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ABSTRACT

Repetition, a basic form of artistic creation, appears in most musical
works and delivers enthralling aesthetic experiences. However, rep-
etition remains underexplored in terms of automatic music compo-
sition. As an initial effort in repetition modelling, this paper focuses
on generating motif-level repetitions via domain knowledge-based
and example-based learning techniques. A novel repetition trans-
former (R-Transformer) that combines a Transformer encoder and
a repetition-aware learner is trained on a new repetition dataset
with 584,329 samples from different categories of motif repetition.
The Transformer encoder learns the representation among music
notes from the repetition dataset; the novel repetition-aware learner
exploits repetitions’ unique characteristics based on music theory.
Experiments show that, with any given motif, R-Transformer can
generate a large number of variable and beautiful repetitions. With
ingenious fusion of these high-quality pieces, the musicality and
appeal of machine-composed music have been greatly improved.
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1 INTRODUCTION

Repetition, an act or an instance of repeating or being repeated, is
ubiquitous in everyday life. It manifests in DNA sequencing; the
Earth’s rotation; and activities such as swinging, exercising, and
writing poems. It further influences people’s daily lives through
the changing of seasons, tidal variation, and so forth.

In music world, repetition and its variants generate musical phan-
tasmagoria with thrilling effects. Let’s begin our exploration of this
simple composition skill from the appreciation of a well-known
classical work, Beethoven’s Fifth Symphony (Figure 1). An eighth
note at the pitch of “G” with its two repetitions rings out, breaking
the stillness, delivering a strong and firm signal. Then, a half note
at the pitch of “E-flat” ends the motif succinctly that leaves the
listener with a sense of breathlessness, dread and anticipation for
the music to come. The “G”s and the “E-flat” make up a descending
Major 3rd interval and this is the famous fate motif, which delivers
a feeling of “fate knocking at the door”. Then, a transpositional
repetition (TrR) of the fate motif that is the same motif repeats in a
lower tone makes the atmosphere more solemn and dignified. In
the second phrase, a strict repetition (StR) of the fate motif appears
again with the same pitch value but longer “E-flat”, leading to a
smooth expansion of spectacular views. A homodirectional repeti-
tion (HoR) of triple “A-flat” and “G” triggers a precarious feeling. A
subsequential repetition (SuR) “G-G-G-D” occurs with a long “D”
note, forms a similar but lower “platform” like the strict repetition
of the fate motif, embodying a groaning of the spirit. In addition,
a transpositional repetition reaches a higher pitch, making the at-
mosphere more intense and enormous. In the third phrase, after a
few alternating downward and upward notes, the appearance of
a symmetric repetition (SyR) offers an upward movement, mak-
ing a contrast that is distinct compared with other motifs. Three
variants, a homodirectional repetition, a subsequential repetition,
and a symmetric repetition, ring out together, forming a sense of
contraction, bringing the piece to a tranquil state, symbolizing a
truce, and heralding the arrival of a greater storm.

Music from every genre, culture, and period employs repetition
for effect, yet these patterns have rarely been studied in machine
composition [26]. One of music’s most repetition-obsessed com-
posers, Steve Reich, exemplified this phenomenon in “The Desert
Music” [21]. Repetition in music does not simply entail identical
elements but rather echoing elements in a new way [10]. In other


https://doi.org/10.1145/3503161.3548130
https://doi.org/10.1145/3503161.3548130
https://doi.org/10.1145/3503161.3548130

MM °22, October 10-14, 2022, Lisboa, Portugal.

Motif-level variants

Zhejing Hu et al.

A combination of variant motifs

1 Phrase | 2" Phrase 3 Phrase |
| }I. oo = s :
‘ - [ o ) = —
| _‘.} = —aEm _ !
I L S - = oo =
| | 5 = i
: — = oa i
Transpositional 5| hmm I | e !
Repetition & S Time
The Fate Motif Time
5 EEE‘ =| mmm
£ G v G
&g~ = —1* Strct Z T —
Th}:‘ne Repetition T'F 1% Phrase Ending of the theme
me
5| /E\?:B‘?:' Motif
— &=
a
Time
Symmetric 5 i
Repetition =) :-:_
Time

Figure 1: Beethoven’s Fifth Symphony (simplified). The first four-note is the most recognizable “fate motif”.

words, patterns of repetition are more than composition skills—they
invite listeners to participate.

Repetition can be categorized along multiple dimensions since it
is diverse, complicated, and includes different composition forms.
First, different criteria can be used to classify repetition (e.g., pitch
values, rhythm, and harmony) [6, 37]. To avoid overlap due to
different criteria, we focus on the in-depth deconstruction of musi-
cal repetition in terms of pitch value (Table 1). Second, repetition
can be divided by level—the note level, motif level, phrase level,
and period level. As the most basic analyzable and meaningful ele-
ment of a musical composition, motifs create dynamic coherence
through repetition, variation, and combination at different scales
[25]. Therefore, motif-level repetitions are examined in this paper.

The diversity and complication of repetition in music further
results in two challenges. First, the scarcity of repetition-related
data precludes investigation of different repetition types. No public
dataset is available to specify repetition types; it is accordingly
difficult to further analyze music repetition. Second, how to produce
and combine explicit repetitions to make pleasant music is still
challenging. Currently, some work uses rule-based and statistical
methods to construct long-term repetitive structures [3, 5, 8, 12, 29].
Others employ memory modules in deep learning models, such
as long short-term memory (LSTM) and Transformer, to generate
music [4, 13-15, 22, 33]. However, these models cannot generate
explicit repetition types since they lack the domain knowledge
of music repetition types. It is hard to understand and follow the
structure and direction of the generated music.

To surmount these obstacles, we first present a new dataset,
Music Repetition Dataset (MRD), with repetition labels based on
these definitions. We also develop a novel model called Repetition
Transformer (R-Transformer) that can be controlled to generate
designated music repetition given a music piece. This model com-
bines music knowledge and a Transformer encoder. The domain
knowledge-based mechanism allows the model to explicitly follow
music theory while the transformer encoder mechanism enables
the model to learn the representation of notes. In this model, a
novel repetition-aware learner is designed to generate different rep-
etitions based on their unique characteristics learned from a Trans-
former encoder. Based on multi-aspect attribute representation in

music repetition, parameters in repetition-aware learner can be con-
trolled to exploit unique characteristics of different repetitions. To
better produce different repetition types, a reconstruction and clas-
sification cooperation method is proposed to train R-Transformer.
In generation phase, a rule-based generation module is applied to
generate the designated repetition given an repetition type, which
helps users control the process of composing different repetition
types. They can thus create music more precisely.

The rest of this paper is organized as follows. In Section 2, we
review related work on music repetition generation. In Section 3,
we describe the proposed method in detail. Sections 4 and 5 discuss
the implementation details and experimental results. We close with
our conclusions and directions for future work.

2 RELATED WORK

Different from rule-based [5] or convolutional neural network
(CNN)-based generation models [2, 7, 35], Transformer [31] has
been widely adopted as the backbone generative model: the “self-
attention” mechanism can provide a much longer memory so the
model can learn the repetitive structure of music. Music Trans-
former [14] was the first Transformer-based model in symbolic
music generation, showing that a Transformer model can generate
coherent minute-long polyphonic piano music with reasonable rep-
etitions and variance. Other Transformer-based models have since
been proposed to generate music [9, 13, 15, 17, 24, 28, 36]. These
models can learn musical features without hand-crafted rules and
produce diverse music pieces. However, without studying music
repetition and analyzing the music structure, the model tends to
lose a specific sense of direction [11] and the generated music tends
to be random without rhythmic patterns [34]. Overall, machine
learning-based models continue to struggle to adhere to certain key
musical ideas in composition and to generate repetitive rhythmic
patterns.

Scholars have sought to analyze the hierarchical structure of
music to generate repetitive music patterns [3, 16, 23, 32]. Recently,
MusicFramworks [4] was proposed to use a Transform and LSTM-
based model to create a full-length melody guided by a long-term
repetitive structure. PopMNet [33] involves a structured generation
network and a melody generation network based on the structural
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Table 1: Types of repeated patterns in terms of pitch.

Scale No. Repetition Name Definition

Note 1 Same note Two notes are the same.
2 Same pitch class Two notes are in the same pitch class.

Motif 3 Strict repetition ((StR) Two motifs are the same.
4 Transpositional repetition (TrR)! Two motifs have the same relationships between pitches but with a different tone.
5 Subsequential repetition (SuR)  Two motifs are not identical or transpositional, but share a common subsequence.
6 Homodirectional repetition (HoR) Two motifs are not SuR, but have homodirectional repetition development?.
7 Symmetric repetition (SyR) Two motifs are not SuR, but have similar symmetric repetition development.

Phrase 8 Similar melody Two phrases have similar melody.

Period 9 Structural repetition Two periods have similar structure.

representation and chord progression of input music. MELONS [37]
entails a multi-step generation method with Transformer-based
models and graph representation for music structure generation
and structure-conditional melody generation. Theme Transformer
[30] achieves theme-based conditioning by producing it multiple
times in the generation result so that the output music follows the
thematic material. These models were constructed based on the
structure of music from multiple levels (e.g., the motif level and
phrase level). Generating music based on the structure of the music
can relieve the problem that generated music might lose a specific
sense of direction. Yet none of these models studies music repeti-
tion modeling and they cannot generate explicit repetition types.
Without modeling music repetition, users cannot control repetition
and music trend. Generating repetitive patterns and understandable
music rhythmically is still a challenge in these models.

3 METHOD

In this section, we introduce our R-Transformer architecture and
elaborate on classification and reconstruction cooperation learning
to train R-Transformer from scratch. Figure 2 provides an overview
of the architecture. We feed the input music and its repetition type
into the model, where the raw input is first tokenized and then
embedded to multiple attribute-embedding vectors followed by a
Transformer encoder and a repetition-aware learner. There are three
major modules in R-Transformer: 1) a multi-attribute-embedding
layer; 2) a single backbone Transformer encoder applied to all music
attributes; and 3) a repetition-aware learner to learn each attribute
separately. A reconstruction and classification cooperation training
strategy is proposed in this paper to generate different repetition
types.

Mathematically, given an input music repetition after tokeniza-
tion x € X and a repetition type y € Y, where X € RI*K s the
input space and Y € RM is the label space. L is the length of the
input, K is the number of music attributes such as note pitch, note
duration, and etc., and M is the number of repetition types. The
goal is to generate a new piece of music x € X, where X ¢ RIXK,
Let fe : X — Y be the label learning pipeline and f; : X — X be

Both chromatic and diatonic transposition are considered. Chromatic is scalar trans-
position within the chromatic scale, implying that every pitch in a collection of notes is
shifted by the same number of semitones. Diatonic transposition is scalar transposition
within a diatonic scale (a standard scale under some tonality indicated by a certain
standard key signature).

?Development: the direction of the pitch sequence from one note to the next.

the data reconstruction pipeline of R-Transformer. We define an em-
bedding space H € RI*H1 and a feature space F € RE*Hz2, where
Hj and Ha are embedding and feature dimensions. We also define
four additional functions: 1) a multi-attribute-embedding mapping
Jemb : X — H; 2) an encoder/feature mapping gene : H — F; 3) a
decoder ggec : F — X; 4) a feature-labeling function gpp : F — Y.
The label learning pipeline f. and the reconstruction pipeline f;
can be decomposed such that

fe(%) = (g1ab © Genc © Gemb) (X), (1)

fr(%¥) = (gdec © genc © Gemb) (X, Y), (2)

where o is the composition of two functions. In Equation 1, the
embedding geyp is a multi-attribute embedding module (Figure
2 (a)). The encoder genc is a Transformer encoder (Figure 2 (b)).
The labeling module gj,}, consists of a linear projection (Figure 2
(). In Equation 2, the output of genc is concatenated with a target
repetition label y and fed into gge., which consists of K linear
projection layers to predict K attributes of the output music (Figure

2 ().

3.1 Multi-Attribute Embedding

In this step, a multi-attribute embedding module is implemented to
embed multi-aspect attributes of the music separately, which con-
tain music information such as note pitch, note duration, and so on.
The input music x is embedded and the output of multi-attribute em-
bedding g, after concatenation is [Embed; (x.1), - - , Embedg
(x. k)], where Embedy (-) is the embedding layer of k-th attribute
and [+, -] is the action of concatenation.

3.2 Transformer Encoder Architecture

We adopt the most established Transformer encoder architecture
[31], which has been frequently applied in music generation as
of late [13, 37]. We follow the standard Transformer encoder ar-
chitecture [31] and illustrate it in Figure 2 (b). The sequence of
input tokens to the Transformer encoder is gemp (X) + €pos, Where
€pos € REXH1 jg a positional embedding vector. The output in the
Transformer encoder is used as the aggregated representation for
the entire input sequence. This output will later be used for clas-
sification (gy,) and reconstruction (gge.)- We employ a standard
self-attention as the multi-head-attention module with GeLU [31]
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Figure 2: A general framework for R-Transformer. R-Transformer linearly embeds multi-aspect attributes and feeds them into
a Transformer encoder. We define a repetition-aware learner that can account for the contributions of different attributes. We
employ one classification and one reconstruction loss to train the model.

as the activation in the linear projection layer. We also use layer nor-
malization [1] after the multi-head-attention and linear projection
modules.

3.3 Repetition-aware Learner

In this step, we propose a novel repetition-aware learner module to
train the model and generate music. The output of genc is fed into a
feature-labeling function g}, to predict the repetition type y. genc
is also fed into a linear decoder gqe. concatenated with the target
repetition label to reconstruct the input music x.

Specifically, we first define a repetition learning matrix that
enables us to directly control the training process following the def-
inition of repetition types. Then, a reconstruction and classification
cooperation learning strategy is proposed to train the model.

Repetition learning matrix: It is known that different rep-
etition types have different characteristics; and different motifs
have different representations. To learn these differences, we study
multi-aspect attributes by first defining a repetition learning matrix
A e RIXK,

The element a; 1, in repetition learning matrix A can be calculated
as

af =y - (L+ o), ®)
where y is an attribute importance hyper-parameter that controls
the importance of each attribute. 0 < w < 1 is determined by the
appearance frequency of each element in the music and can be
calculated as
Counter(xp k., X k)

O = i3 > 4)

where Counter(-) is a function that counts the occurrence number
of each element in each attribute.

The process of repetition-aware learning is depicted in Figure 2
(c). The main intuition behind the multi-aspect attribute learning is
from two aspects. First, as described in Table 1, different attributes
represent differently in different types. Although pitch is the main
attribute that determines repetition types, other attributes such
as note duration, note position and note velocity also contribute
differently. For example, strict repetition (StR) have same number of
notes and pitch values are identical, while subsequential repetition
(SuR) of two motifs might have different number of notes and
different position, duration and velocity of notes. Therefore, in SuR,
y in Equation 3 will be given a higher attribute importance if k is
pitch, position, duration and velocity. Second, the representation
of different motifs varies within the same repetition type. In other
words, the distribution of each attribute is totally different among
motifs. For example, in pitch dimension, “C3-D3-E3-F3-G3” and
“C3-D3-C3-E3-C3” have different representations. If k is pitch, then
aj k., az k and as ;. will be larger based on Equations 3 and 4 in the
latter case, since “C3” appears more frequently than other pitch
values.

Learning algorithm: Given labeled input music samples {(x;,
Yi)}?il, where y; € {0, 1}M is a one-hot vector with M classes and
N is the number of music samples. Let 60, = {fcmb, Oenc, O1ap } and
0r = {Ocmbs Oencs Odec} denote the parameters of the label learning
pipeline f. and the data reconstruction pipeline f;. Oepp and fenc
are shared parameters for the embedding gepnp, and feature mapping
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Jenc- Let €. and ¢, be the classification and reconstruction loss, re-
spectively. Based on Equations 1 and 2, we first define the empirical
classification loss as

N

Lc({gemb) Oenc, elab}) = Z te (fC(Xi; {gemb’ Oenc, elab})> Yi)- (5)
i=1

Typically, £ is of the form cross-entropy loss Z%:l yrlogl fo(%x)]m
(recall that fz(x) is the softmax output). In addition, the attribute
reconstruction loss is defined as

N
Lr({eemb, Oenc, edec}) = Z b (fr (Xis Yis {eemb; Oencs edec}); f(i)~

i=1
(6)
¢ is of the form squared loss combined with repetition learning
matrix:

& =1A® x-fi(xy)I3, @)

where ® is the element-wise product of two matrices.
The final objective of our proposed method to minimize the total
loss L and is formulated as follows:

min AL ({embs Oencs Otab })+(1=2) Lr ({Oembs Oencs Odec )
OembBenc:Odec-Orab
®)

where 0 < A < 1 is a hyper-parameter controlling the trade-off
between classification and reconstruction. The objective is a convex
combination of supervised and unsupervised loss functions.

The objective in Equation 8 can be achieved by minimizing L.
and £, using stochastic gradient descent. The stopping criterion
for the algorithm is determined by monitoring the average total
loss during training — the process is stopped when the average total
loss stabilizes.

Rule-based generation: In the generation phase, only the re-
construction pipeline in the repetition-aware learner will be acti-
vated to generate the output, that is, X = f, (x, y) where x and y are
the input music and the designated repetition type. In addition, we
also update the results by following the definition of different repe-
titions based on music theory. For instance, in a StR, the pitch value
is assumed to be identical to the input motif, so we fix the pitch
value. Specifically, if k represents pitch, then % = x; ;. In a TrR,
the difference of pitch value is assumed to be fixed, so we follow
the rule to generate pitch value after the first pitch value is pre-
dicted. Specifically, if k represents pitch, then x; ;. = x; ;. +t, where
t={--,-2,-1,1,2,-- -} is a transposition value. In SuR, HoR and
SyR, the representation of different notes is learned by the model,
so all music attributes are generated based on the example-based
mechanism. Furthermore, user can generate multiple repetition
types by giving the model multiple labels. For example, the model
can generate four motifs sequentially if four labels are given. The
training and generation phase of R-Transformer learning algorithm
is summarized in Algorithm 1. In terms of StR and TrR, the proposed
model utilizes rule-based generation to ensure the pitch attribute
is identical to the input. In addition, example-based mechanism al-
lows the proposed model to learn representations in terms of other
attributes from music examples, which makes the output music
diverse to hear.
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Algorithm 1 R-Transformer in the training & generation phase.

Training phase:
Input: Music data {(x;, yi)}f\il
Parameter: Learning rate «, trade-off parameter 1

Output: Optimal parameters 0" = {07 . 0%, 0. 605,
1: Initialize parameters Gemp, Genc, Olab, Odec
2: while not converge do
3. for each batch of size n do
4 Do aforward pass fo(X) = (giab © enc © Gem) (X);
5 Doaforward pass f1(x,y) = (daec © genc © Gemb) (X, );
6 Calculate repetition learning matrix A based on Equations
3 and 4;

7: Update 0 : 0 «— 0 —a vy L™(0);
8: end for
9: end while

Generation phase:

Input: Music data x and designated repetition type y
. 0% * *

Parameter: 07 .00, ? e

Output: Output music x

1: if y is StR then
2. if k is pitch then
3 Xk = Xk

4 endif

5: else if y is TrR then
6. if k is pitch then
7 ﬁl,k =Xkt t;

8. endif

9: else

10: X = fr(%y) = (gdec © genc © Jemb) (X, ¥);
11: end if

4 EXPERIMENTAL CONFIGURATIONS

We train our model using the Pop piano dataset from [13] because
the structures in pop music are relatively simple. In addition, this
dataset covers all repetition types shown in Table 1. This dataset
contains 1,748 pieces of pop piano from the Internet. All songs are
in 4/4 time signature, and each song is converted into a symbolic
sequence following transcription, synchronization, quantization,
and analysis.

4.1 Music Repetition Dataset

Subsequential
Repetition

Transpositional
Repetition
(TrR

Repetition
SyR)

Figure 3: Examples of five repetition types in MRD.
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We further partition the music piece into motifs. After partition,
we compare the pitch value of all motifs. Pitch and development
are used since they are both commonly used in music creation, and
can be easily recognized and understood by the audience [27]. If
two motifs satisfy the definition in Table 1, then it is a repetition;
otherwise, it is not a repetition. In StR, the pitch value of all notes
should be identical. For other repetition types, the melody of the
note sequence is compared if the music contains both melody and
accompaniment.

Table 2: Percentage of different repetition types in training
and test dataset of MRD.

Dataset Repetition Numbers Percentages Avg Length (tokens)

Training StR 21807 3.88% 64.93
TrR 27852 4.95% 62.94

SuR 73774 13.11% 73.74

HoR 152060 27.02% 59.68

SyR 287070 51.03% 64.62

Test StR 1395 6.41% 61.22
TrR 1635 7.51 % 60.81

SuR 3331 15.31% 69.71

HoR 5038 23.15% 64.68

SyR 10367 47.63% 68.97

In SyR, the development of two motifs exhibiting vertical, hori-
zontal or rotational symmetry constitutes a symmetric repetition.
Inversion is an extreme case in horizontal symmetry where as-
cending developments are made to descend by the same degree
[19]. For example, if the original motif is “E4-D4-E4-G4” (Down-Up-
Up), then horizontal symmetry “E4-F4-E4-C4” (Up-Down-Down),
vertical symmetry “E4-F4-G4-F4” (Up-Up-Down) and rotational
symmetry “E4-D4-C4-A4” (Down-Down-Up) are symmetric repeti-
tion. In addition, in SuR, HoR, and SyR, we set the similarity of two
pitch sequences or development sequences as 75 %. We omit motifs
that satisfy both HoR and SyR (e.g., “C4-D4-E4” and “C4-E4-G4”),
as this situation might lead to overlap between repetition types
and is not prevalent in this dataset (less than 1%). However, this
type of repetition presents an intriguing topic for further analysis.
Figure 3 illustrates some examples of five repetition types in MRD.
First, they are exclusive based on the definition in Table 1. Each
motif is categorized into one repetition type. Second, the size of
five repetition types is different. StR has the smallest size since the
definition of StR is the most strict that all note pitches should be
identical. SyR has the largest size since it measures the development
of the music and contains three symmetric scenarios.

To retain most information from the motifs, we set the longest
motif sequence in the dataset as the default length (i.e. 120 tokens). If
the sequence is shorter than the max length, then we pad zeros to the
sequence. In addition, we randomly hold out motifs from 100 songs
for testing and use the remaining motifs to train R-Transformer.
The basic statistics of five repetition types appear in Tables 2.

4.2 Implementation Details

Following the backbone model of [13], we also choose the linear
Transformer [18] for sequence modeling. The Transformer encoder

Zhejing Hu et al.

module consists of 6 self-attention layers with 4 heads and 256
hidden states. The inner layer size of the feed-forward part is set to
2048. The symbolic music is converted to a sequence of compound
words drawn from a pre-defined music attribute vocabulary [13].
Musical information is explained based on seven attributes, tempo,
chord, position, type, pitch, duration, and velocity. The embedding
sizes of these seven attributes and label are 128, 256, 64, 32, 512, 128,
128, and 32, respectively. The embedding sizes are chosen based
on the vocabulary sizes of different token types, and embedded
tokens describing the same object are concatenated together and
linearly projected to the same size of the corresponding module’s
hidden state. We use the Adam optimizer [20] with a learning rate
of 107 for the reconstruction and classification model. We apply
dropout with a rate of 0.1 during training. In our model, repetition
importance factors are designed as follows: in all types, y of pitch
is 4 since pitch contributes more to the repetition type. In SuR,
HoR and SyR, y of position, duration and velocity is 2 since these
contributes also determines the representation of notes. For other
attributes, y is set as 1. A in Equation 8 is 0.5.

5 EXPERIMENT

5.1 Model Evaluation and Comparison

In both objective and subjective experiments, five relative models
are adopted for comparison: CP-C and CP-NC are two versions
from the state-of-the-art music generation model [13]. CP-C gen-
erates the new music by taking one motif as the input condition.
CP-NC generates the music without any conditions and the match-
ing rate is calculated based on the first generated motif. PopMNet,
Theme and MELONS generate music by studying the repetitions
and variance in the music structure. PopMNet uses a combina-
tion of recurrent neural network (RNN) and CNN models. Theme
uses Transformer-based models. MELONS uses Transformer- and
graph-based models.

In the objective evaluation, we design two additional baseline
models R-Transformer-V and R-Transformer-R to validate the
effect of model design. R-Transformer-V is a vanilla R-Transformer
model that does not apply the repetition learning matrix or rule-
based generation. R-Transformer-R is a vanilla R-Transformer
model that does not apply rule-based generation but applies the
repetition learning matrix. In addition, R-Transformer-RR is our
R-Transformer model that applies both the repetition learning ma-
trix and rule-based generation. We let each model generate motif-
level results using the given motif condition retrieved from 100 test
samples. Specifically, 1-bar polyphonic piano music is generated
based on the original motif. We evaluate the result using the match-
ing rate M between output and input based on the definitions of
different repetition types,

M= # of matched motifs
" of total motifs

When two motifs satisfy the definition in Table 1, we consider that
a match; otherwise, the motifs do not match.

It should be noted that the goal of the proposed model is differ-
ent from other models since this work tries to generate music by
modeling music repetitions while other models do not necessarily
generate different music repetitions since they are not designed to
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Figure 4: Examples of generated results. (a) The example is
generated from the test dataset. (b) The example is generated
from the “fate motif”. Purple: strict repetition (StR). Blue:
transpositional repetition (TrR). Yellow: subsequential rep-
etition (SuR). Green: homodirectional repetition (HoR). Or-
ange: symmetric repetition (SyR). Gray: ornamentation note
3. Melodies are illustrated.

learn repetitions. Thus, to have a fair comparison, in the subjective
evaluation, we report the overall music quality with other models
in the paper since the ultimate goal of our model and other music
generation models is generating enjoyable music.

5.2 Analysis of Generated Examples

To validate the proposed model can not only generate diverse
and beautiful repetitions, but also achieve pleasant and complex
melodies, we demonstrate two examples that is displayed in Figure
4. In the first example, the original motif is made up of four consecu-
tive notes (G#-F-D#-C#) with a downward melodic movement. Piece
A is a TrR dominant version, which delivers a feeling of “pacing
back and forth” or “jumping over and over”. Although the intervals
within each motif are the same, TrR expands the pitch distribution
of the melody, causing the oscillation of same pattern at different
pitch levels. Piece B is a StR-TrR-SyR dominant version, which cre-
ates melodic waves and emotional ups and downs. The introduction
of StR helps to strengthen the original pattern, while SyR brings a
distinct melodic direction and richer intervals. Therefore, this piece
is no longer an one-way repetition with the descending direction,
but intersperses with a number of upward trends. Piece C is a type
even version that applies all five repetition types, which is more
coherent and exquisite in melodic and emotional changes. SuR of-
fers slight changes to the original motif, bringing familiarity and
freshness. HoR contains a variety of motifs with the same direction

3Ornamentation note: the addition of notes for expressive and aesthetic purposes.
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of movement and shifting intervals, making the music unrestrained
and diverse. Through exquisite combinations, the music expresses
complex consciousness and emotions.

The second example is generated based on the “fate motif”. By
comparing similarities and differences between the generated mo-
tifs and motifs in Beethoven’s Fifth Symphony, we can further
verify that the rich motif variants can form diverse and beautiful
musical pieces with high quality. First, the model can generate all
kinds of variants of the “fate motif” that appear in the original piece.
Motifs in the middle row of Figure 4 (b) mainly appear in the early
stage of the first movement, which is the most recognizable part
of Beethoven’s Fifth Symphony. The appearance of these motifs
lays the emotional tone and presents the dominant theme for the
entire first movement and even the whole symphony. Therefore,
by selecting and combing the generated motifs, we can reproduce
a piece of music that is similar to the original work, and even make
the generated music express similar feelings. Second, Piece D is a
type-even version generated from the “fate motif” that delivers dis-
tinct feelings compared to the original Beethoven’s Fifth Symphony.
Overall, Piece D presents a relaxed, leisurely and humorous feel-
ing. Specifically, some adjacent motifs with opposite directions of
movement naturally form some pairs, creating a feeling of “walking
together” or “asking and answering”. The development of the whole
music is gentle without huge jumps and turns. All the differences
are generated from one motif, but transfer the Beethoven’s Fifth
Symphony from tragic and passionate to relaxed and joyful, which
further confirm the richness and beauty of repetition. Listening
samples can be found in supplementary materials.

5.3 Objective Evaluation

Table 3 lists the matching rate of five music generation models
and three variants of the proposed model when generating one bar.
Overall, the proposed model produces a good performance when
generating different repetition types.

Upon comparing the results of the proposed model with other
music generation models in terms of repetition generation, the pro-
posed model outperforms all other models in all repetition types
since the proposed model is designed to recognize different repeti-
tions. In addition, HoR and SyR are higher than StR, TrR and SuR
in other models. The reason is that StR, TrR and SuR have a more
strict definition and these models tend to learn those that appear
the most or the easiest to learn since there is no supervisory signal
for repetitions. This result also confirms the deficiency of current
models.

It is also noted that R-Transformer-R is more robust than R-
Transformer-V after applying the repetition learning matrix. It is
reasonable since repetition learning matrix tells the model which
attributes are more important to a specific repetition type during
training. A comparison of R-Transformer-RR with R-Transformer-
R reveals that StR and TrR achieve a matching rate of 1. StR and
TrR follow explicit rules based on the definition; intuitively, im-
plementing rules to generate pitch will lead to a matching rate of
1.
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Table 3: Objective evaluation results in terms of the matching rate.

Models StR TrR SuR HoR SyR

CP-C [13] 0.00+ 0.00 0.04+ 0.08 0.21+ 0.41 0.68+0.47 0.71 +£0.46
CP-NC [13] 0.01+ 0.07 0.11+ 0.31 0.36+ 0.48 0.62+0.49 0.64 +£0.48
PopMNet [33] 0.00+ 0.00 0.00+ 0.00 0.10+ 0.30 0.60+0.49 0.70 £0.45
Theme [30] 0.00+ 0.00 0.00+ 0.00 0.48+ 0.18 0.47+0.25 0.47 +£0.25
MELONS [37] 0.20+ 0.40 0.20+ 0.40 0.40+ 0.49 0.70+0.46 0.70 £0.46
R-Transformer-V 0.54+ 0.49 0.79 +£0.41 0.74+ 0.44 0.85+0.36 0.74 £0.42
R-Transformer-R 0.84 +0.36 0.96 +0.18 0.75+ 0.43 0.95 +0.17 0.75 +£0.44
R-Transformer-RR 1.00 +0.00 1.00 +0.00 0.75+ 0.43 0.97+ 0.17 0.75+ 0.43

5.4 Subjective Evaluation

To validate that different repetitions can actually create pleasant
music, we also design a subjective evaluation on Chinese social
media. 150 subjects were randomly recruited on the internet. 27
reports were detected invalid because of some reasons such as sub-
mission too fast, no response, random answer, etc. The remaining
123 reports were used for analysis. None of the subjects has any
prior knowledge of our study. Among the 123 participants, 57 were
men and 66 were women; 65 were under age 25, 46 were between
25 and 50, and 12 were older than 50. In addition, 44 had musical
training and were familiar with music theory (labeled “pro”); the
others possessed no musical training and were labeled “non-pro”.

In the experiment, we let subjects listen to seven sets of music: six
sets of music are generated by models and one by human composers,
which is the original music from the test dataset based on the
selected motif. In all sets, subjects are asked to listen to two pieces
of music, namely an original motif and a piece comprising several
motifs. In R-Transformer set, the music piece is combined with
different types of repetitions generated by the model. Subjects
randomly select the music in each set; none indicated having heard
the original motif before the test. During the experiment, each
subject is asked to rate the overall quality on a 5-point scale (from
1 to 5; the higher the better) after each piece of music.

EPro  ENon-pro

»

Human Compose Non-Pro: 4.29

4.15

s
o
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Figure 5: Subjective evaluation in terms of quality.
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Figure 5 shows the mean opinion scores (MOSs) on the overall
quality in the “Pro” and the “Non-pro” group. The results demon-
strate the effectiveness of the proposed method. In terms of overall
quality, the proposed model outperforms other models in both
groups, indicating that the proposed model can generate pleasant
music based on different repetition types. Surprisingly, the pro-
posed model performs better than human-composed music in the

“Pro” group, verifying our model’s authenticity. These strengths

likely emerged for two reasons. First, by combining different repeti-
tion types, the results of R-Transformer sound vivid and structural
because the entire music piece is developed from one motif. Second,
repetition is confirmed to be an important factor that makes the
music pleasant.

Table 4 shows a paired t-test of all 123 subjects between the
human-composed music and the machine-composed music, which
is used to evaluate whether differences exist between two variables
for the same subject. There is no significant difference between the
music generated by the proposed model and the original human-
composed music (p=0.351), while there is a significant difference
when comparing results generated by other models and original
human-composed music (p<0.05), indicating a better music quality
of the proposed model.

Table 4: Paired t-test results between machine-composed
music and human-composed music.

Music Group Mean Std T-test
CP-C [13] 3.47 1.15 t=-6.01, p<0.001
CP-NC [13] 3.64 096  t=-4.74, p<0.001
PopMNet [33] 3.77 095  t=-4.41, p<0.001
Theme [30] 3.46 091  t=-7.37, p<0.001
MELONS [37] 3.89 1.85 t=-3.43, p=0.001
The proposed 4.10 0.95 t=-0.94, p=0.351
Human-composed 4.18 0.84 -

6 CONCLUSION

To the best of our knowledge, this is the first comprehensive study
of repetition in machine composition. We construct a dataset named
MRD based on the Pop piano dataset [13]. 562,563 training data
and 21,766 test data are provided with the labels of motif level
repetitions. A novel repetition generator is designed based on the
transformer encoder and a repetition-aware learner. The proposed
R-Transformer can generate a large amount of motif-level repetition
of different types. Moreover, the learned composition skills on Pop
music dataset also demonstrate very interesting results on fate motif
from the classical music. Subjective evaluation on both musicians
and non-professional users show that the proposed techniques help
to improve the quality of the machine composed music obviously.
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