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ABSTRACT
Human affect and mental state estimation in an automated manner,
face a number of difficulties, including learning from labels with
poor or no temporal resolution, learning from few datasets with
little data (often due to confidentiality constraints) and, (very) long,
in-the-wild videos. For these reasons, deep learning methodologies
tend to overfit, that is, arrive at latent representations with poor gen-
eralisation performance on the final regression task. To overcome
this, in this work, we introduce two complementary contributions.
First, we introduce a novel relational loss for multilabel regression
and ordinal problems that regularises learning and leads to better
generalisation. The proposed loss uses label vector inter-relational
information to learn better latent representations by aligning batch
label distances to the distances in the latent feature space. Second,
we utilise a two-stage attention architecture that estimates a target
for each clip by using features from the neighbouring clips as tem-
poral context. We evaluate the proposed methodology on both con-
tinuous affect and schizophrenia severity estimation problems, as
there are methodological and contextual parallels between the two.
Experimental results demonstrate that the proposed methodology
outperforms the baselines that are trained using the supervised re-
gression loss, as well as pre-training the network architecture with
an unsupervised contrastive loss. In the domain of schizophrenia,
the proposed methodology outperforms previous state-of-the-art
by a large margin, achieving a PCC of up to 78% performance close
to that of human experts (85%) and much higher than previous
works (uplift of up to 40%). In the case of affect recognition, we
outperform previous vision-based methods in terms of CCC on
both the OMG and the AMIGOS datasets. Specifically for AMIGOS,
we outperform previous SoTA CCC for both arousal and valence by
9% and 13% respectively, and in the OMG dataset we outperform
previous vision works by up to 5% for both arousal and valence.
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1 INTRODUCTION
Understanding human affect and mental state is an active research
area with multiple potential applications spanning fields such as
education [49], healthcare [41], and entertainment [32, 40]. For ex-
ample, by understanding human emotion, the user experience can
be enhanced and healthcare professionals can more effectively mon-
itor the patients’ emotional state. These problems can be treated
either as a classification, using the basic human emotions [14] or by
utilising continuous labels along the Arousal-Valence axes [39]. Sim-
ilarly, in the domain of mental illness, several scales have been used
by healthcare professionals to assess the severity of the symptoms,
thus treating symptoms as a spectrum [2].
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Figure 1: Overview of the proposed framework.

Regardless of which of the above labelling approaches is adopted,
certain issues render the problem of human affect and mental state
estimation challenging. Specifically, in-the-wild datasets tend to
include long videos with low or no temporal label resolution – i.e.,
a set of labels describes the entire video. This typically occurs as
affect and mental health symptom labels refer to abstract behaviour
that is not easily captured and is not always objectively defined.
The length of the video poses a major difficulty for Machine Learn-
ing methods, due to GPU memory constraints. To address this
issue, two main approaches are employed in the literature, namely,
a) estimating sub-segments of the long videos [8, 31] and b) pre-
computing features[5, 35, 50, 51]. For example, in MIMAMO [12]
and the work of Peng et al. [36] a small number of frames is sampled
from each clip. However, this disregards information from the re-
maining video and the clip context. Moreover, as affect and mental
state descriptions often refer to a larger context, short clips might
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not be representative samples. Similarly, estimating per-frame pre-
dictions [33] disregards clip information and is also suffering from
the lack of temporal information. Previous state-of-the-art works
in symptom severity estimation [4], used statistical representations,
such as Gaussian Mixture Models, on a set of per-frame extracted
features. However, this approach does not learn from the temporal
relationships of frame features. It also does not allow for end-to-
end training, therefore does not allow for feature optimisation on
the specific task. In order to exploit contextual information and
improve clip-level features, Wu et al. [48] proposed the use of Long-
Term Feature Banks for the problem of action recognition in videos.
However, Long-Term Feature Banks [48] rely on a pre-computed
set of features for the context, that does not improve in quality
during training. By contrast, in this work, we build upon [48] and
use a context feature extractor that updates context features at each
iteration, allowing for dynamically computing context features of
random clips sampled from a longer video in an end-to-end manner,
leading to much shorter training times.

Publicly available datasets for affect and mental health analysis
are typically small, which often results in overfitting problems
during training. As such, methods that lead to better representations
with a small number of samples are paramount to the success of the
final regression task. However, several recent works [6, 11, 20, 26]
require pre-training (whether supervised or unsupervised) with
very large datasets to achieve better representations before fine-
tuning on the final task. In continuous affect estimation, Kim et
al. [27] binarised labels and used an adversarial loss on the latent
feature space, however this approach ignores the continuous nature
of Arousal/Valence dimensions.

In order to both alleviate the challenges due to long video input
and to improve the feature representations so as to address the
multi-label regression problems that arise in the domain of affect
and mental health analysis, in this work we propose a) a novel
attention-based video-clip encoder that builds upon [48] and utilises
the temporal dimension of the input clips and arrives at clip-level
predictions that benefit from context clip information, and b) a
novel relational regression loss function that aligns the distances
in the latent clip-level representations/features to the distances of
the labels of the clips in question. An overview of the proposed
framework is shown in Fig. 1. Specifically, we propose to jointly
train two network branches: a) one that uses the proposed video-
clip encoder to extract clip-level features from the input video clips
and a set of temporally neighbouring clips, which subsequently
feed a regression head in order to infer the desired values and
calculate the regression loss, and b) one that uses the proposed
video-clip encoder to extract clip-level features from the input video
clips, which subsequently feeds the regression head and are further
used to construct the intra-batch similarity matrix for calculating
the proposed relational loss. To the best of our knowledge, this
is the first work that uses label relationships to improve feature
representation learning. The proposed regression head employs
an attention-based mechanism for fusing clip-level and context
features and regressing to the desired continuous values. The main
contributions of this work can be summarised as follows:

• We build on [48] and propose a two-stage attention archi-
tecture that uses features from the clips’ neighbourhood to

introduce context information in the feature extraction. The
architecture is novel in the domain of affect and mental state
analysis and, unlike [48], it does not train a separate model
to compute context features, but rather updates its weights
during training – this leads to smaller training times.

• We introduce a novel loss, named relational regression loss,
that aims at learning from the label relationships of the sam-
ples during training. This loss is using the distance between
label vectors to learn intra-batch latent representation sim-
ilarities in a supervised manner. We show in the ablation
studies that the improved latent representations obtained
with the addition of the relational loss lead to improved
regression output, without the use of large datasets.

• We show that the methodology achieves results comparable
to the state-of-the-art. Specifically, for symptom severity
estimation of schizophrenia, our methodology outperforms
the previous state of the art on all scales and symptoms tested
and achieves a Pearson’s Correlation Coefficient similar to
that of human experts.

2 RELATEDWORK
In this Section, we review previous works on continuous affect esti-
mation and mental health assessment and focus on representation
learning and temporal context exploitation in large videos.

2.1 Learning Representations and Label
Relations

In human affect problems and even more in mental state estimation,
learning features representative of the behaviour rather than other
entangled factors (eg. identity) is paramount to the reliability of the
final estimate. A number of works have addressed the issue of rep-
resentation learning, with more recent developments in contrastive
methodologies [10, 11], whether evaluating results on static image
data or video datasets [38]. These self-supervised methodologies
learn latent representations by teaching the architecture which
data points are similar. By extending the idea of comparing sam-
ples, supervised contrastive frameworks propose that images [26]
or videos [20] from the same class are treated as similar, which re-
sults in embeddings from the same class being more closely aligned.
However, these works are trained on very large datasets which are
not typically available in affective and mental health problems, and
have only been evaluated on classification problems. Kim et al. [27]
implement an adversarial loss to learn better representations for
continuous affect, however, Arousal/Valence values are binarised
for the adversarial task. In our work, we explore the idea of learning
representations by comparing sample similarities in a supervised
approach, however we implement a non-binary approach which is
more suitable for multi-label regression problems.

Several problems/datasets in the field of continuous affect and
mental health have multiple labels, in order to describe various
affective attributes/ psychological symptoms. Treating each label
independently [12] ignores their potential correlations as well as
increases training times significantly with each additional label.
Several works investigate multi-label recognition problems us-
ing graph learning approaches to model label correlations and
co-occurrences [30, 47]. However, such approaches do not learn
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from label similarities between samples and do not project these
similarities to the latent representation space. In contrast, our work
uses information from the inter-sample label similarities to learn
better latent representations.

2.2 Addressing large sequences
The exploration of methods tailored to long-range video under-
standing, is vital for human affect and mental state estimation, as
long videos are typically more representative of real-life settings.
Moreover, long temporal relationships intuitively should contribute
to more accurate estimates of human affect and mental states. To
address long video sequences, previous works have used a number
of strategies. One such method is to pre-compute features [4, 29];
this however does not allow for end-to-end training and makes aug-
mentation techniques more complicated (if feasible at all). Another
strategy to address long video sequences is by using contextual
features either in the form of intra-sample relations [52] or by ex-
ploring feature banks [48]. Both of these approaches utilise relations
between the short term actions, which is the temporal context of a
clip. However, these methods have been evaluated on action recog-
nition problems and have not been implemented in affect. Moreover,
while action problems benefit from from long-term context, they
still have a much lower label resolution. Finally, in [48] context
features need to be pre-computed on pre-defined clips, therefore
feature quality does not improve with further training.

In our work, we build on the concept of exploiting contextual
features, however differently from [48] we use context features to
improve clip-level prediction with end-to-end training. We also do
not operate on pre-defined clips, but rather dynamically compute
features from them – with this approach as training progresses, the
network learns from better context features.

2.3 Affect and Mental Health
As several mental health illnesses and disorders have non-verbal
behaviour symptoms, understanding patients’ affect is important
in diagnosis and severity estimation. Depression is a mood disorder
that has an impact on patients’ affective state; similarly, a number
of schizophrenia negative symptoms refer to patients’ affect and
expressions, therefore there are important semantic parallels be-
tween continuous affect estimation and mental health assessment,
so we examine them in parallel. More work has been performed on
estimating depression severity than symptoms of schizophrenia, as
there are no publicly available datasets for the latter.

A number of previous works use a bag of words approach for
gestures and facial expressions [22, 23] or use statistical represen-
tations of pre-computed features [5, 16, 43]. Some of the symptoms
have a quantitative measure (e.g., reduced gestures), therefore, intu-
itively, methodologies that implicitly measure quantity of features
have achieved state-of-the-art results in these previous works. How-
ever, such methods disregard the temporal relationship of features.
Similarly in [33], by making per-frame predictions for depression
estimation, the temporal dimension is not taken into considera-
tion. More recently, in [21] the temporal dimension is taken into
consideration as the work leverages audio and text modalities, how-
ever, no modality for vision is implemented. In contrast, our work

proposes a transformer-based architecture to learn from the tem-
poral dimension. We implement this on RGB frames cropped to the
subjects’ faces, rather than a set of pre-computed features such as
Facial Action Units [14].

3 PROPOSED METHOD
An overview of the proposed framework for the problem of multi-
label regression from a sequence of clips is given in Fig. 2. In a
nutshell, the proposed architecture consists of two branches with
shared weights, that incorporate two main components: a) a video-
clip encoder employing a convolutional backbone network for
frame-level feature extraction and b) a Transformer-based network
leveraging the temporal relationships of the spatial features for clip-
level feature extraction (Sect. 3.1). The clip and context features
produced by the aforementioned branches are passed to a context-
based attention block (Sect. 3.2) and a regression head (Sect. 3.3).
The proposed method uses the context-based attention block to
incorporate features from the two branches before passing them
to the regression head, as shown in Fig. 2. The bottom branch uses
the proposed video-clip encoder to extract clip-level features from
the input video clips, which subsequently feed the context-based
attention block and are further used to construct the intra-batch sim-
ilarity matrix for calculating the proposed relational loss (Sect. 3.4).
The goal of the proposed relational loss, as an additional auxiliary
task to the main regression, is to obtain a more discriminative set
of latent clip-level features, by aligning the label distances in the
mini-batch to the latent feature distances. Finally, the upper branch
uses the proposed video-clip encoder to extract clip-level features
from the input video clips and a set of context clips from each of the
input clips, which subsequently feed the regression head in order
to infer the desired values and calculate the regression loss.

3.1 Video-clip encoder
LetX be a batch of labelled clips designed so as it contains consecu-
tive clips taken from different video sequences; i.e.,X = {(𝑋𝑖 , y𝑖 )}𝐵𝑖=1,
where 𝑋𝑖 ∈ R𝑇×𝐻×𝑊 ×3 denotes the 𝑖-th clip in the mini-batch, 𝑇
denotes its duration in frames, 𝐻,𝑊 denote the frame height and
width, y𝑖 = (𝑦1, . . . , 𝑦𝐶 ) ∈ R𝐶 denotes the corresponding ground
truth label vector with continuous annotation for 𝐶 classes, and 𝐵
denotes the mini-batch size.

Given an input clip 𝑋𝑖 , the proposed video-clip encoder ex-
tracts frame-level features by feeding them to a backbone con-
volutional network (e.g., a ResNet [19]), which subsequently feeds
a Transformer-based network for extracting clip-level features,
leveraging this way the temporal relationships of the calculated
spatial features. In the proposed framework, we use the above
video-clip encoder in both branches as shown in Fig. 2 – i.e., for
calculating the clip-level features z0

𝑖
∈ R𝐷 for the input clips 𝑋𝑖 ,

𝑖 = 1, . . . , 𝐵 (bottom branch) and for calculating clip-level features
𝑍𝑖 =

(
z−𝐾
𝑖
, . . . , z0

𝑖
, . . . z𝐾

𝑖

)
∈ R(2𝐾+1)×𝐷 from each 𝑋𝑖 along with a

number 𝐾 of context clips before and after it (upper branch).

3.2 Context-based Attention
As discussed above, for any given clip 𝑋𝑖 and 2𝐾 context clips
around it, the proposed video-clip encoders extract the clip-level
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Figure 2: Overview of the proposed framework: (a) The bottom branch uses the proposed video-clip encoder (comprising
of a ResNet frame-level and a Transformer clip-level feature extractors) to extract clip-level features from the input video
clips, which subsequently feed the context-based attention block and are further used to construct the intra-batch similarity
matrix for calculating the proposed relational loss. (b) The upper branch uses the proposed video-clip encoder to extract
clip-level features from the input video clips and a set of context clips from each of the input clips, which subsequently feed the
context-based attention block in order to infer the desired values and calculate the regression loss. The context-based attention
block, fuses clip-level and context features and passes the context attended clip features to the regression head that estimates
the desired continuous values. Error is back-propagated only through the shaded region of the bottom branch.

features z0
𝑖
∈ R𝐷 (corresponding to the input clip 𝑋𝑖 alone) and

𝑍𝑖 =

(
z−𝐾
𝑖
, . . . , z0

𝑖
, . . . z𝐾

𝑖

)
∈ R(2𝐾+1)×𝐷 (corresponding to the input

clip 𝑋𝑖 and 𝐾 clips before and 𝐾 clips after it). These features are
then fed to the regression head (Fig. 2), where they are first passed
through an attention module before being concatenated. The re-
sulting context-attended clip features are passed to the regression
head for the final regression task.

3.3 Multi-label regression head
The context-attended clip features obtained through staged at-
tention as explained in the previous sections, is passed through
an MLP regression head that predicts the regression values ŷ𝑖 =
(𝑦1
𝑖
, . . . , 𝑦𝐶

𝑖
), 𝑖 = 1, . . . ,𝐶 . Finally, we calculate the regression loss

Lreg by either using the Root Mean Square Error (RMSE) or the
Concordance Correlation Coefficient (CCC), depending on the task
at hand, as we will discuss in Sect. 4.

3.4 Relational loss
At each training iteration, after having calculated (as discussed in
Sect. 3.1) the clip-level features for the clips in a mini-batch, i.e.,
z0
𝑖
∈ R𝐷 , 𝑖 = 1, . . . , 𝐵, we calculate the proposed relational loss as

follows:

Lrel =

√√√√
1
𝐵2

𝐵∑︁
𝑖=1

𝐵∑︁
𝑗=1

(
𝑀̂𝑖, 𝑗 −𝑀𝑖, 𝑗

)2
, (1)

where 𝑀̂ ∈ R𝐵×𝐵 denotes the cosine similarity matrix calculated
on the clip-level features, whose (𝑖, 𝑗)-th element is given as

𝑀̂𝑖, 𝑗 =
z0
𝑖
· z0
𝑗

∥z0
𝑖
∥∥z0

𝑗
∥
,

and𝑀 ∈ R𝐵×𝐵 denotes the cosine similarity matrix calculated on
the ground truth labels, whose (𝑖, 𝑗)-th element is given as

𝑀𝑖, 𝑗 =
y𝑖 · y𝑗

∥y𝑖 ∥∥y𝑗 ∥
.

It is worth noting that, for the calculation of the proposed rela-
tional loss, we use the clip-level features from the given clips with-
out using any context clips, in contrast to the regression loss where
additional context clips are being used, as discussed in Sect. 3.3.
The total loss is then calculated as Ltotal = Lreg + 𝜆Lrel, where 𝜆
is a weighting hyper-parameter which we discuss in Sect. 4.

3.5 Implementation details
3.5.1 Backbone frame-level feature extractor. We use a standard
ResNet50 [19] pre-trained on VGGFace2 [7] and fine-tuned on
FER2013 [18] as described in [1]. The classification layer of the
pre-trained network was replaced with a fully connected (FC) layer
that was fine-tuned for our task during the training of the network,
followed by a ReLU [17] activation. The adopted backbone network
receives an input of shape𝐻 ×𝑊 ×3, where𝐻,𝑊 are the height and
width of the input frame, respectively, and are set to 224 pixels, and
outputs a feature vector with 2048 dimensions for each frame. The
per-frame feature vectors are stacked to a matrix of size 𝑇 × 2048
for each clip, where 𝑇 is the number of frames of each input clip.
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3.5.2 Transformer neck clip-level feature extractor. A transformer
encoder architecture is employed to learn from the temporal re-
lationships of the spatial feature vectors calculated by the convo-
lutional frame-level feature extractor. The 𝑇 × 2048 features are
positionally encoded and fed forward to a Transformer Encoder [46].
An element-wise addition is performed between the transformer
encoder output and the frame-level features, followed by an aver-
age pooling operation along the temporal dimension, resulting in a
𝐷-dimensional clip-level representation, where 𝐷 = 2048.

3.5.3 Context-base Attention. For each input clip𝑋𝑖 , the regression
head takes as input both the clip-level features z0

𝑖
∈ R𝐷 and the

stacked context features 𝑍𝑖 =

(
z−𝐾
𝑖
, . . . , z0

𝑖
, . . . z𝐾

𝑖

)
∈ R(2𝐾+1)×𝐷

(Sect. 3.1). A modified non-local block [48] is then used as an atten-
tion operation, where clip-level features z0

𝑖
are used as the query

values to attend to features in 𝑍𝑖 , which are used as keys and val-
ues. The output context attention vector is concatenated with the
clip-level features, resulting in a 2 × 𝐷 dimensional vector.

3.5.4 Regression head. The penultimate feature vector is obtained
by passing the context-attended feature vector through an FC layer
followed by a ReLU activation and a dropout layer.

Finally, in order to obtain the final regression predictions, we
split the aforementioned penultimate feature vector into 𝐶 subsets
and attach an FC layer to each subset to obtain the final regression
predictions. In the case of continuous affect estimation, we set𝐶 = 2
(i.e., for Arousal/Valence estimation), while for the schizophrenia
symptom severity estimation, we set 𝐶 accordingly to the number
of symptoms provided by the scale at hand. Specifically, the CAINS-
EXP scale has 4 symptoms in total therefore we set 𝐶 = 4. The
PANSS Negative scale has 7 symptoms in total, however we select
3 for comparison with previous works [4, 45]. As the PANSS-NEG
scale includes a number of symptoms we do not consider, we add
an additional subset in the penultimate feature vector so that𝐶 = 4,
which is only considered in the total score estimation. We note that,
in the case of symptom severity estimation, additionally to each
individual symptom prediction, we predict a total score (by using an
additional FC layer) using the entire aforementioned penultimate
feature vector. This is in contrast to [4], where the total score is
estimated using the individual symptom scores.

4 EXPERIMENTAL SETUP
4.1 Datasets
NESS: The dataset was originally collected to study the effect of
group body psychotherapy on negative symptoms of schizophre-
nia [37]. The participants in this study were recruited from mental
health services from different parts of the UK. In total 275 partic-
ipants were interviewed at three different stages of the study: a)
a baseline, b) at the end of the treatment, and c) after six months.
Each clinical interview recording is between 40-120 minutes long
and is performed in-the-wild, reflecting this way the conditions of
real-life clinical interviews. Each interview is assessed in terms of
two symptom scales, namely, PANSS [24] and CAINS [15]. Out of
the total 275 patients, 110 accepted to be recorded at baseline, 93 at
end of treatment, and 69 in the six months follow up. The videos
in the dataset were recorded at various resolutions and frames per

Table 1: Performance (CCC) of the proposed method against
baseline and other uni-modal architectures (OMG).

Arousal Valence
Proposed 0.26 0.48
Proposed w/o 𝐾 0.29 0.46
Proposed w/o 𝐾 w/o L𝑟𝑒𝑙 0.24 0.44
Proposed w/ L𝑐𝑜𝑛𝑡 . 0.15 0.32
Peng et al. [36] 0.24 0.43
Kollias and Zafeiriou [28] 0.13 0.40

second, however we standardised the resolution to 1920× 1080 and
fps to 25 frames/s for all videos and we discarded videos where
a face was not detected on more than 10% of the frames. Train-
ing and evaluation were performed on videos recorded at baseline,
for a fair comparison with works in the literature, i.e., 113 videos
for 69 patients. All results reported on this dataset are based on a
leave-one-patient-out cross-validation scheme, where videos were
down-sampled to 3 fps. The values for “Total Negative” and “EXP -
Total” in the PANSS and the CAINS scales, respectively, were scaled
during training to match the range of individual symptoms (i.e., 1-7
for PANSS and 0-4 for CAINS).

OMG: The “OMG-Emotion Dataset” [3] consists of in-the-wild
videos of recorded monologues and acting auditions, collected from
YouTube. Multiple annotators separated each clip into utterances
and assigned labels for Arousal in the [0, 1] scale and Valence in the
[−1, 1] scale. The dataset originally consisted of training, validation,
and test sets with a total of 7371 utterances. As a number of videos
have been removed since the publication of the dataset, we trained
on 2071 and evaluated on 1663 utterances. We also scaled Arousal to
[−1, 1] to match the range of Valence during training and inference.

AMIGOS: The AMIGOS dataset [34] consists of audio-visual
and physiological responses of participants (either alone or in a
group) to a video stimulus. In this work, we used the responses of
individuals; i.e., where 40 participants watched 16 short videos and 4
long ones. The former were defined as videos of 50-150 seconds. The
responses were broken down to 20-second intervals and annotated
by three annotators for Arousal and Valence on a [−1, 1] scale. We
extracted the frames from the video (6 frames/s) and calculated the
average score of the three annotators as the ground truth during
training for the video segment. We trained the network following
a leave-one-subject-out cross validation scheme. At each fold we
randomly selected a subset of the training data, corresponding to
20% of samples. This is to show how the relational loss can achieve
state-of-the-art results using a much smaller number of samples
than conventional supervised methodologies.

4.2 Augmentation
During training, we applied data augmentation to the spatial di-
mensions of all datasets. Specifically, we randomly changed the
contrast, the saturation, and the hue of frames with a factor of 0.2
and we applied random horizontal flipping and random rotations
(with a range of 30°). The same set of transformations was applied
to all frames within a clip. Moreover, as clips with temporal length
𝑇 were selected from a larger video, we considered the clipping
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Table 2: Effect of number of frames𝑇 in terms of CCC (OMG).

Arousal Valence Mean
𝑇 = 8 0.25 0.41 0.33
𝑇 = 16 0.26 0.49 0.375
𝑇 = 32 0.19 0.40 0.295

along the temporal dimension as an augmentation approach. More
specifically, from the video sequence, we selected a random initial
frame and selected 𝑇 consecutive frames to form a clip. Similarly,
the context clips were defined as clips with 𝑇 number of frames
that were positioned before and after the current clip in the video
sequence. If the initial frame selected did not allow us to define a
complete clip, we looped the video. The number of frames 𝑇 was
set to 32 for the experiments conducted on the NESS, and to 16 for
the experiments conducted on the OMG and the AMIGOS datasets.

4.3 Training
During training, the hyperparameter 𝜆 that scales the relational loss
was empirically set to 2 for experiments conducted on the NESS
and the AMIGOS datasets, and to 1 for experiments conducted on
the OMG dataset. During testing, the clips were generated by a slid-
ing window over the video sequence, resulting in non-overlapping
clips; the average prediction of all clips in the video was calculated
to estimate the final predicted label vector. The network was trained
in an end-to-end manner with a batch size of 4, 8, and 16 for the
NESS, the OMG, and the AMIGOS datasets, respectively, keeping
the pre-trained weights of the ResNet-50 backbone frozen. We used
an Adam optimizer with an initial learning rate of 10−4, multiplied
by 0.1 every 5 epochs, and weight decay 5 · 10−3. The hyperparam-
eter 𝐾 that controls the context window size was set to 2 for the
experiments on the NESS and to 1 for the experiments on the OMG
and the AMIGOS datasets. The network incorporated an RMSE loss
during training for the experiments conducted on the NESS and
(1-CCC) for the experiments on the OMG and AMIGOS datasets,
as proposed by previous works in continuous affect [12, 42].

4.4 Architecture Complexity
The proposed architecture has 90M trainable parameters, distributed
as 4M in the backbone, 52M in the transformer neck and 33M in the
context aware attention and regression head. We note that, even
though the architecture is using two branches (one for clip level fea-
tures and one for context features), the two branches share weights
which significantly reduces the number of parameters. We also note,
that similarly to other state-of-the-art methods [12, 28], we use a
ResNet50 as our backbone network, but in contrast to them that
employ an RNN architecture to explore the temporal relationships,
we instead use a Transformer Encoder module. As shown in [46],
the self-attention layers of the Transformer are both faster and less
complex than recurrent layers (RNN) when the sequence length is
shorter than the feature dimensionality, which is the case in the
current architecture, hence, the proposed method is more efficient
than RNN-based two-stream methods. We report that the inference
time is on average at 28.6ms (±2ms) for a clip prediction.
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Figure 3: Scaled “Total Score” estimations of the proposed
method on NESS using (a) CAINS and (b) PANSS scales.

Input Clip

Arousal Valence

Arousal Valence

Figure 4: Examples of input clips, their context, and proposed
method output on the AMIGOS [34] dataset: In the top row
our method predicted A:−0.22, V:−0.12 (ground truth: A:−0.42,
V:−0.12), and in the bottom rowA:−0.29, V:−0.03 (ground truth:
A:−0.29, V:−0.04).

5 RESULTS AND DISCUSSION
In this section we present the experimental evaluation of the pro-
posed framework. We begin with our ablation study in Sect. 5.1, in
order to demonstrate the effectiveness of our method with respect
to various design options. Then, in Sect. 5.2, we present compar-
isons with state-of-the-art methods, where we show that the pro-
posed method achieves results comparable to the state-of-the-art –
specifically, for symptom severity estimation of schizophrenia, our
method outperforms the previous state-of-the-art on all scales and
symptoms tested and achieves a Pearson’s Correlation Coefficient
similar to that of human experts.

5.1 Ablation study
In order to examine the effect of number of frames 𝑇 in the overall
method, we train the proposed methodology for 𝑇 = 8, 16, 32 on
the OMG and NESS datasets. The results of the ablation on 𝑇 for
the OMG dataset is shown on Table 2; we observe that the highest
𝐶𝐶𝐶 for both arousal and valence is achieved when 𝑇 = 16, closely
followed by 𝑇 = 8. The effect of 𝑇 on the PANSS-NEG scale are
shown on Table 3; we note that model performance is overall ben-
efited by a larger 𝑇 , with the exception of symptom N6, which is
consistent with the symptom definition (i.e., Lack of Spontaneity
and Flow in conversation, which is expected to be short-termed).

In order to investigate the effectiveness of the components of
the proposed framework, we conducted an ablation study where
we gradually excluded the incorporation of contextual clips and
the proposed relational loss. For doing so, we trained a baseline
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Table 3: Effect of 𝑇 on the PANSS-NEG symptom scale.

N3: Poor Rapport N6: Lack of Spontaneity N1: Blunted Affect Total Negative
MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC

𝑇 = 8 0.97 1.31 0.67 0.61 0.80 0.66 0.62 0.88 0.55 3.27 4.14 0.64
𝑇 = 16 0.98 1.29 0.70 0.68 0.86 0.62 0.68 0.93 0.45 3.59 4.54 0.54
𝑇 = 32 0.87 1.16 0.78 0.74 0.95 0.47 0.64 0.87 0.56 2.80 3.78 0.71

Table 4: Ablation study on the PANSS-NEG symptom scale.

N3: Poor Rapport N6: Lack of Spontaneity N1: Blunted Affect Total Negative
MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC

Proposed 0.87 1.16 0.78 0.74 0.95 0.47 0.64 0.87 0.56 2.80 3.78 0.71
Proposed w/o L𝑟𝑒𝑙 1.09 1.41 0.66 0.82 0.98 0.44 0.74 0.95 0.39 3.51 4.34 0.66
Proposed w/o L𝑟𝑒𝑙 w/o 𝐾 1.25 1.57 0.41 0.85 1.01 0.36 0.75 0.97 0.36 3.70 3.62 0.58
Proposed w/ L𝑐𝑜𝑛𝑡 . 1.09 1.53 0.41 0.88 1.05 0.19 0.77 1.01 0.35 3.56 4.48 0.55

Table 5: Ablation study on the CAINS-EXP symptom scale.

Facial Expression Vocal Expression Expressive Gestures Quantity of Speech EXP-Total Score
MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC

Proposed 0.56 0.72 0.75 0.65 0.89 0.71 0.71 0.89 0.76 0.60 0.82 0.54 1.88 2.6 0.77
Proposed w/o L𝑟𝑒𝑙 0.59 0.78 0.63 0.75 0.98 0.60 0.72 0.96 0.59 0.62 0.85 0.51 2.12 2.94 0.71
Proposed w/o L𝑟𝑒𝑙 w/o 𝐾 1.06 1.33 0.64 1.06 1.36 0.59 1.14 1.37 0.62 0.77 1.02 0.44 3.76 4.72 0.48
Proposed w/ L𝑐𝑜𝑛𝑡 . 1.12 1.37 0.45 1.06 1.35 0.54 1.19 1.49 0.41 0.84 1.11 0.26 3.87 4.80 0.41

network without context features and trained only on the standard
regression loss (i.e., without the proposed relational loss), which
we denote as “w/o 𝐾 w/o L𝑟𝑒𝑙 ”. We also trained a version of the
network including the context branch without the relational loss,
which we denote as “w/oL𝑟𝑒𝑙 ”.We finally conducted an experiment
using an unsupervised contrastive pre-training, which we denote as
“L𝑐𝑜𝑛𝑡 .”. In this scenario, we firstly pre-trained the clip-level feature
extraction backbone in an unsupervised contrastive manner, and
then we trained the regression head on top of the frozen backbone,
using the regression loss. For the unsupervised contrastive loss,
we sampled 2 clips from the same video as positive samples and
considered samples from other videos as negatives.

The analysis results on the NESS [37] dataset are shown in Ta-
bles 4, 5 for the PANSS and CAINS scales respectively. We see
that the proposed network under the contrastive pre-training sce-
nario, has a similar performance to experiments where we trained
with only the regression loss (shown as “w/o L𝑟𝑒𝑙 ”) in terms of
MAE/RMSE, however in terms of PCC the non-contrastive network
still outperforms the contrastive methodology by a large margin.
We attribute this to the size of the dataset that was required to
learn discriminative features, as other unsupervised methodolo-
gies for representation learning [10, 11, 38] trained on very large
datasets such as ImageNet [13] and Kinetics [9, 25]. Furthermore,
the proposed relational clearly leads to a large improvement to the
overall regression task, against the baseline and the unsupervised
contrastive loss using a small number of training samples. Con-
textual features also improved the overall regression performance
particularly for the MAE/RMSE metrics, with a more noticeable
improvement in the Total Scores of the two scales.

The results of our ablation study on the OMG dataset [3] are pre-
sented in Table 1. Comparing the proposed methodology against its
baseline (i.e., “w/o 𝐾 w/o L𝑟𝑒𝑙 ”), we observe that the proposed rela-
tional loss improves the performance of the regression measured in

terms of CCC, for both Arousal and Valence. Further incorporating
the contextual features improved the CCC score for Valence, but
lowered slightly the CCC for Arousal. However, compared to other
works submitted to the challenge [28, 36], the proposed network
and specifically the use of the novel relational loss, shows a clear
improvement in terms of CCC for both Arousal and Valence. We
also observe a clear advantage of the proposed method compared
to the architecture pre-trained with contrastive loss, which appears
to over-fit and it may be encouraging the network to learn features
of the subjects’ identities rather than affective and mental states,
due to the nature of the problem and database size.

5.2 Comparison to state-of-the-art
In this sectionwe present the results of the proposedmethod against
state-of-the-art methods. The results for the NESS dataset [37]
against previous works are shown in Tables 6 and 7, for PANSS and
CAINS scales respectively. We can see that the proposed methodol-
ogy outperforms previous works across all the evaluated symptoms
and scales by a large margin, particularly for PCC, achieving state-
of-the-art results. Since the NESS dataset has been annotated by dif-
ferent healthcare professionals, we can compare the PCC achieved
by the proposed method against the PCC of the annotators (mental
health experts), which has a mean value of 0.85 [5, 37] on NESS.
We observe that the proposed method achieves a PCC close to
that of human experts for the “Total Negative” and “EXP-Total”
scores, in this dataset. In Fig. 3 we show the total score predictions
for all videos, for both scales in the NESS dataset. As the NESS
dataset is imbalanced, with fewer patients having severe symp-
toms, we observe a higher error for patients with higher ground
truth labels. Moreover, since we perform a leave-one-patient-out
cross-validation, there is a chance that no examples of high total
scores are included in the training set of a given fold. This trend is
consistent for both scales used to evaluate.
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Table 6: Performance of proposed method against state-of-the-art methods on the PANSS-NEG symptom scale.

N3: Poor Rapport N6: Lack of Spontaneity N1: Blunted Affect Total Negative
MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC

Tron et al. [44] 0.98 1.31 0.20 1.37 1.69 0.13 0.90 1.28 0.37 - - -
Tron et al. [45] 1.01 1.26 0.15 1.32 1.62 0.09 0.99 1.36 0.11 - - -
SchiNet [4] 0.85 1.20 0.27 1.25 1.51 0.25 0.84 1.18 0.42 3.30 4.17 0.29
Proposed 0.87 1.16 0.78 0.74 0.95 0.47 0.64 0.87 0.56 2.80 3.78 0.71

Table 7: Performance of proposed methodology against other state-of-the-art on the CAINS-EXP symptom scale.

Facial Expression Vocal Expression Expressive Gestures Quantity of Speech EXP-Total Score
MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC MAE RMSE PCC

Tron et al. [44] 0.80 1.03 0.37 0.87 1.23 0.23 0.85 1.19 0.36 1.09 1.43 0.27 - - -
Tron et al. [45] 0.75 1.07 0.36 0.86 1.22 0.26 0.91 1.22 0.38 1.02 1.36 0.25 - - -
SchiNet [4] 0.66 0.93 0.46 0.77 1.10 0.27 0.90 1.15 0.36 0.98 1.30 0.30 2.67 3.34 0.45
Proposed 0.56 0.72 0.75 0.65 0.89 0.71 0.71 0.89 0.76 0.60 0.82 0.54 1.88 2.60 0.77

Table 8: Performance of the proposed method against base-
line and other uni-modal architectures (AMIGOS).

Arousal Valence
PCC CCC PCC CCC

Proposed 0.69 0.68 0.75 0.74
Proposed L𝐶𝐶𝐶 w/o 𝐾 w/oL𝑟𝑒𝑙 0.59 0.49 0.64 0.54
Proposed L𝑅𝑀𝑆𝐸 w/o 𝐾 w/o L𝑟𝑒𝑙 0.60 0.39 0.55 0.40

Mou et al. [35] 0.60 0.59 0.62 0.61

For experiments conducted on the OMG dataset [3], we com-
pared the performance of the proposed method against other uni-
modal multi-label works submitted to the “OMG-Emotion Behavior
Challenge” – we show the results in Table 1, where we observe a
clear improvement against previous works, for both Arousal and
Valence in terms of CCC. We note that, to our knowledge, current
state-of-the-art results for the OMG dataset are achieved by MI-
MAMO [12] with a CCC of 0.37 and 0.52 for Arousal and Valence
respectively. However, as MIMAMO is a multi-modal approach
(using RGB and inter-frame phase difference as input modalities)
and is trained for a single target (i.e., Arousal or Valence) at a time,
the results reported in [12] are not directly comparable to ours.

Finally, for the experiments conducted on theAMIGOS dataset [34],
we compared the performance of the proposedmethodology against
previous state-of-the-art [35] for the face modality and we show
the results in Table 8. The proposed methodology leads to a clear
improvement against both baselines, trained with an RMSE regres-
sion loss (L𝑅𝑀𝑆𝐸 ) and a CCC loss (L𝐶𝐶𝐶 ). We also outperform
previous state-of-the-art by a large margin for both Arousal and
Valence, even though we trained on a subset of the training data
at each fold. It is worth noting that on the AMIGOS dataset the
architecture that was pre-trained with a contrastive loss completely
overfitted on the regression task and, thus, we choose to excluded
it from the comparison. In Fig. 4, we see some visual examples of
input clips, their context from the AMIGOS dataset [34] and the
proposed methodology predictions against the ground truth.

6 CONCLUSION
In this work we presented our method for dealing with challenges
that arise in the domain of affect and mental health in multi-label
regression problems. Specifically, we built on [48] and proposed a

two-stage attention architecture that uses features from the clips’
neighbourhood to introduce context information in the feature
extraction. The architecture is novel in the domain of affect and
mental state analysis and leads to smaller training times in compari-
son to state of the art. Furthermore, we introduced a novel relational
regression loss that aims at learning from the label relationships of
the samples during training. The proposed loss uses the distance
between label vectors to learn intra-batch latent representation
similarities in a supervised manner. We showed that the improved
latent representations obtained with the addition of the relational
regression loss lead to improved regression output, without the
use of large datasets. Finally, we demonstrated the effectiveness
of the proposed method on three datasets for schizophrenia symp-
tom severity estimation and for continuous affect estimation, and
we showed that our method achieves results comparable to the
state-of-the-art – specifically for symptom severity estimation of
schizophrenia, our methodology outperforms the previous state-of-
the-art on all scales and symptoms tested and achieves a Pearson’s
Correlation Coefficient similar to that of human experts.
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