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ABSTRACT
A thriving trend for domain adaptive segmentation endeavors to
generate the high-quality pseudo labels for target domain and re-
train the segmentor on them. Under this self-training paradigm,
some competitive methods have sought to the latent-space infor-
mation, which establishes the feature centroids (a.k.a prototypes)
of the semantic classes and determines the pseudo label candidates
by their distances from these centroids. In this paper, we argue
that the latent space contains more information to be exploited
thus taking one step further to capitalize on it. Firstly, instead of
merely using the source-domain prototypes to determine the target
pseudo labels as most of the traditional methods do, we bidirection-
ally produce the target-domain prototypes to degrade those source
features which might be too hard or disturbed for the adaptation.
Secondly, existing attempts simply model each category as a single
and isotropic prototype while ignoring the variance of the feature
distribution, which could lead to the confusion of similar categories.
To cope with this issue, we propose to represent each category with
multiple and anisotropic prototypes via Gaussian Mixture Model, in
order to �t the de facto distribution of source domain and estimate
the likelihood of target samples based on the probability density.We
apply our method on GTA5->Cityscapes and Synthia->Cityscapes
tasks and achieve 61.2% and 62.8% respectively in terms of mean
IoU, substantially outperforming other competitive self-training
methods. Noticeably, in some categories which severely su�er from
the categorical confusion such as “truck” and “bus”, our method
achieves 56.4% and 68.8% respectively, which further demonstrates
the e�ectiveness of our design. The code and model are available
at https://github.com/luyvlei/BiSMAPs.
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1 INTRODUCTION
Semantic segmentation is a �ne-grained image understanding task
with the goal of assigning a speci�c category to each pixel. Recently,
this task has achieved remarkable progress with the development
of deep neural network [1, 3–5, 18, 42]. The satisfying performance,
nevertheless, usually comes with a price of expensive and laborious
label annotations. One of the thriving solutions tomitigate this issue
has sought to the synthetic datasets rendered from simulators and
game engines [28, 29]. However, the notorious domain shift [31] im-
pedes the model trained on synthetic images to be further deployed
in a practical environment. To deal with this issue, domain adap-
tation (DA) approaches [11, 13, 15, 16, 19–23, 26, 30, 33, 34, 43] are
proposed to bridge the gap between the source and target domains.
In practice, the unsupervised domain adaptation (UDA), which does
not need any labeled examples from the target domain, received
more attention since it minimizes human labor ultimately.

Under the UDA setting, current state-of-the-art methods [25,
26, 41, 45] usually endeavor to generate high-quality pseudo la-
bels and transfer the UDA problem into a self-learning task. The
common and pivotal steps in this campaign consist of 1) training
an initial adaptation model across domains, which is also called
“warmup stage” and 2) generating pseudo labels to self-train the ini-
tial model towards target domain. In the warmup stage, adversarial
training [23, 26, 33, 34] and style transfer [14, 17, 24, 38] techniques
are most widely used. Speci�cally, adversarial training utilizes a
discriminator to align the distributions of di�erent domains while
style transfer converts the source-domain images into the target
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Figure 1: (Best viewed in color.) Comparison of single
isotropic prototype and multiple anisotropic prototypes. (a)
Traditional single prototype. Since the features of a certain
category do not always obey a single-cluster cohesion in the
semantic segmentation, the centroid of class A may fall into
a low-density region and cause a target sample “+” to locate
closer to centroid B. (b) Representing class A with multiple
prototypes mitigates this issue, where the target sample “+”
can be correctly classi�ed. (c) Traditional isotropic prototype
merely considers the centroid of the feature distribution. Be-
cause of the ignorance of variance, the target sample “+” is
misclassi�ed to centroid B. (d) Anisotropic prototype, where
the ellipses represent contour lines of the distribution prob-
ability. Taking variance of the feature distribution into ac-
count can assign the target sample “+” correctly. (e) BiSMAP
takes advantage of both (b) and (d) to model the categorical
features with multiple anisotropic prototypes.

style to train themodel. For the self-training stage, assigning pseudo
labels based on the prediction con�dence is a common practice,
yet determining the con�dence thresholds for variant classes is
non-trivial. More recently, applying “feature centroids” (a.k.a pro-
totypes) of the semantic classes to assign pseudo labels [41] in the
latent space mitigates the issue above. Such strategy determines the
pseudo label candidates by their distances from feature centroids,
which outperforms the approaches of using prediction con�dence
and becomes a vital enabling factor of many competitive methods.

This paper follows a self-training paradigm relying on latent-
space information. Upon reviewing the recent attempts along this
vein, we notice several potential associated issues on the pseudo
label assignment mechanism that decline the adaptation perfor-
mance. First, existing approaches conduct the adaptation using
whole source-domain information but ignore the fact that some
hard and disturbed source samples do not contribute or even im-
pede the target domain performance. For instance, the GTA5 dataset
contains a vast of pixels for mountain areas while Cityscapes does
not. To force the domain alignment introducing these pixels would
on the contrary drift the target distribution. Second, traditional
methods assume that each category obeys an isotropic distribution
with the same variance, thus simply using a single feature centroid

as the prototype and employing Euclidean distance as the metric to
evaluate the similarity of a candidate feature to the current proto-
type. In this way, a feature that is close enough to a prototype will
be assigned a pseudo label. Nevertheless, this assumption does not
necessarily hold for the pixel-level features of semantic segmenta-
tion. For example, the category “vegetation” is a single class but
it actually includes variant parts such as trunk and crown. When
using a single prototype to represent “vegetation”, the features
of trunk might be improperly mapped closer to the prototype of
“pole”, as shown in Fig. 1(a). Besides, simply using the Euclidean
distance as the metric while ignoring the distinct variance of each
class may further deteriorate the pseudo label assignment between
similar categories, as shown in Fig. 1(c).

These observations motivate our design of a novel bidirectional
self-training method with multiple anisotropic prototypes (dubbed
BiSMAP). BiSMAP argues that the latent space actually contains
more information to be exploited thus taking one step further to
capitalize on it. Firstly, instead of merely using the source-domain
prototypes to determine the target pseudo labels as most of the
traditional methods do, BiSMAP bidirectionally produces the target-
domain prototypes to degrade those source features which might be
too hard or disturbed for self-training. Secondly, instead of simply
modeling each category as a single and isotropic prototype while
ignoring the variance of the feature distribution that leads to the
confusion of similar categories, BiSMAP proposes to represent each
category with multiple and anisotropic prototypes via Gaussian
Mixture Model, in order to �t the de facto distribution of source
domain and estimate the likelihood of target samples based on
the probability density, as shown in Fig. 1(e). In this manner, each
feature can be assigned to the correct class more accurately during
the adaptation.

We apply BiSMAP onGTA5->Cityscapes and Synthia->Cityscapes
tasks and achieve 61.2% and 62.8% respectively in terms of mean IoU,
substantially outperforming other competitive self-training meth-
ods. Noticeably, in some categories which severely su�er from the
categorical confusion such as “truck” and “bus”, BiSMAP achieves
56.4% and 68.8% respectively, which further demonstrates the ef-
fectiveness of our design.

2 RELATEDWORKS
This section will review the existing works on Unsupervised Do-
main Adaptation, Self-training, and Gaussian Mixture Model tech-
niques, respectively.

Unsupervised Domain Adaptation. To deal with the perfor-
mance gap between domains, numerous works have been explored
to align source and target distributions. Feature alignment based
on adversarial training is preferred for UDA of segmentation tasks,
which use a discriminator to guide the model to generate domain-
invariant features [23, 33, 34]. In addition to the global feature
alignment, category level alignment based on prototype [41] has
emerged as another solution, which directly decreases the Euclidean
distance between source and target features. Motivated by the re-
cent image-to-image translation works, some works employ the
style transfer technique to alleviate style di�erences of images
from di�erent domains, thus reducing the domain gap before train-
ing [13, 17, 38].
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Self-training. Self-training is a semi-supervised learningmethod
which o�ers competitive performance for UDA. These methods
�rst train an initial adaptation model across domains and then re-
lies on the model predictions to assign pseudo labels. Assigning
pseudo-labels of high prediction con�dence is a common practice
of self-training. The pixels of common categories tend to be high
con�dence which leads to the rare categories can’t be assigned
pseudo labels, resulting in the model bias towards easy categories
and thus ruining the performance of the rare ones. Nevertheless,
it su�ers from the noise of pseudo labels since pseudo labels with
high con�dence might not always be correct. Recent pseudo-label
selection methods are developed to deal with the above problem.
Zou et al. [25, 45] try to �nd appropriate thresholds to generate
pseudo labels of rare categories under the principle of class balance.
Pan et al. [26] use the image-level entropy to split the target domain
data into two groups, then select the group of lower entropy for
self-training. Pseudo-label assignment based on the class prototype
is another way. Zhang et al. [41] use the category centroid as a
prototype to assign pseudo labels, which could mitigate the side
e�ect of unbalanced data distribution and dig up more samples
for self-training. Zhang et al. [40] dynamically update the pseudo
labels to correct the wrong labels, producing better results.

GaussianMixtureModel. GaussianMixtureModel (GMM) [27]
is a probabilistic model that represents the presence of subpopula-
tions within an overall population. A typical scenario of GMM is
clustering and density estimation. Wang et al. [36] cluster the en-
tropy of each class to divide the unlabeled samples into two groups,
so as to �nd the reliable pseudo labels. Zong et al. [44] handles the
density estimation problem in anomaly detection based on GMM.
It can also work as a prototype. Yang et al. [37] utilizes GMM as
multiple prototypes to alleviate the semantic ambiguity caused by
single prototype in few-shot learning.

3 METHOD
3.1 Problem Setting
First, we formally introduce the problem of domain adaptive seman-
tic segmentation. Under this setting, we are given a source dataset
with full annotation {-B ,.B } and an unlabeled target dataset {- C },
both of which share the same category set C. The goal is to utilize
these two datasets to train a segmentor that can apply to the target
domain. In general, the segmentor ⌧ can be divided into a feature
extractor ⇢ and a classi�er � :

⌧ = � � ⇢ . (1)

The source-domain knowledge can be learned under a typical
supervised learning paradigm:

!B46 = EG⇠-B ,~⇠. B [✓ (⌧ (G),~], (2)

where ✓ (., .) denotes a proper loss function such as cross entropy.
In the target domain, self-training methods tend to generate the
pseudo labels of the target samples {.̂ C } �rst and retrain the model
on {- C , .̂ C } together with {-B ,.B } reusing Eq. 2.

However, as mentioned above, existing attempts in latent space
usually ignore the variance and multi-cluster trait of the feature
distribution, thus generating the noisy .̂ C . Additionally, some hard
or disturbed samples in -B are enrolled in the training process,

Target prototype

Source feature

𝐸෠

Source prototype

Target feature

𝐸

Source image

Target image Pseudo label

Transferability map

Forward direction

Backward direction

Figure 2: (Best viewed in color.) The schematic diagram of
BiSMAP, in which the prototypes from both domains are
innovatively introduced. In the “forward direction”, we uti-
lize the proposed MAPs to do the pseudo labels selection.
These high-quality pseudo labels are then leveraged to re-
train the segmentor. In the proposed “backward direction”,
we retrain the segmentor with both source data and selected
target pseudo labels. In this process, we employ the target-
domain prototypes to generate STM and reweight the pixel-
level training loss on source sampleswith STM (i.e., the source
pixels in the small-value areas of the STM will be degraded
in term of their training losses).

which would impede the adaptation performance. To deal with
these issues, we propose the BiSMAP method. On one hand, it
utilizes the “Multiple Anisotropic Prototypes” (MAPs) to generate
more accurate pseudo labels for the retraining phase. On the other
hand, it bidirectionally introduces the target-domain prototypes to
degrade those hard or disturbed source samples. These designs will
be detailed in the following.

3.2 Bidirectional Self-training
A brief overview of our bidirectional idea is illustrated in Fig. 2. It
consists of a “forward direction” that selects reliable pseudo labels
in the target domain resorting to the source-domain prototypes, as
well as a complementary “backward direction” to degrade those
hard or disturbed source samples according to their relations to the
target-domain prototypes. In the forward direction, we improve
the traditional self-training methods by introducing the “Multiple
Anisotropic Prototypes” to generate more accurate pseudo labels.
In the backward direction, we generate the Source Transferability
Map (STM) to represent the importance of each source sample in
the adaptation and accordingly reweight the training loss map. For
convenience, we begin with the introduction of MAPs.

3.3 Multiple Anisotropic Prototypes
As analyzed above, the de facto feature distribution of a category is
exhibited as multi-cluster and anisotropic, which goes beyond the
representation ability of a traditional single centroid. To address
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Figure 3: The architecture of BiSMAP. (a) Pseudo label generation phase. The feature extractor ⇢ is pre-trained using the
stylized source dataset in the previous warmup stage and kept �xed in this phase. In the source training �ow, source features
extracted by ⇢ are clustered by GMM in a class-ware mode to generate MAPs. In the target inference �ow, the target features
extracted by ⇢ are evaluated by MAPs and assigned high-quality pseudo labels. (b) Retraining phase. ⇢ is retrained with the
source samples together with the target pseudo labels generated in the �rst phase. During retraining, the loss of the source
samples is reweighted by the source transferability map (STM). To further mitigate the noise of pseudo labels, consistency
regularization based on the exponential moving average (EMA) model and data augmentation is applied in this process.

this limitation, we proposeMultiple Anisotropic Prototypes (MAPs),
as illustrated in Fig. 3(a).

MAPs Generation using Gaussian Mixture Model. To pro-
duce MAPs of the source domain, we match the source feature
distribution with a Gaussian Mixture Model (GMM). GMM is a clas-
sical model which can �t the complex distributions and estimate
the probability density [27]. The advantage of choosing GMM is
multi-fold. On one hand, GMM employs probability density instead
of the isotropic distance to measure the probability that a sample
belongs to a cluster. On the other hand, GMM harnesses multi-
ple weighted Gaussian distributions and hence can be extended to
non-Gaussian cases. To get MAPs of each category, we leverage
the encoder ⇢ to extract the features of each class on the source
domain. Speci�cally, only those source features that are correctly
classi�ed are considered in this process:

⇤2 = {5 B8 | argmax⌧ (GB )8 = 2,~B8 = 2, GB 2 -B }, (3)
where 5 B8 is calculated by⇢ (GB )8 and represents the feature extracted
by ⇢ at pixel index1 8 of GB , 2 denotes a speci�c category, GB and
~B are the source image and its corresponding label. ⇢ denotes
the feature extractor of the segmentor which is trained by domain
alignment methods, e.g., adversarial training, or style transfer. ⇤2
denotes the feature set of category 2 in the source domain.

GMM works in a class-aware mode in which the features ⇤2
from each category are �tted by a speci�c GMM. In this manner,
we can get ⇠ GMMs corresponding to ⇠ semantic category. Each
1Unless otherwise noted, we upsample the feature map to the same size of the input
image when generating the transferability map and pseudo labels. In this way, a pixel
index 8 can refer to the same position in both feature map and input image.

GMM takes the form of a weighted sum of a series of Gaussian
distributions given by:

?2 (5 ) = log(
 ’
:=1

c2,:#2,: (5 | `2,: , ⌃2,: )), (4)

#2,: (5 ) =
exp{� 1

2 (5 � `2,: )) ⌃�12,: (5 � `2,: ) }
(2c )3/2 |⌃2,: |1/2

, (5)

where 5 is a feature vector, ` and ⌃ are the mean vector and covari-
ance matrix of the Gaussian distribution,  represents the number
of Gaussian distributions,3 is the dimension of feature vector, and c
denotes the mixture weight. 2 and : are the category index and the
prototype index, respectively. Each category has  prototypes and
each prototype follows an anisotropic Gaussian distribution. For
the feature set ⇤2 of a speci�c category 2 and the initial prototype
?2 , we can apply Expectation-Maximization algorithm [27] to solve
the GMM equation iteratively and get the prototype ?2 composed
of GMM. Since each category has  prototypes and each prototype
has its covariance matrix, our design breaks the constraints of the
improper “single-centroid and isotropic” distribution assumption.

Note that due to the heavymemory footprint of the EM algorithm
facing the large-scale pixel-level samples, it is impractical to apply
EM straightly on the whole source-domain features. Instead, we
sample 300, 000 features from each category, compromising to the
scale that an EM algorithm can handle e�ciently.

Feature Similarity Measurement. We take the prototype ?2
corresponding to category 2 as an example to illustrate the mea-
surement of similarity between target-domain features and source-
domain prototypes. Given a target image GC , we use the feature
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extractor ⇢ to get the feature map 5 C = ⇢ (GC ). For any given pixel-
level feature 5 C8 , we can measure its similarity to the prototype as
?2 (5 C8 ). Such similarity is based on the probability density rather
than the isotropic distance so that it can cope with more com-
plex distributions, and we call {?2 | 2 2 ⇠} multiple anisotropic
prototypes. Therefore, for each pixel feature we can get a set of
probabilities {?2 (5 C8 ) | 2 2 ⇠}.

Pseudo Label Assignment. MAPs can estimate the probability
of generating a sample of a certain category at any location in latent
space. With the probability between each pixel-level feature and
the prototypes, we assign pseudo labels based on the log probability
density. We take a speci�c pixel feature 5 C8 for example. First, we
get the similarity set {?2 (5 C8 ) | 2 2 ⇠} using Eq. 4. Then we de�ne
the pseudo label of pixel 8 in target image GC as ~̂C8 , which is is a
one-hot vector or an all-zero vector. The A -th bit of ~̂8 is calculated
by the following formula:

~̂C8A =
8><
>:
1, A = argmax

2
(?2 (5 C8 )), ?A (5 C8 ) � X

0, >C⌘4AF8B4 .
(6)

Our pseudo label assignment strategy is based on probability den-
sity: samples with log probability density higher than X will be
assigned pseudo labels and others will be ignored. The target do-
main dataset with pseudo labels denotes as {- C , .̂ C }.

3.4 Source Sample Degradation
In traditional self-trainingmethods, some hard or disturbed samples
in -B are easily enrolled in the training process, which would
impede the adaptation performance. In this section, we would �lter
out these samples by estimating their transferability and reducing
their in�uence on adaptation.

Target Prototypes Generation via Clustering. As shown
in Fig. 2, we measure the transferability of each source sample
with the aid of target-domain prototypes. Due to the unlabeled
characteristic of the target domain, we are not able to use any
categorical information to generate the prototypes like traditional
methods. Accordingly, a clustering-based method is proposed. First,
we employed a network ⇢̂ pre-trained on a third-party dataset, e.g.,
ImageNet, to extract semantic features from the target domain and
get a feature set. Then an unsupervised clustering algorithm, e.g.,
K-Means [10], is applied to cluster these features. Finally, we keep
the cluster centers {� 9 | 0 < 9 < � } as the target prototypes where
� is the number of clusters used in K-Means. These prototypes are
later employed to evaluate the transferability of source domain
features, as shown in Fig. 2.

Source Transferability Map. Now we have gotten a set of
prototypes that could represent the feature distribution of the target
domain, in the next step we will evaluate the transferability of
source features and �gure out those hard or disturbed samples.
Here we propose to estimate the transferability of each sample
based on both feature distance and category entropy. Formally,
we �rst de�ne the distance from the source features to the target
domain as follows:

⇡ (GB )8 =<8={
��� 5̂ B8 �� 9

���
2
| 0 < 9 < � }, (7)

where 5̂ B represents the feature of GB extracted by ⇢̂, � 9 is one of
the target prototypes and 8 is the pixel index on feature map 5̂ B .
⇡ (GB )8 coarsely depicts the transferability of a pixel-level source
feature but su�ers from the long-tailed distribution: we �nd the
samples from head classes can always got a relatively high score
in the transferability map and vise versa. To balance the class-
level transferability score, we calculate the average entropy of the
predicted results for each class in the target domain using the
source pre-trained segmentation model. Then we apply Min-Max
normalization to those category entropy:

4 02 =
42 � 4<8=
4<0G � 4<8=

, (8)

where 42 denotes the mean entropy of category 2 in the target
domain, 4<8= and 4<0G represent the maximum and minimum
entropy of all categories, respectively. 42 is calculated from the
softmax layer of the source pre-trained segmentation model on
target domain. Since there are no labels for the target domain, we
use pseudo-labels to calculate the category entropy. Finally, we
de�ne the transferability map of GB as the follows:

FB8 =<8={exp(
�⇡ (GB )28
32<40=

log 2) + 4 02 , 1.0}, (9)

where 3<40= denotes the mean distance calculated by ⇡ (·) in the
whole source dataset,FB is the transferability map andFB8 repre-
sents the value of FB at pixel index 8 and 2 is the category of GB8
according to ~B8 . Obviously, Eq. 9 contains a term based on feature
distance and a term based on category entropy. The feature distance
determines the overall transferability of a source region, while the
category entropy serves as a lower bound to balance the class-level
transferability. The shape of the transferability mapFB is consistent
with the shape of the source images, as shown by Fig. 2. We will
detail the usage ofFB during training in Section 3.5.

3.5 Training Pipeline
The proposed BiSMAP is composed of a warmup stage and a self-
training stage, and the latter can be further divided into a pseudo
label generation phase and a retraining phase. We warm up the
initial model with Eq. 2, in which we stylize the source images
using Global Photometric Alignment [24] technique following the
setting of [24]2. These stylized source data will be also employed
in the self-training stage.

In MAPs generation described in Sec. 3.3, the model pre-trained
in the warmup stage is applied as the feature extractor ⇢ for pro-
ducing MAPs. We sample 300, 000 features per class and implement
GMM with 8 diagonal covariance Gaussian distributions. Then the
pseudo labels are generated via MAPs according to Eq. 6. For STM
generation described in Sec. 3.4, we employ a ResNet152 pre-trained
by SimCLRv2 [6] as the feature extractor ⇢̂.

The proposed BiSMAP is featured by three loss functions, i.e.,
the reweighted source loss, the target self-training loss, and the
consistency regularization loss. Given an image GB 2 -B of shape
3 ⇥� ⇥, and a label map ~B 2 . B of shape⇠ ⇥� ⇥, where⇠ is
the number of semantic classes, the loss of each sample in source

2GPA is also served as our baseline method.
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Table 1: Comparison of domain adaption tasks in GTA to Cityscapes. “*” indicates the results after the distillation stage.
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CAG_UDA [41] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
IAST [25] 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2
FDA [38] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
Coarse-to-�ne [24] 92.5 58.3 86.5 27.4 28.8 38.1 46.7 42.5 85.4 38.4 91.8 66.4 37.0 87.8 40.7 52.4 44.6 41.7 59.0 56.1
ProDA [40] 91.5 52.4 82.9 42.0 35.7 40.0 44.4 43.3 87.0 43.8 79.5 66.5 31.4 86.7 41.1 52.5 0.0 45.4 53.8 53.7
MFA [39] 94.5 61.1 87.6 41.4 35.4 41.2 47.1 45.7 86.6 36.6 87.0 70.1 38.3 87.2 39.5 54.7 0.3 45.4 57.7 55.7

GPA(baseline) 76.8 34.6 68.2 22.7 21.4 40.1 44.1 26.5 85.4 29.4 74.6 67.4 27.6 87.9 37.7 47.5 34.3 29.2 24.7 46.3
BiSMAP(ours) 86.2 48.4 83.5 43.8 38.2 41.8 49.5 54.7 87.9 41.7 84.7 63.9 34.4 89.1 49.1 62.2 43.8 37.1 56.6 57.7

ProDA* [40] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
MFA* [39] 93.5 61.6 87.0 49.1 41.3 46.1 53.5 53.9 88.2 42.1 85.8 71.5 37.9 88.8 40.1 54.7 0.0 48.2 62.8 58.2
BiSMAP*(ours) 89.2 54.9 84.4 44.1 39.3 41.6 53.9 53.5 88.4 45.1 82.3 69.4 41.8 90.4 56.4 68.8 51.2 47.8 60.4 61.2

Table 2: Comparison of domain adaption tasks in SYNTHIA to Cityscapes. “*” indicates the results after the distillation stage.
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CAG_UDA [41] 84.7 40.8 81.7 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 51.5
IAST [25] 81.9 41.5 83.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 57.0
FDA [38] 79.3 35.0 73.2 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5
Coarse-to-�ne [24] 75.7 30.0 81.9 18.0 32.7 86.2 90.1 65.1 33.2 83.3 36.5 35.3 54.3 55.5
ProDA [40] 87.1 44.0 83.2 45.8 34.2 86.7 81.3 68.4 22.1 87.7 50.0 31.4 38.6 58.5
MFA [39] 85.4 41.9 84.1 22.2 23.9 83.6 80.7 71.5 35.8 86.6 47.6 37.2 62.5 58.7

GPA(baseline) 75.3 31.3 78.7 22.4 25.2 75.9 82.0 64.3 28.3 80.2 25.9 24.6 27.1 49.3
BiSMAP(ours) 79.1 36.6 84.7 31.8 41.2 84.7 89.2 65.4 39.0 79.0 47.6 41.8 61.9 60.1

ProDA* [40] 87.8 45.7 84.6 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 62.0
MFA* [39] 81.8 40.2 85.3 38.0 33.9 82.3 82.0 73.7 41.1 87.8 56.6 46.3 63.8 62.5
BiSMAP*(ours) 81.9 39.8 84.2 41.7 46.1 83.4 88.7 69.2 39.3 80.7 51.0 51.2 58.8 62.8

domain is reweighted according to {FB } during training in the form
of multiplication:

L24 (GB , \⌧ ) =
�⇥,’
8=1

⇠’
2=1

�FB8 ~B82 log ?82 , (10)

where ?82 represents the probability of class 2 on pixel 8 . ~B82 is
the ground truth of class 2 on the pixel 8 .FB8 denotes the value of
pixel 8 in the transferability map illustrated in Section 3.4. \⌧ is the
parameter of the model ⌧ to be optimized.

For the images GC 2 {- C } from the target domain and its cor-
responding pseudo label ~̂C , we train the model with a symmetric
cross-entropy loss [35]:

LB24 (GC , \⌧ ) =
�⇥,’
8=1

⇠’
2=1

�U~̂C82 log ?82 � V?82 log ~̂C82 , (11)

We clamp the one-hot label ~̂C to [14 � 4, 1] to avoid the numerical
issue of log 0. The U and V are set to 0.1 and 1.0 respectively.

To further mitigate the noise in the candidate pseudo labels,
we apply consistency regularization with KLD loss on the target
domain:

L2>=B8BC (GC ,i (GC ), \⌧ ) =
�⇥,’
8=1

⇠’
2=1

e?82 loge?82 � e?82 log?82 , (12)

where i represents an image augmentation function and e? is the
output of the exponential moving average (EMA) model with i (GC )
as input as introduced by [32]. The overall training loss is:

L = L24 + LB24 + _L2>=B8BC (13)

where _ controls the relative weight of consistency regularization.

4 EXPERIMENT
4.1 Datasets
We evaluate BiSMAP together with several state-of-the-art algo-
rithms on two synthetic-to-real domain adaptation tasks: GTA5 [28]
to Cityscapes and SYNTHIA [29] to Cityscapes. GTA5 contains
24, 966 images with 1, 914 ⇥ 1, 052 resolution. SYNTHIA contains
9, 400 images with 1, 280 ⇥ 760 resolution. We use GTA5 and SYN-
THIA as the source domain and Cityscapes as the target domain.

4.2 Implementation Details
We utilize the DeepLab-V3Plus[5] with ResNet101[12] as the seg-
mentor following the setting of [24], and the backbone is pre-trained
on ImageNet [8]. The source domain images are converted to the
style of the target domain by GPA as introduced in [24], and all
the following phase is based on the stylized dataset. Images are
randomly scaled by ⇥0.5 ⇠ ⇥1.5 and cropped to 896 ⇥ 512.

For the generation of MAPs, we use GMM with 8 Gaussian
distributions. The probability density threshold X is set to 100 for
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(a) Target image (c) CAs-PLA(b) GPA baseline (d) MAPs-PLA (e) Ground Truth

Figure 4: Qualitative results of UDA segmentation for GTA5->Cityscapes.

(a) CAs-PLA (b) IAS-PLA (c) MAPs-PLA (d) GT

Figure 5: Pseudo label comparison to other PLA strategies.

GTA5->Cityscapes and �50 for Synthia->Cityscapes. We use the
standard color-jittering augmentation in both source and target
domains as in [24]. In consistency regularization, we follow the
setting of [32], where an EMA model works as a teacher to guide
the main model. We use RandAugment [7] and CutOut [9] as image
augmentation function i . The _ is set to 20, and the smoothing
coe�cient of EMA model is set to 0.999. The batch size is set to 8
for warmup and 4 for self-training, and the iteration of each stage
is 90, 000. We use SGD [2]optimizer with momentum and weight-
decay as 0.9 and 0.0005, respectively. The learning rate of SGD is
set to 0.0005 and decayed by the poly policy with power 0.9.

4.3 Comparative Studies
Compared with SOTA.We evaluate BiSMAP together with sev-
eral state-of-the-art methods. It’s worth noting that the most of
prototype-based methods are implemented on DeepLab-V3Plus
since it can better corresponds a feature to a certain pixel. For fair
comparison, we also report the results with an additional distilla-
tion stage which is proposed in [40]. The qualitative segmentation
examples can be viewed Fig. 4.

We show the comparison results on GTA5->Cityscapes in Tab. 1.
The mIoU of BisMAP after the self-training stage is 57.7%, which

achieves the state-of-the-art accuracy. Besides, BiSMAP brings sig-
ni�cant improvements to the confusion categories compared to the
GPA baseline [24], e.g., truck and bus. After the distillation stage,
BiSMAP achieve 61.2% mIoU, substantially outperforming the pre-
vious state of the arts [37, 39]. We show the comparison results on
Synthia->Cityscapes in Tab. 2 and get a 10.8% performance gain
compared to the GPA baseline. Similarly, we conduct a distillation
stage and achieve SOTA 62.8% mIoU.

Comparison of pseudo label assignment (PLA) strategies.
In Tab. 3, we compare the performance of the proposed MAPs-
PLA with both prototype-based and threshold-based approaches
on GTA5->Cityscapes task, including “Category Anchors pseudo
label assignment” (CAs-PLA) [41] and “Instant Adaptive Selector
pseudo label assignment” (IAS-PLA) [25]. All of the results are
based on the same warmup model and equipped with our proposed
STM for a fair comparison. CAs-PLA assigns pseudo labels using
Euclidean distance to the prototypes based on the assumption that
the feature distribution is isotropic and single-centered. IAS-PLA is
a popular method based on the prediction con�dence, but it is also
signi�cantly lower than our results.

By modeling the latent-space information more properly, MAPs-
PLA boosts the mIoU with an additional 2.4% compared to CAs-PLA
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(a) CAs-PLA (b) MAPs-PLA

Figure 6: Latent space visualization of (a) CAs-PLA and (b)
MAPs-PLA using T-SNE. We use the “bright red” color to
indicate those misclassi�ed features.

Table 3: Comparison with other pseudo label assignmethods.

CAs-PLA IAS-PLA MAPs-PLA

mIoU 54.9 55.4 57.3

and 1.9% compared to IAS. We show the visualization results of
di�erent PLA strategies in Fig. 5. The region of the red dotted box
in Fig. 5 shows that MAPs can not only �x some errors of CAs-PLA,
but also achieve good results in pseudo-label screening. Besides,
MAPs-PLA achieves less noise than CAs-PLA since the probability
density function forms a more accurate estimate of the con�dence.

Comparison of T-SNEvisualization results.To further demon-
strate the e�ectiveness of MAPs-PLA, we visualize the feature dis-
tribution trained by CAs pseudo labels and MAPs pseudo labels
as shown in Fig. 6, in which the misclassi�ed features are marked
as “light red”. We mainly focus on two confusing categories: trunk
and bus. The single-centroid prototype confuses them since they
are naturally closed in latent space, e.g., in the latent space of CAs
self-trained model, the feature of bus are multiple clusters but
most of the clusters are misclassi�ed. In the latent space of MAPs
self-trainedmodel, the bus category also exhibits multi-cluster char-
acteristics but are mostly correctly classi�ed thanks to our Multiple
Anisotropic Prototypes. We also show the visualization of latent
space before self-training in Appendix. C and similar characteris-
tics of multi-cluster can be observed. In conclusion, MAPs-PLA can
better correct errors and achieve improvement in such cases.

4.4 Ablation Studies
To assess the importance of various aspects of BiSMAP, we inves-
tigate the e�ects of di�erent components on GTA5->Cityscapes
task as shown in Tab. 4. The GPA [24] baseline reaches 46.3% in
our experiment. By introducing the STM, we increase the mIoU by
1.9%. And after the self-training stage with the pseudo labels gen-
erated by MAPs, the mIoU improves signi�cantly, reaching 57.3%.
BiSMAP achieves 11.4% performance improvement in one stage of
self-training. After the distillation stage, we achieve 61.2% mIoU
and signi�cantly outperforms other methods.

Table 4: Ablation of each component

baseline STM MAPs-PLA consistency distillation mIoU

X 46.3
X X 48.2(+1.9)
X X 56.4(+10.1)
X X X 57.3(+11.0)
X X X X 57.7(+11.4)
X X X X X 61.2(+14.9)

Table 5: Parameter study of MAPs-PLA. For MAPs-PLA,
threshold is the X . For CAs-PLA, threshold is based on spatial
distance. PL ratio is the ratio of pixel assigned pseudo labels.

method MAPs-PLA CAs-PLA

threshold 0 50 100 150 0.5 1 1.5 2

PL ratio 87.6 77.5 61.3 44.3 82.7 67.8 54.5 42.2

mIoU 56.4 57.1 57.3 55.7 53.2 54.9 53.9 53.9

4.5 Parameter Studies
This section investigates the sensitivity of X and analyzes the re-
lationship between the threshold and the ratio of pseudo labels
(PL ratio). As shown in Tab. 5, the probability density threshold X
is signi�cantly negatively correlated with the PL ratio. Therefore,
more percentage of the pixel will be assigned pseudo labels with the
decrease of X . When X = 100, we achieve highest mIoU by trading
o� the balance between the PL ratio and accuracy.

The threshold used by CAs-PLA is based on spatial distance as
designed in [41]. It got highest performance 54.9% when the thresh-
old is 1.0 and 67.8% pixels are assigned pseudo labels. However, the
proposed MAPs-PLA strategy gets 55.7% when only 44.3% pixels
are assigned pseudo labels. We show that, at about the same ratio
of pseudo labels, MAPs-PLA achieves higher performance. Similar
conclusions can be drawn at other scales of PL ratio. By compar-
ing the segmentation results under di�erent parameters, we can
conclude that MAPs-PLA improves the robustness of pseudo labels.

5 CONCLUSION
In this paper, we proposed a bidirectional self-training withmultiple
anisotropic prototypes method for unsupervised domain adaption.
Speci�cally, we produce the target-domain prototypes to degrade
those source features and develop a robust pseudo label assignment
strategy based on the multiple anisotropic prototypes. Extensive
experiments verify the e�ectiveness and superiority of BiSMAP.
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Appendix. A PARAMETER ANALYSIS OF K
To analyze the e�ectiveness of multiple prototypes, we use GMMs with di�erent  (the number of clusters) to generate pseudo-labels during
training, and the results are shown in Tab. 6. We �nd that as  increases, the performance of self-training gradually improves. When  is
increased to 6, the mIoU achieves 57.3%. Further increasing the number of  can no longer improve performance. In conclusion, a larger  
value can usually stimulates a stronger GMM’s ability to �t the de facto distribution, yet  = 8 is enough to match the distribution in this
task. Accordingly, we choose the value of  = 8 in the experiment. These experimental results do not contain consistency regularization in
order to pinpoint the pure e�ect of  .

Table 6: The detailed results of self-training under di�erent parameter  on GTA->Cityscapes.
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1 87.9 51.1 83.4 38.9 34.6 40.1 48.2 46.6 86.8 35.9 85.4 66.2 36.5 89.4 41.3 54.2 43.1 39.0 57.4 56.1
2 82.3 42.8 82.3 39.9 39.3 38.9 49.5 47.9 87.3 39.7 82.9 66.5 37.3 89.5 41.2 58.7 55.6 39.5 56.0 56.7
4 86.8 51.2 82.0 43.0 38.0 42.4 48.8 50.3 86.4 38.0 86.4 64.0 36.0 88.5 42.7 53.1 53.9 32.7 55.0 56.8
6 85.9 47.5 83.0 41.3 37.2 43.4 51.8 49.2 87.4 41.0 84.9 67.1 38.4 90.0 46.0 57.7 47.4 34.4 55.4 57.3
8 88.4 47.9 85.3 38.1 36.0 41.8 49.7 47.2 86.2 38.6 79.2 67.7 38.9 89.5 49.7 62.5 47.4 37.9 57.6 57.3

Appendix. B DETAILED ABLATION STUDY

Table 7: The detailed IoU results of ablation study on GTA->Cityscapes.
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Appendix. C T-SNE VISUALIZATION OF LATENT SPACE BEFORE SELF-TRAINING
In Fig. 7, we show the 2D visualization results of features from “truck” and “bus”. It can be seen that the features of semantic segmentation
have the characteristics of large variance and multi-class clusters in the latent space.

Figure 7: 2D visualization of the truck and bus features based on T-SNE. Each category shows 3 clusters obtained by GMM
clustering, which are represented by di�erent colors. All the features are extracted from GTA dataset with the warmup model.
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Appendix. D MORE PSEUDO-LABEL COMPARISON AND QUALITATIVE RESULTS

(a) IAS-PLA (b) CAs-PLA (c) MAPs-PLA (d) Ground truth

Figure 8: Pseudo label comparison with other methods: (a) IAS-PLA. (b) CAs-PLA. (c) MAPs-PLA. (d) Ground Truth.

(a) Target image (b) GPA Baseline (c) BiSMAP (d) Ground truth

Figure 9: Qualitative results of UDA segmentation for GTA->Cityscapes. We visualize the results of the GPA baseline, BiSMAP
(ours), and the ground truth.


