝑿 ∈ R𝑛×𝑑𝑓 , where 𝑑𝑓 is the input feature
dimension. Besides, the label matrix is denoted by 𝒀 ∈ R𝑛×𝑁𝐶

where labeled nodes are represented by the one-hot vectors, and
𝑁𝐶 is the number of classes. Given G,𝑿 and 𝒀 , the target of semi-
supervised node classification is to learn a classifier F (such as
a GNN model) from the labeled node set L, such that F could
correctly predict the class of the unlabeled node in U = V − L.
The notations used in this paper refer to in the Appendix.

3.2 Label Propagation
In this subsection, we introduce the Label Propagation (LP) process
[49], which is utilized to measure the influence from a node to
other nodes [39] in our method. The LP process is a random walk
processing starting from labeled nodes, which propagates the labels
of nodes to their neighbor nodes. Along with the iterations of the
propagation, each node will finally be influenced by the class infor-
mation of labeled nodes. Specifically, if we denote the propagated
status at step 𝑡 as 𝒀 𝑡 , the status of the next propagation step 𝑡 + 1
can be formulated as follows:

𝒀 𝑡+1 = 𝛼𝒀 0 + (1 − 𝛼)𝑨̂𝒀 𝑡 , (1)

where 𝛼 ∈ (0, 1] is the restart probability, with which the status are
initialized with the label matrix, i.e., 𝒀 0 = 𝒀 . It could be proved that
the propagation process will converge to a stable status 𝒀★ [11]:

𝒀★ = 𝛼 (𝑰 − (1 − 𝛼)𝑨̂)−1𝒀 . (2)

In this way, the final status 𝒀★ could be viewed as a kind of pseudo
label, depending on two factors: the initial label 𝒀 and the graph

topology (adjacency between nodes). In light of this, we could
measure the influence of the topology on nodes with the topology
influence matrix 𝑷 ∈ R𝑛×𝑛 :

𝑷 = 𝛼 (𝑰 − (1 − 𝛼)𝑨̂)−1, (3)

where 𝑷𝑖 𝑗 can be regarded as the influence of node 𝑗 on node 𝑖 .

4 UNIFIED TOPOLOGY AUC FRAMEWORK
We aim to simultaneously solve the class imbalance and topology
imbalance issues on the graph. Considering the class imbalance, we
propose to directly optimize the AUC metric, which is formulated
as a sum of pairwise losses. As for the topology imbalance issue,
we dive into the topology structure of node pairs, and design a
topology-aware importance learning mechanism. In what follows,
we will introduce them in detail.

4.1 Formulation of AUC Optimization
Since AUC is a well-defined metric that is insensitive to label distri-
bution [12], we first consider directly leveraging AUC on the graph
to tackle the class imbalance problem. Mathematically, in terms of
a score function 𝑓 , AUC measures the probability that a positive
sample achieves a higher score than a negative one [18]:

AUC(𝑓 ) =P
[
𝑓 (𝑥+) > 𝑓 (𝑥−)

��𝑥+∼𝑃P , 𝑥−∼𝑃N ]
=E𝒙+∼𝑃PE𝒙−∼𝑃N

[
I[𝑓 (𝒙+) > 𝑓 (𝒙−)]

]
=1 − E𝒙+∼𝑃PE𝒙−∼𝑃N

[
I[𝑓 (𝒙+) ≤ 𝑓 (𝒙−)]

]
=1 − E𝒙+∼𝑃PE𝒙−∼𝑃N

[
ℓ0,1 (𝑓 (𝒙+) − 𝑓 (𝒙−))

] (4)

where I[𝐴] is the indicator function that equals 1 if 𝐴 holds and
equals 0 otherwise, ℓ0,1 (𝑧) is the zero-one loss function that equals
1 if 𝑧 > 0 and equals 0 otherwise. 𝑃P and 𝑃N are the distribution of
positive samples P and negative samplesN , respectively. From the
last equation in Equation (4), we could see that maximizing AUC is
equivalent to minimizing the following AUC risk:

RAUC (𝑓 ) = E𝒙+∼𝑃PE𝒙−∼𝑃N
[
ℓ0,1 (𝑓 (𝒙+) − 𝑓 (𝒙−))

]
However, directly minimizing the AUC risk is infeasible since it is
hard to obtain the true distributions 𝑃P and 𝑃N . Therefore, given
finite datasets, one typically resorts to the following AUC empirical
risk:

R̂AUC (𝑓 ) =
∑

𝒙+∈P,𝒙−∈N

ℓ0,1 (𝑓 (𝒙+) − 𝑓 (𝒙−))
|P||N | . (5)

Furthermore, note that AUC is suitable for the binary classifica-
tion problem. In order to suit the multi-class situation, we extend
the AUC optimization from binary to multi-class problems. Specifi-
cally, following general methods [28, 42], we turn to optimize the
multi-class AUCmetric defined as a sum of binary class AUC scores
for each class pair:

˜AUC(𝒇 ) =

∑𝑁𝑐

𝑖=1
∑

𝑗≠𝑖 AUC𝑖 | 𝑗
(
𝑓 (𝑖)

)
𝑁𝐶 (𝑁𝐶 − 1) , (6)

where 𝒇 = {𝑓 (1) , · · · , 𝑓 (𝑁𝐶 ) } and 𝑓 (𝑖) is the scoring function for
predicting the 𝑖-th class, AUC𝑖 | 𝑗

(
𝑓 (𝑖)

)
is a variant of AUC(𝑓 ) in
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Figure 2: The illustration of our proposed Topology-Aware Importance Learning mechanism (TAIL). For the node pair (𝑣𝑚, 𝑣𝑘 )
in the input graph, first, we acquire specific nodes from the inter-area and the comple-area, which are parts of two neighbor
sets. Second, we introduce the topology influence by the Label Propagation. Finally, we calculate the importance of the node
pair by aggregating the influence acted on the specific nodes.

Equation (4) for class pair (𝑖, 𝑗). Then given finite datasets, we could
obtain the following multi-class AUC empirical risk:

R̂ℓ =

𝑁𝐶∑
𝑖=1

∑
𝑥𝑚 ∈L𝑖

∑
𝑗≠𝑖

∑
𝑥𝑘 ∈L 𝑗

ℓ

(
𝑓 (𝑖) (𝒙𝑚)− 𝑓 (𝑖) (𝒙𝑘 )

)
𝑛𝑖𝑛 𝑗

, (7)

where 𝑛𝑖 , 𝑛 𝑗 denote the numbers of 𝑖-th and 𝑗-th class samples
separately, and L𝑖 and L 𝑗 are the sample sets for 𝑖-th and 𝑗-th
class, respectively. Herein, we replace the non-differentiable 0-1
loss function to a differentiable and Bayes-consistent [15] surrogate
loss function ℓ (·). Although the above multi-class AUC optimiza-
tion could handle the class imbalance on a graph, it overlooks the
topology structure which is indispensable for constructing a dis-
criminative classifier on the graph. In the next section, we will
elaborate on how to inject graph information to boost the learning
process.

4.2 Topology-Aware Importance Learning
As discussed in Section 1, the imbalance of the topology structure is
also non-negligible for node classification on graph data. However,
existing methods for topology imbalance, like ReNode [5], has two
limitations. First, it is designed for instance-wise loss functions such
that it could not be directly applied to AUC optimization that its
objective is pairwise formulated. Second, it determines the impor-
tance weight of node 𝑖 based on the topology influences 𝑷𝑖 𝑗 from all
node 𝑗 that is from a different class with node 𝑖 , overlooking node
𝑖’s topology structure. We argue that a fine-grained investigation
of nodes’ neighborhoods helps to better understand the topology
imbalance issues for paired nodes, so as to better solve this issue.

Under topology imbalance, nodes in different locations are influ-
enced differently by labeled nodes. Therefore, after label propaga-
tion or several iterations in GNNs, some nodes may receive much
conflictive class information and are hard to discriminate, while
other nodes receive less conflictive class information and possess
more discriminable information. Intuitively, nodes with different
discriminability should be treated differently during training. Back

to our AUC optimization, we need to first study whether a positive-
negative node pair is easy to discriminate. To do this, we dive into
the neighborhood of node pairs to seek some clues. On top of that,
we design a Topology-Aware Importance Learning (TAIL) mecha-
nism to learn from different node pairs, which is shown in Figure
2.

Let us take a closer look at the neighboring nodes of a positive-
negative node pair. For a class pair (𝑖, 𝑗) and a node pair (𝑣𝑚, 𝑣𝑘 ),
where 𝑣𝑚 is of positive class 𝑖 and 𝑣𝑘 is of negative class 𝑗 , denote
node 𝑣𝑚 ’s adjacency neighbors as 𝑨𝑚 (the 𝑚-th row of 𝑨) and
denote node 𝑣𝑘 ’s adjacency neighbors as 𝑨𝑘 (the 𝑘-th row of 𝑨).
We could figure out three sets of neighboring nodes for the node
pair (𝑣𝑚, 𝑣𝑘 ). First, the shared neighboring nodes of 𝑣𝑚 and 𝑣𝑘 ,
denoted as the inter-area set 𝑨𝑚∧𝑘 , which can be determined as:

𝑨𝑚∧𝑘 = 𝑨𝑚 ∧𝑨𝑘 , (8)

where ∧ denotes the AND operation. Secondly, the neighboring
nodes that are adjacent to 𝑣𝑚 alone, denoted the set of such nodes
as the comple-area set 𝑨𝑚\𝑘 , which could be determined by:

𝑨𝑚\𝑘 = 𝑨𝑚 ⊕ (𝑨𝑚 ∧ 𝑨̃𝑘 ), (9)

where ⊕ is the XOR operation, and 𝑨̃𝑘 is the 𝑘-th row in 𝑨̃ (the
adjacent matrix with self connections). Here, we additionally ex-
clude the negative node 𝑣𝑘 since it is in target node pair. The last
set includes all neighboring nodes that are only adjacent to node
𝑣𝑘 , i.e., 𝑨𝑘\𝑚 , which could be obtained similar to Equation (9).

Before discussing how the node sets influence differently w.r.t
node pair (𝑣𝑚, 𝑣𝑘 ), we first introduce topology influence which
refers to the influence between nodes via topology structure. We
use the well-known label propagation models to measure the in-
fluence across different nodes. Specifically, we use the topology
influence matrix 𝑷 as shown in Equation (3), where 𝑃𝑖 𝑗 represents
the influence of node 𝑗 on node 𝑖 . We ignore the influences from
unlabeled nodes and extract the labeled topology influence matrix
𝑷𝑳 ∈ R𝑛×|L | from labeled nodes:

𝑷𝑳 = 𝑷 [:,𝒊𝑳 ] , (10)
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where 𝒊𝑳 ∈ R𝑛 is the index vector of labeled nodes, where a term
value equals 1 if the corresponding node is labeled, otherwise it
equals 0.

Based on the labeled topology influencesmatrix, let us discuss the
aforementioned neighboring nodes. For nodes from 𝑨𝑚∧𝑘 , during
message propagation, they directly act on both node 𝑣𝑚 and node
𝑣𝑘 . There is a tendency for them to smoothen the information of
node 𝑣𝑚 and node 𝑣𝑘 . Therefore, these nodes contribute less to
distinguishing node pair (𝑣𝑚, 𝑣𝑘 ). And the information received by
these nodes should be suppressed during learning. For nodes from
𝑨𝑚\𝑘 , they escape from the above tendency since they only directly
act on the node 𝑣𝑚 . Moreover, there is a high possibility that these
nodes are connected to the nodes from positive class 𝑖 and received
more information of class 𝑖 . Therefore, the information on these
nodes contributes more to distinguishing this node pair and could
be strengthened for model learning. We need not to consider 𝑨𝑘\𝑚
because the multi-class AUC metric will calculate all class pair
(𝑖, 𝑗), ∀𝑖, 𝑗 = 1, · · · , 𝑁𝐶 , and this set of nodes will be considered in
its symmetric class pair ( 𝑗, 𝑖). Motivated by the above intuition, we
design a topology-aware importance learning mechanism to put
different importance on neighboring nodes when model learning.
Let 𝑣𝑚∧𝑘 and 𝑣𝑚\𝑘 be the influence on 𝑨𝑚∧𝑘 and 𝑨𝑚\𝑘 from all
labeled nodes, respectively, where:

𝑣𝑚∧𝑘 =SumPool (FCinter (𝑨𝑚∧𝑘𝑷𝑳)) ,
𝑣𝑚\𝑘 =SumPool(FCcomple (𝑨𝑚\𝑘𝑷𝑳)),

(11)

Herein, SumPool(·) is a sum-pooling layer, FCinter (·) and FCcomple (·)
are fully connected layers for inter-area and comple-area nodes, re-
spectively. The fully connected layers provide a learnable weighting
mechanism to produce the final learning importance.

Recall that we want to decrease the contribution of the confusing
influences aggregated on the inter-area nodes, and increase the con-
tribution of the helpful influences aggregated on the comple-area
nodes. To this end, the final importance of the node pair (𝑣𝑚, 𝑣𝑘 )
during model learning is calculated based on 𝑣𝑚∧𝑘 and 𝑣𝑚\𝑘 :

𝑤 (𝑚,𝑘) = 1 − 𝜎

( 1 + 𝑣𝑚\𝑘
1 + 𝑣𝑚∧𝑘

)
, (12)

where 𝜎 (·) is the Sigmoid function to scale the value to the range
[0, 1].

4.3 Optimization Objective
Finally, in order to tackle the topology imbalance and class im-
balance simultaneously, we integrate topology-aware importance
learning mechanism into AUC optimization and arrive at the fol-
lowing joint objective function:

R̂ℓ =

𝑁𝐶∑
𝑖=1

∑
𝑣𝑚∈L𝑖

∑
𝑗≠𝑖

∑
𝑣𝑘∈L 𝑗

𝑤 (𝑚,𝑘)

𝑛𝑖𝑛 𝑗
ℓ

(
𝑓 (𝑖) (𝒙𝑚) − 𝑓 (𝑖) (𝒙𝑘 )

)
(13)

Here, in terms of the surrogate loss ℓ (·), we adopt three widely
used losses [42] in the experiment part (Section 5), including ℓ𝑒𝑥𝑝 (𝑡) =
𝑒𝑥𝑝 (−𝑡), ℓℎ𝑖𝑛𝑔𝑒 (𝑡) =𝑚𝑎𝑥 (1 − 𝑡, 0) and ℓ𝑠𝑞 (𝑡) = (1 − 𝑡)2, where 𝑡 is
the input of the surrogate loss.

Table 1: Statistics of CORA, CiteSeer and PubMed.

Datasets Nodes Edges Features Classes

CORA 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3

5 EXPERIMENTS
In this section, we first introduce the experimental setup, then
conduct experiments to validate the effectiveness of our proposed
TOPOAUC. All experiments are run on a machine with E5-2620
CPU, TITAN RTX GPU and 256G RAM.

5.1 Experimental Setup
Datasets. We adopt three real-world citation network datasets

[32] for evaluation: CORA, CiteSeer, and PubMed. These datasets
contain sparse bag-of-words feature vectors for each document and
a list of citation links between documents. Following [5, 26], we
treat the citation links as (undirected) edges and construct a binary,
symmetric adjacency matrix 𝑨. The statistical information about
these datasets is shown in Table 1.

Baselines. The backbone model for all methods is GCN [26]
with 3-layers. We implement following baselines for comparison:
Cross Entropy loss (CE), Re-Weight loss (RW) [22], Focal loss
[27], Class Balanced loss (CB) [7], ReNode [5] and AUC loss [42].
Moreover, we use the topological weighting of ReNode [5] to com-
bine with RW, Focal and CB, which are written as: RW+ReNode,
CB+ReNode and Focal+ReNode. Besides, as mentioned in Sec-
tion 4.3, we adopt three popular surrogate losses ℓ𝑒𝑥𝑝 , ℓℎ𝑖𝑛𝑔𝑒 , ℓ𝑠𝑞
to compare:TOPOAUCexp(Ours1),TOPOAUChinge(Ours2) and
TOPOAUCsq(Ours3). Meanwhile, the compared pure AUC losses
also adopt these surrogate losses, which are written as AUCexp,
AUChinge, AUCsq. Due to the special designed losses in graph-
specific methods [31, 33, 40, 48], it’s almost infeasible to replace
with our pairwise TOPOAUC losses. Therefore, we pay more at-
tention to the performance of general losses, and do not consider
these graph-specific methods for comparison.

Metrics. Following existing work in evaluating the imbalance
classification problem [1, 5], we adopt three metrics: macro F1
measure (M-F1), weighted F1 measure (W-F1) and mean AUC score.
M-F1 calculates the unweighted mean of F1 scores for each class.
On the contrary, W-F1 obtains the average weighted by the number
of instances for each class. Besides, the AUC score could evaluate
the rank ability of methods. On the one hand, both M-F1 and AUC
are calculated separately for each class, and can better reflect the
performance of minority classes. On the other hand, W-F1 could
explain the actual situation’s overall performance in all classes.

Setting. Following existing studies [4, 5], we adopt the trans-
ductive setting for the semi-supervised node classification problem.
We select 1

2𝑁𝑐 classes of samples to be the majority classes and the
rest classes to be the minority classes. Since the original datasets
are fully-supervised, to produce a semi-supervised setting, we strat-
ified randomly sample 5% of all the nodes as the labeled nodes for
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Table 2: Performance of different imbalance ratios [10,15,20] on CORA dataset. The results are reported as mean±standard
deviation over 15 repeat experiments, and the best is marked red while the second-best is marked blue.

Dataset CORA
Imbalance Ratio 10 15 20
Metric M-F1(%) W-F1(%) AUC(%) M-F1(%) W-F1(%) AUC(%) M-F1(%) W-F1(%) AUC(%)

CE 47.65±3.68 44.77±5.30 89.17±0.98 46.17±2.32 43.60±5.17 84.96±1.70 42.97±4.83 40.05±7.10 84.79±1.21
RW 50.99±4.91 48.70±7.81 89.90±1.09 47.01±5.43 43.56±4.69 89.47±2.45 43.49±2.97 39.63±4.00 88.56±2.24
RW+ReNode 51.23±4.41 49.50±6.98 90.16±1.10 48.96±4.76 47.51±7.07 89.58±1.88 45.14±3.83 42.00±5.35 88.46±2.37
Focal 52.35±4.43 48.45±7.13 90.73±0.89 47.49±3.69 44.62±4.01 90.21±1.72 44.90±4.68 41.80±5.97 88.48±1.96
Focal+ReNode 53.66±4.13 49.95±6.62 90.98±0.89 48.44±4.40 45.26±4.91 90.29±1.57 45.98±4.11 42.46±5.33 88.71±1.71
CB 52.26±4.98 50.97±7.24 90.29±1.00 47.06±3.59 43.56±4.54 89.70±1.61 44.84±4.47 40.16±4.77 88.76±2.09
CB+ReNode 52.50±5.38 51.28±6.94 90.51±0.97 48.40±5.05 47.30±7.29 89.74±1.44 46.69±4.69 42.51±6.00 88.87±1.85
AUCexp 56.04±4.37 53.40±6.80 93.37±0.80 44.67±3.76 41.04±6.06 89.69±1.47 45.19±4.71 39.67±4.34 89.92±1.88
AUChinge 55.74±8.79 53.41±11.15 92.76±0.67 45.10±3.67 39.89±5.17 89.90±1.83 45.35±3.43 39.99±4.69 90.04±1.93
AUCsq 56.79±4.89 54.53±8.11 93.43±0.91 44.21±3.76 39.46±4.48 89.82±2.00 46.43±5.63 42.05±7.07 89.81±2.12
TOPOAUCexp(Ours1) 59.36±3.96 58.51±4.43 93.43±0.73 49.66±7.55 48.17±8.64 90.44±1.68 48.80±6.61 46.58±5.40 90.78±1.39
TOPOAUChinge(Ours2) 58.65±5.39 56.14±7.14 93.21±0.66 50.25±5.12 47.98±3.39 90.72±1.71 47.64±6.69 45.54±8.25 90.55±1.57
TOPOAUCsq(Ours3) 60.90±4.85 60.06±6.14 93.51±0.57 51.32±3.53 48.02±4.46 90.53±1.84 49.70±7.71 49.44±9.27 90.42±1.68

Table 3: Performance of different imbalance ratios [10,15,20] on CiteSeer dataset.

Dataset CiteSeer
Imbalance Ratio 10 15 20
Metric M-F1(%) W-F1(%) AUC(%) M-F1(%) W-F1(%) AUC(%) M-F1(%) W-F1(%) AUC(%)

CE 49.46±8.87 52.29±9.73 80.86±2.16 36.11±2.99 37.38±3.33 76.65±1.88 30.11±3.74 30.88±4.19 74.68±2.30
RW 52.69±6.66 57.03±7.92 86.20±1.26 41.75±4.22 44.24±4.46 83.96±1.19 38.81±6.43 41.74±7.19 80.72±2.84
RW+ReNode 51.77±6.53 56.47±6.42 86.86±1.12 42.48±4.91 45.21±5.39 83.99±1.15 41.10±8.83 44.03±9.48 80.60±3.34
Focal 54.05±5.34 58.28±5.68 85.23±1.47 44.97±5.50 47.76±6.19 83.93±1.36 39.32±5.85 41.67±6.37 81.66±1.85
Focal+ReNode 54.33±5.05 58.47±5.35 86.61±1.33 44.98±5.56 47.97±6.16 83.97±1.34 39.59±7.26 42.20±7.89 81.37±1.97
CB 48.43±6.24 52.45±6.64 85.63±1.48 41.32±6.93 45.04±7.20 83.58±1.05 36.69±6.00 39.17±6.45 81.10±1.73
CB+ReNode 53.57±6.43 57.37±6.65 86.98±1.43 43.31±4.63 46.88±4.90 84.56±1.30 40.58±4.20 43.80±5.10 81.80±2.05
AUCexp 46.19±9.04 49.51±9.70 86.57±1.48 45.97±6.65 48.85±7.56 85.00±0.92 41.22±9.15 43.60±9.87 82.10±2.39
AUChinge 41.65±8.93 44.87±9.77 86.20±1.41 47.89±7.79 50.72±8.82 84.69±1.11 41.43±9.26 43.79±9.91 82.02±2.50
AUCsq 44.03±6.26 47.58±6.68 86.51±1.14 48.13±7.63 50.82±8.54 84.90±0.93 41.62±7.79 44.12±8.51 82.08±2.05
TOPOAUCexp(Ours1) 52.52±10.02 56.12±10.98 87.20±1.33 47.28±7.11 51.17±7.64 85.22±1.17 48.68±6.86 51.92±7.58 83.24±2.16
TOPOAUChinge(Ours2) 50.51±8.05 54.76±8.34 87.03±1.15 49.31±5.05 52.59±5.67 84.77±1.34 48.51±7.13 51.75±7.86 83.17±2.21
TOPOAUCsq(Ours3) 51.99±7.30 56.33±7.40 87.11±1.05 51.97±5.13 55.43±5.74 85.00±1.31 49.94±6.52 53.56±7.30 83.42±2.06

training, while the remaining 95% are regarded as unlabeled nodes.
For these labeled nodes, each minority class has 𝑛𝑚𝑖𝑛 samples and
each majority class has 𝑛𝑚𝑎𝑗 = 𝑟𝑖𝑚𝑏 ∗ 𝑛𝑚𝑖𝑛 samples, where 𝑟𝑖𝑚𝑏 is
the imbalance ratio searched from [10, 15, 20]. The value of 𝑛𝑚𝑖𝑛

is calculated based on the total number of training samples. For
the remaining 95% nodes, we randomly select 30 nodes per class to
produce the validation set, and the rest nodes serve as the test set.
To demonstrate the stability of methods, we use five different ran-
dom seeds [0, 1, 2, 3, 4] to split datasets and three different random
seeds [0, 1, 2] to initialize parameters, then record the mean and
the standard deviation of the three performance metrics on these
15 repeated experiments.

During training, we take Adam [25] as the model optimizer.
The learning rate is selected from [0.005, 0.0075, 0.01, 0.015], and it

begins to decay after 10 epochs with a ratio of 0.95. The max size of
epochs is 500, and the training process will be early stopped if there
is no improvement in 20 epochs. Details of other hyper-parameters
are referred to in the Appendix.

5.2 Results Analysis
The experimental results on CORA, CiteSeer, and PubMed datasets
are shown in Table 2, Table 3 and Table 4, respectively. Furthermore,
to illustrate the stability of our method on 15 randomly repeated
experiments, we draw the results on CiteSeer and PubMed when
𝑟𝑖𝑚𝑏 = 20 in Figure 3.

From the observations of Table 2-4 and Figure 3, we can find that
our proposed TOPOAUC outperforms all the competitors over M-
F1, W-F1, and AUC metrics at different imbalance ratios in the most
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Table 4: Performance of different imbalance ratios [10,15,20] on PubMed dataset.

Dataset PubMed
Imbalance Ratio 10 15 20
Metric M-F1(%) W-F1(%) AUC(%) M-F1(%) W-F1(%) AUC(%) M-F1(%) W-F1(%) AUC(%)

CE 72.68±0.76 74.56±0.84 91.94±0.30 69.59±1.86 71.53±1.96 91.08±0.60 67.59±1.74 69.59±1.85 90.42±0.70
RW 78.53±1.17 79.84±1.11 93.52±0.34 77.87±0.53 79.16±0.68 93.28±0.40 76.95±1.36 77.95±1.50 92.51±0.64
RW+ReNode 78.94±0.96 80.21±1.04 93.65±0.35 78.27±0.51 79.57±0.59 93.40±0.35 76.61±1.28 77.53±1.43 92.41±0.62
Focal 79.12±1.11 80.40±1.01 93.64±0.34 77.83±1.04 79.25±1.02 93.34±0.32 76.90±1.42 78.29±1.48 92.97±0.47
Focal+ReNode 79.20±0.76 80.52±0.75 93.71±0.26 78.17±0.67 79.60±0.67 93.43±0.26 77.27±1.33 78.64±1.37 93.02±0.46
CB 78.20±1.40 79.42±1.50 93.46±0.38 77.58±0.63 78.94±0.69 93.11±0.33 77.03±1.52 78.38±1.53 92.96±0.46
CB+ReNode 78.52±1.09 79.80±1.14 93.52±0.32 77.91±0.71 79.27±0.64 93.19±0.31 77.47±1.41 78.86±1.39 93.11±0.42
AUCexp 79.41±0.91 80.68±0.84 93.62±0.30 78.36±0.53 79.69±0.50 93.30±0.25 77.59±1.53 78.86±1.52 92.85±0.47
AUChinge 79.43±0.90 80.77±0.80 93.60±0.29 77.76±0.74 79.17±0.69 93.18±0.31 77.53±1.27 78.93±1.22 92.90±0.45
AUCsq 78.84±0.69 80.13±0.62 93.51±0.25 78.13±1.49 79.30±1.40 92.99±0.43 77.55±1.70 78.67±1.79 92.85±0.49
TOPOAUCexp(Ours1) 79.91±0.45 81.23±0.46 94.06±0.21 78.96±0.77 80.30±0.71 93.70±0.20 77.92±1.10 79.29±1.09 93.33±0.26
TOPOAUChinge(Ours2) 79.48±0.74 80.88±0.71 93.88±0.21 78.31±0.76 79.74±0.65 93.51±0.21 77.75±1.32 79.13±1.30 93.22±0.34
TOPOAUCsq(Ours3) 79.45±0.72 80.79±0.70 93.87±0.22 78.41±1.58 79.64±1.52 93.40±0.27 77.93±1.12 79.24±1.08 93.23±0.21

(a) M-F1 on CiteSeer (b) W-F1 on CiteSeer (c) AUC on CiteSeer

(d) M-F1 on PubMed (e) W-F1 on PubMed (f) AUC on PubMed

Figure 3: Illustrations of results on CiteSeer and PubMedwhen the imbalance ratio 𝑟𝑖𝑚𝑏 is set to 20. These boxplots are variants
that show the minimum, mean-standard deviation, mean, mean+standard deviation, and maximum of the corresponding
metric over 15 experiments.

cases. Moreover, we have the following observations: 1) The general
class-imbalance methods (RW, Focal, and CB) are less effective than
the AUC optimization methods (AUCexp, AUChing and AUCsq) and
our TOPOAUC methods. This shows that directly optimize AUC

could better alleviate the class imbalance problem. 2) ReNode ob-
tain the relatively worse performance than our TOPOAUCmethods.
This may be due to that ReNode fails to consider nodes’ topology
structure. Besides, the static weighting method of ReNode may be
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(a) importance values of TOPOAUCexp when 𝑟𝑖𝑚𝑏 = 20 (b) importance values of TOPOAUChinge when 𝑟𝑖𝑚𝑏 = 20 (c) importance values of TOPOAUCsq when 𝑟𝑖𝑚𝑏 = 20

Figure 4: Effectiveness of TAIL on CODA dataset. Each heatmap shows the decrease of importance values for 20 node pairs in
the first 40 epochs.

(a) M-F1 results when 𝑟𝑖𝑚𝑏 = 20 (b) W-F1 results when 𝑟𝑖𝑚𝑏 = 20 (c) AUC results when 𝑟𝑖𝑚𝑏 = 20

Figure 5: Performance of model depth (number of GCN layers) on CORA dataset. Markers are denoted as the mean values of
the corresponding metric in 15 repeated experiments.

insufficient to solve topology imbalance. 3) Compared with AUC op-
timization methods, the corresponding TOPOAUCmethods achieve
better results over all metrics. This shows that solving the topology
imbalance issue is vital for node classification and our methods
provide an effective way to solve the topology imbalance issue.
Effectiveness of TAIL.We record the changes of𝑤 (𝑚,𝑘) for our
methods at an imbalance ratio of 20 in Figure 4. We could observe
that corresponding importance values of almost all node pairs de-
crease continuously with the training process. Among them, we
could see that importance values of TOPOAUCexp and TOPOAUCsq
have a more obvious downward trend than TOPOAUChinge, which
is consistent with the higher performance shown in Table 2.
Studies on themodel depth.To study the effectiveness of our pro-
posed method in different model depths, we conduct experiments
on the number of GCN layers and show the results on the CORA
dataset when 𝑟𝑖𝑚𝑏 = 20 in Figure 5. The results when 𝑟𝑖𝑚𝑏 = 10 and
15 are recorded in Appendix. We could observe that the best M-F1,
W-F1 and AUC values are all obtained with a 3-layer model at differ-
ent imbalance ratios. This may be because the model starts to suffer
from over-fitting or over-smoothing as model depth increases.

6 CONCLUSION
In this paper, we start an early exploration to apply AUC optimiza-
tion to graph learning. Facing the complicated imbalance graph data,

we propose a unified topology-aware AUC optimization framework,
called TOPOAUC, which could simultaneously handle the class and
topology imbalance issues induced by the graph data. Concretely,
we present a multi-class AUC optimization framework to deal with
the class imbalance on the graph. Meanwhile, a topology-aware
importance learning mechanism is proposed against the topology
imbalance problem, which could inject graph topology informa-
tion to the AUC optimization objective. Finally, empirical results
on three real-world datasets demonstrate the superiority of our
proposed framework for node classification.
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