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ABSTRACT
Online social networks have stimulated communications over the
Internet more than ever, making it possible for secret message
transmission over such noisy channels. In this paper, we propose
a Coverless Image Steganography Network, called CIS-Net, that
synthesizes a high-quality image directly conditioned on the secret
message to transfer. CIS-Net is composed of four modules, namely,
the Generation, Adversarial, Extraction, and Noise Module. The
receiver can extract the hidden message without any loss even the
images have been distorted by JPEG compression attacks. To dis-
guise the behaviour of steganography, we collected images in the
context of profile photos and stickers and train our network accord-
ingly. As such, the generated images are more inclined to escape
frommalicious detection and attack. The distinctions from previous
image steganography methods are majorly the robustness and loss-
lessness against diverse attacks. Experiments over diverse public
datasets have manifested the superior ability of anti-steganalysis.
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Figure 1: A practical application of our proposed scheme. Im-
ages generated by our method can be used as profile pho-
tos and stickers for covert transmission in online social net-
work. After noise attack like JPEG Compression, secret mes-
sage can still be extracted.Meanwhile, it is hard for attackers
to detect our secret images.

1 INTRODUCTION
Digital images have largely replaced the conventional photographs
from all walks of life since the development of Online Social Net-
works (OSN) have make data sharing more convenient and efficient.
In the past decades, many efforts were made in mining the poten-
tial of data hiding within digital images. Such technology, named
steganography, can benefit covert data transmission for military
or medical applications or efficient cloud labeling. Steganalysis, as
the adversary of steganography, is also widely studied to reveal the
presence of steganography.

Traditional steganography methods [9] often need to choose
a carrier, such as images that have abundant visual redundancy.
Generally, a data hider embeds secret messages into digital images
and generates the corresponding container images that is close to
the cover. For example, content adaptive steganography [13, 14, 23]
heuristically design several kinds of embedding distortions to mini-
mize the embedding loss. In recent years, deep networks are em-
ployed to boost the performance of image steganography [1, 19, 28,
50]. For example, Zhu et al. [50] and Ahmadi et al. [1] developed
robust watermarking scheme with strong robustness against a va-
riety kinds of attacks. Jing et al. [19] and Lu et al. [28] are able to
hide several images into a single host. However, [19, 28] are fragile,
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and once the container images are attacked, the hidden information
cannot be retrieved. It still remains difficult to simultaneously en-
sure a large capacity as well as robustness. Besides, these methods
hide secret information based on modification towards the cover,
and as a result, traces will inevitably be left during embedding and
be detected by well-designed steganalyzer.

Compared with traditional image steganography methods, cov-
erless image steganography methods do not make any modification
to the carrier, which makes the previous steganalysis methods in-
effective. With the progress of Generative Adversarial Networks
(GAN) [6, 20, 21, 41], realistic images can be automatically gen-
erated by neural networks and the quality of generated images
is continuously improving. Therefore, scholars proposed several
methods [15, 44, 45] by using GANs for coverless image steganog-
raphy. However, there still exists some weaknesses, among them
the quality of generated images is still the heel of Achilles. We
observe that when people interact on social networks, they often
use images such as profile photos and stickers. In [32], researchers
find that users in OSN frequently post self-portraits on their pro-
files. In [33] and [48], researchers show that stickers become an
integral part of most users’ activities. Using these common images
for steganography will further reduce the suspicion of attackers.
Therefore, we consider using GAN to generate images that can be
used as profile photos and stickers in social networks for secret
message transmission. We illustrate our steganography scenario
in Fig. 1. It should be noted that when images are uploaded on the
social network, they may be attacked by JPEG Compression and
some other noises. The noises added to the original images need to
be taken into consideration in our pipeline. To this end, we follow
the idea of style-based generator [21] which can better disentangle
secret message to synthesize natural images.

In this paper, we propose a Coverless Image Steganography Net-
work (CIS-Net) for covert transmission on OSNs. In traditional
covert transmission methods, the information is embedded by mod-
ifying the original image pixels. While in our method, we no longer
use pixel modification, instead, we use different semantics to rep-
resent secret messages. Our network includes four modules: Gen-
eration, Adversarial, Extraction, and Noise Module. Through ex-
periments we found that, the network tends to leave noise in the
high-frequency area of generated images, resulting in poor visual
effect. Therefore, for facial image datasets, we propose that sur-
rounding areas of facial images can be cropped. Our experimental
results show that the quality of images is higher when trained with
cropped facial images. In addition, we use the Facial Expression
Research Group 2D Database (FERG-DB) [2] to train our network,
which is generated by MAYA software. The images in FERG-DB
are very similar except for the expression, thus neural network
converges quickly and generated images can be used as stickers in
the social network. The image size used in our experiment is 32x32
and the embedding capacity is up to 32 bits per image. Although the
image size used in our method is smaller than the previous robust
coverless image steganographymethod, the embedding capacity(bit
per pixel) and extraction accuracy of our method are higher. More
importantly, because the image size we use is small, the network
training needs less GPU memory, so we can retrain more models
with less resources to resist attackers. The models retrained with
different training datasets or network structure adjustments are

difficult to be found by attackers. We will explain it in the experi-
mental part. Compared with the image selection method, our model
needs less storage space. Assuming that we want to transmit secret
message of 32 bits, we need a database with 4294967296 images.
However, our model only needs about 300MB of storage space,
which greatly saves the cost.

The main contributions of our proposed method are as follows:
• Compared with previous methods, CIS-Net can generate im-
ages with improved quality. Images generated by our method
are close to natural images that reduces the suspicion of at-
tackers.

• CIS-Net is robust against common noises in OSN such as
JPEG Compression, where the recipient can extract original
information with high accuracy.

• CIS-Net ensures high security for convert transmission, which
can better evade the traditional steganalysis systems.

2 RELATEDWORK
2.1 Image Steganography and Steganalysis
Several effective image steganography were developed for the pur-
pose of covert communication, copyright protection, etc. For exam-
ple, HUGO [13] is a highly secured steganography system designed
to minimize distortion to high-dimensional multivariate statistics.
The Syndrome-Trellis Coding (STC) [9] designed predefined em-
bedding costs for all pixels or DCT coefficients. Volkhonskiy et
al. [35] first adopted deep networks to conduct data hiding within
images. The performance is promising in both the authenticity of
the generated images and the resistance to steganalysis systems.
Recently, Jing et al. [19] and Lu et al. [28] proposed two similar
works that employ Invertible Neural Networks (INN) to hide up to
ten secret images into a single host image, therefore unveiling the
potential of information hiding within natural images.

Steganalysis is to detect whether a targeted image contains se-
cret data. For example, SPAM features [31] uses Markov transition
probabilities calculated by using adjacent pixels in eight directions
to extract clues left by data hiding. SRNet [5] designed a deep resid-
ual network to study the noise residual patterns inside stego images.
With the rapid development of image steganalysis as well as the
fact that modification-based traditional image steganography will
inevitably leave clues during data hiding, it is empirical to develop
novel data hiding schemes that circumvent modifying the host.

2.2 Coverless Image Steganography
Traditional coverless image steganography methods are generally
based on the selection of proper host image for covert data trans-
mission. For example, Fridrich et al. [4] proposed an image selection
method for information hiding. Image databases are established
first and appropriate images are selected based on rules to represent
secret message. Li et al. [24] proposed a method by using fingerprint
synthesis to represent secret message. It is difficult for attackers to
detect the existence of secret message from generated fingerprint
images while embedding capacity is relatively small.

With the advancement of GAN technology, scholars proposed
several methods based on GAN to generate images directly from
secret message. Hu et al. [15] proposed a generated adversarial
network for image steganography, and secret message is mapped
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into a noise vector. To improve the quality of generated images, Yu
et al. [38] used attention module which also improves embedding
capacity and extraction accuracy. Li et al. [25] uses a fixed Style-
GAN to learn the mapping between secret message and generated
images, but the extraction accuracy on the test set is only 50%.
Dong et al. [8] considered the robustness and added a noise layer,
but some speckle noises appear in the generated image. In [7] and
[37], attributes of generated images are used to represent the secret
message. Cao et al. [7] used attributes of animation characters, such
as hairstyles, hair colors, eye colors, and other features. Xue et
al. [37] proposed multi-domain image translation to convert the
original images to target domains such as smiling, narrow eyes,
and black hair.

Though the results are impressive, the generated image quality
needs to be improved. In addition, embedding capacity of robust
coverless steganography is relatively small and real-world JPEG
Compression attack is not taken into account.

2.3 Robust Data Hiding with Deep Networks
For a neural network, backward propagation works when each
module is differentiable. However, some common image process
operations such as JPEG Compression are non-differential. Zhu et
al. [50] proposed a method called HiDDeN which includes JPEG-
Mask and JPEG-Drop to simulate real-world JPEG compression.
However, this simulation is still quite different from the real-world
counterpart in that the quantization table in real-world JPEG im-
ages can be customized and flexibly controlled by the quality factor
as well as the image content. As a result, the neural networks can
over-fit and lack real-world robustness. Jia et al. [18] proposed mini-
batch of real and simulated JPEG compression, which significantly
improves the robustness. Liu et al. [26] proposed a two-stage train-
ing strategy for non-differential operations. Encoder and decoder
are trained separably to avoid the influence of JPEG Compression.
In [40], Zhang et al. proposed a simpler and more effective method,
which treats JPEG Compression noise as a constant tensor added
to original images. In our method, we follow the pipelines in [40]
and [26] which work well in a real scenario.

3 METHODOLOGY
3.1 Overview
In this part, we will describe the proposed CIS-Net. Two models
are used in our implementation and fig. 2 explains our framework.
One model is used to directly generate facial images, and the other
model can control expressions of generated facial images. Our goal
is to train a generation network that can map bits 𝐵 to a natural
image 𝐼 . JPEG Compression may be applied to the original image
𝐼 and a noised image 𝐼𝑛 is sent to the receiver. A trained informa-
tion extractor can map image 𝐼𝑛 to original bits 𝐵. The core of our
method is to map different secret messages to different semantic
images. We use secret messages to control normalization of genera-
tor, different messages can be used to control different scales and
biases of feature maps.

3.2 Generation Module
Image preprocessing. Through our experiments, we found that if
we directly use the original facial image datasets like CelebA [27],

Figure 2: Framework overview. The Generation Module
transforms the secret information into a secret image,
which can be optionally controlled by the target expression.
The Adversarial Module monitors the quality of the gener-
ated images by distinguishing them from natural images.
The Noise module simulates image processing attacks in
OSNand the ExtractorModule gets the hiddenmessage from
the attacked image.

the generated images tend to have noise in texture-rich parts such
as hair and the visual effect is not very good in the background
part. That is to say, it is not easy for the network to learn high-
frequency information. Details of image background and hair are
more variable and complex. So we use a pre-trained face detection
network MTCNN [42] to crop original facial images. Comparison
between original images and cropped images is shown in Fig. 5.
Bit preprocessing.We denote secret message as 𝐵, and we use 𝐵
to control different semantics of generated images. To this end, we
map 𝐵 into a latent space that is suitable for semantics synthesis.
As shown in Fig. 3, We map bits 𝐵 into latent vector 𝑧𝑏 through the
bit mapping network. We directly expand 𝑧𝑏 repeatedly to obtain
the same latent vectors, 𝑧1, 𝑧2, ..., 𝑧𝑡 , which are respectively sent to
different layers in the later semantic synthesis network.

For facial image generation with controllable expression, we
use a one-hot vector 𝐿′ to control expressions. In this scenario, we
also map the target domain label 𝐿′ to a latent space as shown in
Fig. 3. After 𝐿′ is mapped into a latent vector 𝑧𝑙 through expression
mapping network, we concatenate vector 𝑧𝑏 and 𝑧𝑙 , and feed them
into the later fusion network 𝐹 to obtain the final latent vector 𝑧𝑓 .
Similarly, we directly extend 𝑧𝑓 repeatedly to obtain 𝑧1, 𝑧2, ..., 𝑧𝑡 .
Semantic synthesis. To generate robust images against attacks
such as JPEG Compression, we consider synthesize secret messages
from the perspective of semantics, because most semantic informa-
tion remains unchanged after distortion. Following the adaptive
instance normalization (AdaIN) proposed in [21], in our scheme,
we use secret message to control scales and biases required in fea-
ture maps normalization as shown in Fig. 3. Image synthesis starts
from a learned 4 × 4 × 512 constant tensor, as shown in Fig. 3.
After convolution operations, we upsample the original tensor to
8 × 8. Here, we can use upscale or ConvTranspose2d operation
in PyTorch. We will talk about using different operations in the
following security analysis. For 𝑧𝑘 obtained from mapping network
where 𝑘 ∈ [1, 2, ...𝑡], we map it to the space 𝑌 , 𝑌 = (𝑦𝑠 , 𝑦𝑏 ), which
has the same dimension as feature channels. The mapping network
is realized through a fully connected layer 𝑇𝑘 .
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Figure 3: Generation Module. Secret messages are mapped
into latent vectors which control adaptive instance normal-
ization (AdaIN) to generate images. The expressionmapping
part is optional and is marked as gray in figure. Initial ten-
sor is fed into network at first time and later the input of up-
scale block is replaced by output from AdaIN block. At last,
output from AdaIN block is transformed to RGB images.

𝑦𝑠,𝑦𝑏 = 𝑇𝑘 (𝑧𝑘) . (1)
Then, we use 𝑦𝑠 and 𝑦𝑏 for AdaIN to control different semantics.

For each feature map 𝑥𝑖 , the formula is as follows.

𝐴𝑑𝑎𝐼𝑁 (𝑥𝑖 , 𝑦) = 𝑦𝑠
𝑥𝑖 − 𝜇 (𝑥𝑖 )
𝜎 (𝑥𝑖 )

+ 𝑦𝑏 , (2)

where different 𝑦𝑠 and 𝑦𝑏 are used to control scales and biases of
each feature map 𝑥𝑖 . Since feature maps are normalized separately,
images with different semantics can be generated according to
different bits 𝐵.

We add randomly generated noise random_noise in the process
of image generation. After multiplying the channel-wise learnable
weight𝑊 , noise is directly added to feature maps of each layer.
The formula is in Eq. (3). We find that the effect of random noise is
obvious when the length of secret messages is 16. We will show it
in the experimental part.

𝑥𝑖 = 𝑥𝑖 +𝑤 × 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑜𝑖𝑠𝑒. (3)
The steps mentioned above are repeated 𝑁 times until the image

expands to the size we want. Finally, we compress image channels
and generate the RGB images we need.

3.3 Adversarial Module
Our adversarial module has two tasks: one is to distinguish origi-
nal images from generated images, and the other is to distinguish
the attributes of images. Therefore, our adversarial module has
two outputs, which are denoted as the probability distributions
𝐷SRC and 𝐶ATT over sources and attribute labels respectively. Our
discriminator 𝐷 and attribute classifier 𝐶 share the same feature
extraction network.
Discriminator. To make generated images look similar to origi-
nal images, following WGAN [3], the loss function used for the
discriminator and generator is shown in Eq. (4).

𝐿advd = −𝐸 [𝐷SRC (𝐼𝑟𝑒𝑎𝑙 )] + 𝐸 [𝐷SRC (𝐺 (𝐵))],
𝐿advg = −𝐸 [𝐷SRC (𝐺 (𝐵))], (4)

where original images are denoted as 𝐼real, and images synthesized
by the Generation module𝐺 under the control of bits 𝐵 is denoted
as𝐺 (𝐵). We denote 𝐷SRC (𝐼real) and 𝐷SRC (𝐺 (𝐵)) as probability dis-
tribution over real and generated image sources. In the training
process, we use WGAN-GP [11] for optimization. Similarly, for the
generator which can control attributes, we only need to replace
𝐺 (𝐵) with𝐺 (𝐵, 𝐿′) in Eq. (4).𝐺 (𝐵, 𝐿′) represents images generated
under the control of attribute tag 𝐿′ and bits 𝐵.
Attribute classifier. The attribute classifier is optional and can be
used to control the generated image with specific attributes when
needed. We denote 𝐶ATT (𝐿 |𝐼real) as probability distribution over
attribute labels 𝐿. For the training of the adversarial module, the
loss function is shown in Eq. (5). This loss enables the attribute
classifier to learn from real images.

𝐿attd = 𝐸𝐼real,𝐿 [−𝑙𝑜𝑔(𝐶ATT (𝐿 |𝐼real))] . (5)

For the Generation module 𝐺 , the attribute classification loss is
shown in Eq.( 6), where we want Generator𝐺 to synthesize images
with corresponding attribute tags 𝐿′. The following objective is
minimized when 𝐺 is training, so that generated images can be
classified correctly.

𝐿attg = 𝐸𝐵,𝐿′ [−𝑙𝑜𝑔(𝐶ATT (𝐿′ |𝐺 (𝐵, 𝐿′)))] . (6)

We denote 𝐺 (𝐵, 𝐿′) as images generated under the control of
bits 𝐵 and attribute tag 𝐿′.

3.4 Noise Module
The noise module is used to improve the robustness of generated
images. In previous work, scholars proposed several methods to
solve the backward propagation problem of non-differential opera-
tions. In this paper, we follow the pipeline proposed in [40] which
views noise caused by JPEG Compression as constant tensor. We
first truncate the gradient of original images 𝐼 to get 𝐼ori, then we
apply JPEG compression on 𝐼ori with different quality factors to get
noised image 𝐼JPEG. Residuals between original images and noised
images can be calculated with diff = 𝐼ori − 𝐼JPEG. Noises brought by
JPEG Compression can be viewed as constant diff added to original
images 𝐼 . Therefore, we can simulate JPEG Compression as well as
other non-differential operations. In this module, the Identity layer
and JPEG Compression with quality factors 90, 80, 70, 60, and 50
are used for training.
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3.5 Extractor Module
In order to extract original bit information from image semantics,
we introduce an information extractor E, which is composed of a
series of convolution layers and fully connected layers. L2 norm
loss is used as our extractor loss.

𝐿𝑒 = 𝐸𝐵 [| |𝐵 − 𝐸 (𝑁 (𝐺 (𝐵))) | |2], (7)

where 𝑁 (𝐺 (𝐵)) denotes the image attacked by the noise layer.
With this loss, 𝐸 learns to extract the original bit information and
𝐺 can generate images with semantics that can resist noise attacks.
Similarly, for G which can control attributes, we replace𝐺 (𝐵) with
𝐺 (𝐵, 𝐿′) in the above formula.

3.6 Objective Function and Training Details
The above-mentioned Generator, Adversarial, Extraction, and Noise
module constitute our coverless image steganography network. The
overall loss function is listed in Eq. (8), and the network is trained
in an adversarial manner.

𝐿𝑑 = 𝜆1 ∗ 𝐿advd + 𝜆2 ∗ 𝐿attd,
𝐿𝑔 = 𝜆3 ∗ 𝐿advg + 𝜆4 ∗ 𝐿attg + 𝜆5 ∗ 𝐿𝑒 .

(8)

We generate small facial images with the size of 32 × 32, and
embedding capacity is set as 16 bits to 32 bits per image. Since
generated images are small, networks can be trained with less GPU
memory. Our models are divided into two types: one is to directly
generate facial images, and the other is to generate images with
desired expressions. Specifically, we use a 7-bit one-hot vector to
control seven kinds of expressions(Surprise, Sadness, Neutral, Joy,
Anger, Fear, and Disgust). Our implementation is based on Pytorch
and uses NVIDIA RTX 3090. For the model directly generating
facial images, we initially set hyperparameters 𝜆1, 𝜆3, 𝜆5 as 1, 1,
10, and The penalty parameter of WGAN-GP is set as 50. For the
model which controls expression, the hyperparameters 𝜆1, 𝜆2, 𝜆3,
𝜆4, 𝜆5, are set as 1, 1, 2, 0.1, 10 initially. When 𝐿𝑎𝑡𝑡𝑔 is smaller than
0.4, we set 𝜆4 as 0. Adam optimizer is used to optimize our model
parameters and batch size is set to be 32. In the beginning, the
learning rate is set as 1𝑒 − 4, and other hyper-parameters are set as
default. In the noise module, we use JPEG Compression operations
provided in the Python PIL package.

4 EXPERIMENTS AND DISCUSSIONS
4.1 Experimental Settings
We use CelebA [27], LFW [17], FFHQ [21], FERG-DB [2] as the
training datasets. For original images, we downsample them to the
size of 32 × 32 and original images have some noise in texture-rich
parts. It should be noted that network for small images genera-
tion tends to leave specific noise in the high-frequency section as
shown in the above-mentioned Fig. 5. Therefore, We use a pre-
trained MTCNN [42] to get cropped facial images. After removal
of the external area of original images, we can use the cropped
images to generate an image of higher quality. We denote cropped
image datasets as CelebA-cropped, LFW-cropped, FFHQ-cropped.
FERG-DB dataset has a total of 55767 annotated face images. This
dataset includes six cartoon characters(Aia, Mery, Bonnie, Ray,

Figure 4: Examples of generated facial images. The length of
the secret message is set as 32-bit.

Figure 5: Comparison of generated images with/without im-
age preprocessing. Noises can be found in textured areas if
we directly train the network without image preprocessing.

Jules, and Malcolm). Each cartoon character has seven kinds of ex-
pressions(Surprise, Sadness, Neutral, Joy, Anger, Fear, and Disgust).
In our implementation, we use images of each character to train
networks separately.
Evaluation Metrics. For visual quality evaluation, we use Fréchet
inception distances(FID) [12] as the evaluation metric, which can
measure the distance between real and generated images.
Benchmark. We employ state-of-the-art coverless steganography
method for visual quality comparison [38]. In addition, We com-
pare our method with previous robust coverless steganography
methods [7, 37] to validate performance of robustness.

4.2 Comparisons
Visual quality. For each model, we generate the same number of
images in training datasets to calculate FID. Models with a 32-bit
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Figure 6: Example of generated images which can be used as stickers. From left to right are images synthesized using Bonnie,
Malcolm, and Aia datasets. The secret message is set as 20-bit. Expression tags (Surprise, Sadness, Neutral, Joy, Anger, Fear,
and Disgust) are used to control the generation of images.

Table 1: Visual quality evaluation based on FID. Classifica-
tion accuracy is used to evaluate the accuracy of expression
generation.

Model FID Classification Accuracy

CelebA-cropped-32 6.20 -
CelebA-16 6.94 -
Bonnie-20 8.24 0.9620
Ray-20 5.57 0.9763
Mery-20 7.03 0.9497
Jules-20 5.28 0.9612
Aia-20 9.05 0.9234
Malcolm-20 4.57 0.9782
Yu et al. [38] 30.81 -

secret message as input and using CelebA as a training dataset
are denoted as CelebA-32. Similarly, models trained with 16-bit
secret message and LFW-cropped training dataset are denoted as
LFW-cropped-16. We can find that CelebA-16 images have more
noise than CelebA-cropped-32 images as shown in Fig. 5. More
examples from CelebA-cropped-32 are shown in Fig. 4. Compared
with previous methods, images generated by our method are more
natural and FID is shown in Table 1. The experiment shows that
our visual quality is better.

For models which can control expressions, we use every single
character of FERG-DB to train the network respectively. Models
trained with 20-bit secret message and using Bonnie as a training
dataset are denoted as Bonnie-20. The experimental results are
shown in Fig. 6 and FID results are shown in Table 1. To evaluate

whether our model can control facial expressions according to the
input vector, we calculate the classification accuracy of generated
images, and the results are shown in the Table 1. Experiment shows
that our model achieves good performance.
Embedding Capacity. Our embedding capacity is between 16
bits and 32 bits per image. Although the embedding capacity of a
single image is small, the metric bit per pixel (bpp) is high. We can
splice multiple 32×32 images, then we can transmit a large amount
of information as proposed in [7]. In addition, since our generated
images can be sent as stickers which are frequently used in so-
cial network chatting, we can convey more information through
multiple transmissions. Compared to the previous robust coverless
steganography methods, our embedding capacity is larger and the
results are shown in Table 3.
Robustness against JPEG Compression. In this section, we
show experimental results of information extraction accuracy. To
the best of our knowledge, we are the first to consider real JPEG
Compression in coverless image steganography based on GANs.
During training, the quality factors of JPEG Compression we used
are 90, 80, ..., 50, and quality factors are set as 90, 85, 80, ..., 55 during
testing. The extraction accuracy is shown in Table 2. We can find
that after applying JPEG Compression of different quality factors
on original images, we can still extract secret message from the
noised image. Since we can not achieve 100% extraction accuracy,
error correction codes can be used in real-world applications.
Robustness against Other Noises. For typical noises other than
JPEG compression, we test the proposed scheme with image rotat-
ing , addition of Gaussian noise, addition of Salt & Pepper noise,
addition of Speckle Noise, Gaussian blurring, Mean filtering and
Median filtering, which was employed in [7] and [37]. We use model
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Table 2: Results of robustness against JPEG Compression.

Model Original JPEG90 JPEG80 JPEG70 JPEG60 JPEG50 JPEG95 JPEG85 JPEG75 JPEG65 JPEG55

CelebA-cropped-32 0.9798 0.9781 0.9752 0.9701 0.9638 0.9546 0.9792 0.9770 0.9728 0.9672 0.9594
CelebA-16 0.9993 0.9986 0.9979 0.9967 0.9951 0.9913 0.9990 0.9983 0.9972 0.99575 0.9931
Ray-20 0.9901 0.9911 0.9861 0.9771 0.9667 0.9540 0.9910 0.9883 0.9786 0.9684 0.9541
Mery-20 0.9873 0.9843 0.9745 0.9624 0.9487 0.9263 0.9807 0.9784 0.9639 0.9546 0.9351
Aia-20 0.9768 0.9811 0.9749 0.9667 0.9547 0.9336 0.9790 0.9771 0.9676 0.9569 0.9409
Bonnie-20 0.9747 0.9798 0.9741 0.9639 0.9517 0.9421 0.9777 0.9747 0.9666 0.9552 0.9443
Jules-20 0.9575 0.9685 0.9634 0.9580 0.9545 0.9220 0.9630 0.9596 0.9562 0.9422 0.9292
Malcolm-20 0.9706 0.9672 0.9564 0.9436 0.9239 0.9031 0.9637 0.9578 0.9391 0.9262 0.9014

Table 3: Results of robustness against other noises and capacity.

Model Capacity(bpp) Rotation Gaussian Noise Salt & Pepper Speckle Median Filter Mean Filter Gaussian Filter

CelebA-16 1.5 × 10−2 0.9818 0.9674 0.9893 0.9892 0.9815 0.9812 0.9919
Xue et al. [37] 6.71 × 10−4 0.7818 0.9157 0.9220 0.9220 0.9236 0.9184 0.9216
Cao et al. [7] 8.54 × 10−4 0.8324 0.0362 0.5096 0.0893 0.8187 0.7576 0.8257

CelebA-16 to compare and follow [26] to enhance our robustness.
The network is trained under JPEG Compression attack without
the above-mentioned noises. Therefore, to resist these new attacks,
we only need to train a new extractor separately while the gen-
erator is fixed. As shown in Table 3, our model not only extracts
bits with higher accuracy but also embeds more secret message.
Meanwhile, it demonstrates that our model has good generalization
ability. When there are new channel attacks, we can directly train a
new extractor to resist. Since our image size is relatively small and
large filters will make images lose too much semantic information,
we do not use 5 × 5 and 7 × 7 filters which are used in [37].

4.3 Security Analysis
For GAN image detection, scholars proposed several methods [36,
39] to distinguish real and fake images, but there are a large num-
ber of GAN images in online social networks. Obviously, it is not
appropriate to directly detect whether images are real or fake in a
steganography scenario. What we need to analyze is whether image
dataset A generated by a normal GAN can be distinguished from
image dataset B generated from secret message. Yu et al. [39] found
that the images generated by different GANs can be distinguished.
As long as network structures, training datasets, or random seeds of
models are different, the generated images can be distinguished. In
our experiment, we find that images from A and B can be classified
and the results verify that Yu et al. reported. So what we need to
test is the generalization performance of the detection network. We
consider this scenario: Attackers trains a detection model DM based
on dataset 𝐴 and 𝐵. Whether image datasets 𝐶, 𝐷, 𝐸... generated by
other steganography models can be detected by DM. We use two
types of detection models for analysis, one is a simple convolution
network DM𝐶 , and the other is a modified network DM𝑆 from SR-
Net [5] which is often used for steganalysis to fit our image size,
i.e., 32 × 32.

We denote the model with input sampled from Normal distri-
bution as M1, the model using secret message to generate images

Table 4: Security Analysis for images generated for profile
photos.

Model𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7

DM𝐶 1.00 1.00 0.52 0.52 0.57 0.49 0.37
DM𝑆 1.00 1.00 0.63 0.48 0.63 0.36 0.42

Table 5: Security Analysis for images generated for stickers.

Model𝑀 ′
1 𝑀 ′

2 𝑀 ′
3 𝑀 ′

4 𝑀 ′
5 𝑀 ′

6 𝑀 ′
7 𝑀 ′

8

DM𝐶 1.00 1.00 0.47 0.42 0.22 0.01 0.56 0.49
DM𝑆 1.00 1.00 0.20 0.11 0.10 0.23 0.26 0.39

as𝑀2. We use images 𝐼1, 𝐼2 generated by𝑀1,𝑀2 to train detection
model 𝐷𝑀𝑆 , 𝐷𝑀𝐶 . For the test dataset, we use images generated
frommodels with a slight change, such as different training datasets
and different network structures. Specifically, we use the following
models.

• 𝑀3: Retrained model with no other changes.
• 𝑀4: Deconvolution layer is used to replace upscale in the
last upsample step.

• 𝑀5: Number of convolution kernel is reduced.
• 𝑀6: FFHQ-cropped is used as training dataset.
• 𝑀7: LFW-cropped is used as training dataset.

We denote images generated from𝑀3, ...,𝑀7 as 𝐼3, ..., 𝐼7, respec-
tively. DM trained with 𝐼1, 𝐼2 is used to judge 𝐼3, ..., 𝐼7. The detection
accuracy results are shown in Table 4. All the results are calculate
ten times and average value is taken.

Similarly, for generation network which can control expression,
we also use the above method to test. Models are denoted as follows:

• 𝑀 ′
1: GAN with input sampled from Normal distribution.

• 𝑀 ′
2: Bonnie dataset is used as training dataset.
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Figure 7: Images generated by the same secret message from CelebA-16 are shown in the first row. Images generated by secret
messages with same first 26 bits from CelebA-crop-32 are shown in the second row.

• 𝑀 ′
3: Secret message length is set to be different.

• 𝑀 ′
4: Aia dataset is used as training dataset.

• 𝑀 ′
5: Jule dataset is used as training dataset.

• 𝑀 ′
6: Mery dataset is used as training dataset.

• 𝑀 ′
7: Malcolm dataset is used as training dataset.

• 𝑀 ′
8: Ray dataset is used as training dataset.

𝐼 ′1, ..., 𝐼
′
8 are denoted as images generated from 𝑀 ′

1, ..., 𝑀
′
8, re-

spectively. The testing results are shown in Table 5. We find that
the accuracy in test set sometimes reached 100%, and sometimes
reached 0%. We think it is because 𝐷𝑀 learns the distribution of
datasets. If the distribution of the test image set is closer to 𝐼 ′1, it is
easy to be judged as image without secret message. Otherwise it is
detected as image with secret message. We use t-SNE [34] to map
images to two-dimension space for explanation. Images are firstly
processed by three SRM filters [10]. As shown in Fig. 8, 0 and 1 are
images with secret message while 2 represents images from normal
GAN. We find that images from 0 that are with secret message are
closer to 2.

5 CONCLUSION AND DISCUSSION
In this paper, we propose a method for convert transmission in
online social network. Experimental results show that high-quality
images can be generated from our methods and extraction accuracy
is guaranteed after noise attack. The flexibility of model training
makes it difficult for attackers to detect our secret message. Al-
though we have considered most common noises, new unknown
noises may reduce accuracy. We will try to study it in future work.

To figure out how our coverless image steganography method
works, we test our model with same secret message as input. In
previous work [7, 37], scholars use notable features to transmit
secret message. Since our model also uses secret message to con-
trol semantics, we investigate implied features space our model
generated. As shown in Fig. 7, we use images from CelebA-16 and
CelebA-cropped-32 for illustration. For CelebA-16, we set secret
message to be the same in the first row. We find that facial images
generated with the same secret message share common features in

Figure 8: t-SNE visualization for an explanation. Where 0
and 1 represent images generated by two different Malcolm-
16 models, 2 represents images generated by normal GAN
trained with Malcolm dataset.

the background, skin color, posture, and so on. The only difference
between these images is the different noise added in the Generation
module. For 16-bit secret message, the network needs to learn 216,
that is 65536 different features. While for 32-bit secret message, we
find that in this case noise added in the Generation module almost
does not work and the network tends to directly generate 232 dif-
ferent facial images. In the second row, we set secret messages with
same first 26 bits. The extensive experiment shows that network
also learns to disentangle original messages and to some extent
explains how transmission works .
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