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ABSTRACT
Meetings are a pervasive method of communication within all types
of companies and organizations, and using remote collaboration
systems to conduct meetings has increased dramatically since the
COVID-19 pandemic. However, not all meetings are inclusive, espe-
cially in terms of the participation rates among attendees. In a recent
large-scale survey conducted at Microsoft, the top suggestion given
by meeting participants for improving inclusiveness is to improve
the ability of remote participants to interrupt and acquire the floor
during meetings. We show that the use of the virtual raise hand
(VRH) feature can lead to an increase in predicted meeting inclu-
siveness at Microsoft. One challenge is that VRH is used in less than
1% of all meetings. In order to drive adoption of its usage to improve
inclusiveness (and participation), we present a machine learning-
based system that predicts when a meeting participant attempts to
obtain the floor, but fails to interrupt (termed a ‘failed interruption’).
This prediction can be used to nudge the user to raise their virtual
hand within the meeting. We believe this is the first failed speech
interruption detector, and the performance on a realistic test set has
an area under curve (AUC) of 0.95 with a true positive rate (TPR) of
50% at a false positive rate (FPR) of < 1%. To our knowledge, this is
also the first dataset of interruption categories (including the failed
interruption category) for remote meetings. Finally, we believe this
is the first such system designed to improve meeting inclusiveness
through speech interruption analysis and active intervention.

CCS CONCEPTS
•Computingmethodologies→Natural language processing;
Speech recognition; •Human-centered computing→Collab-
orative interaction; • Information systems → Web confer-
encing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’22, October 10–14, 2022, Lisboa, Portugal
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9203-7/22/10. . . $15.00
https://doi.org/10.1145/3503161.3548379

KEYWORDS
speech interruption analysis, meeting inclusiveness, remote collab-
oration, machine learning
ACM Reference Format:
Szu-Wei Fu, Yaran Fan, Yasaman Hosseinkashi, Jayant Gupchup, and Ross
Cutler. 2022. Improving Meeting Inclusiveness using Speech Interruption
Analysis. In Proceedings of the 30th ACM International Conference on Multi-
media (MM ’22), October 10–14, 2022, Lisboa, Portugal. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3503161.3548379

1 INTRODUCTION
Computer-mediated communication (CMC) systems, especially
video conferencing systems, have transformed how companies and
organizations conduct meetings. In the past two years since COVID-
19 began, the use of such systems has dramatically increased as
many people were forced to work from home. A common goal for
these systems is to facilitate the most effective meetings possible
[10]. A more recent goal is to also facilitate the most inclusive
meetings possible, where everyone feels included in the meeting. A
recent study found that the top user suggestion for improving meet-
ing inclusiveness is to better allow the remote meeting participant
to interrupt and speak in the meeting [10]. Using meeting telemetry,
that same study shows that meetings are much more likely to be
inclusive when users participate and that users are much less likely
to participate if they are remote.

To help improve meeting inclusiveness, we address the top is-
sue of improving the ability of remote participants to interrupt
and speak in a meeting. While most remote collaboration systems
include a VRH feature to help solve this issue (see Figure 1), in
Microsoft Teams we found it is used in less than 1% of the meetings.
We show that the VRH feature, when used, is effective at improv-
ing meeting inclusiveness. We describe a machine learning-based
speech analysis model that detects failed interruptions, i.e., when
someone tries to speak but doesn’t get the floor. This classifier can
then be used to nudge users to raise their virtual hand and then
speak or notify the meeting facilitator to help ensure the partici-
pant gets a chance to speak up in the meeting. One of the biggest
challenges in building such a classifier is the lack of a labeled and
representative dataset. We used 250 hours of meeting data from pub-
licly available sources and created 90 hours of new data to build a
representative train and test set of 40,000 clips. These meetings were
segmented into audio clips containing speech overlaps. In order to
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Figure 1: The virtual raise hands (VRH) option present in
Microsoft Teams.

label these clips accurately, we developed a crowdsourced labeling
system. We validated the accuracy of the labeling thoroughly, a
critical step for ensuring the model achieves the desired accuracy.
To the best of our knowledge, this is the first labeled dataset that
categorizes the different types of interruptions in meetings.

Production CMC systems with millions of users have very strict
accuracy requirements to ensure a smooth user experience. From
our production data, we observed 40 interruptions for typical half-
hour meetings with 4 participants. We established the FPR of our
detector needed to be ≤ 1%; this ensures that an average user would
see one false positive every 10 half-hour meetings. Furthermore,
we found that failed interruptions represent 10% of speech over-
laps so setting our TPR to > 40% ensures that we capture at least
two failed interruptions per meeting on average. Meeting such a
strict criterion required us to evaluate several architectural choices.
Failed interruptions are usually short speech utterances. The core
challenge is to disambiguate such events with other short speech
utterances such as agreements (e.g., “yeah”, “makes sense”) and
acknowledgments (e.g., “uh-huh”, “hmmm”). Given the small num-
ber of labeled clips (40K), it would be impossible to train a model
from scratch. Therefore we leveraged the recent advances in self-
supervised learning (SSL) representations that are learned on tens
of thousands of hours of unlabeled data ([3], WavLM [8]).

Our contributions in this paper are:

• We frame the problem of detecting failed interruptions and
create the first known dataset for categorizing interruptions
in remote meetings with a labeling accuracy of 95%.

• We provide the first predictor of failed speech interruption
we are aware of. The failed speech interruption predictor
achieves an AUC of 0.95 with a TPR > 50% and FPR < 1% in
a realistic test set, which is good enough for a production
CMC system.

• We believe this is the first functional system designed to
improve meeting inclusiveness through speech interruption
analysis.

In Section 2 we review related work in this area. In Section 3
we show that when the VRH feature in Microsoft Teams is used, it
statistically increases inclusiveness. Section 4 describes the training
dataset and test set used by our model, and Section 5 describes the
model architecture and training. Section 6 and 7 give the results and
some possible applications of the model, respectively. We provide
conclusions and future work in Section 8.

2 RELATEDWORK
Characterizing the conversational process is a well-studied topic.
Schegloff presents a detailed account of the differences between
“turn-taking” and “interruptions” [39]. This work defines an inter-
ruption and cites clear examples of what should not be considered
interruptions (e.g., signaling the current speaker to continue, ges-
tures such as laughter, annoyance). A formal structure for organized
turn-taking is presented in [37]. This work defines the notion of a
“false start” as turn-taking violations that need to be repaired. These
repair rules are intended to address the intent to acquire the floor.
However, the work assumes that the repair mechanisms will be
followed (which isn’t observed in practice). Margariti et al. present
a quantitative analysis of turn-taking experienced in CMC systems
[29]. They find that if a single speech overlap occurs, the odds of an
overtake are roughly the same as the original speaker keeping the
turn. However, when the same interrupter attempts multiple times,
it is far more likely that an overtake will occur. The work does not
differentiate between a failed interruption versus an interjection
(also known as a “backchannel”); both result in a failed overtake.

Sellen studies the impact on turn-taking and interruptions us-
ing CMC systems (audio-only and video) compared to same-room
conversations [40]. Sellen’s results show that simultaneous starts
(leading to failed interruptions) occurred at the same rate in same-
room conditions as they did in technology-mediated solutions. The
work also states that a turn (or floor) has been acquired if a speaker
is not interrupted for more than 1.5 seconds, a helpful quantitative
definition used in our labeling process. Sellen’s work, however, as-
sumes good network and device conditions. The effect of network
latency on “conversational interactivity” in VoIP systems is studied
by Hammer et al. [15]. This work introduces the notion of active
and passive interruptions. An active interruption is an intentional
interruption whereas a passive interruption is unintended and oc-
curs due to the delayed effect of hearing the remote speaker. The
authors report that delay impacts passive interruption far more sig-
nificantly than an active interruption. Every 100ms delay leads to a
15% relative increase in passive interruption rate. Echo suppression
artifacts from double talk scenarios lead to attenuation leading to
challenges in the ability to interrupt in CMC systems [31].

International Computer Science Institute (ICSI) and AMI multi-
party meeting datasets provide a good starting point (ICSI [20],
AMI [7]) for analysing meeting interruptions. The ICSI dataset con-
tains 75 real meetings and 72 hours of speech. All the meetings
have a mixed audio file and one file for each speaker (headset, open
microphone, etc.). It comes with detailed word-level transcriptions,
and annotations capturing interruptions along with backchannels.
AMI is a 100-hour meeting corpus recording in three rooms with
different acoustic properties using non-native speakers. Speakers
in ICSI and AMI are wearing headsets while being present in the
same room. While each speaker is represented as a unique channel,
cross-talk between speakers is not eliminated as the microphone
associated with one participant is picking up speech from another
participant. Remote-only meetings will not have this same issue. To
address this bias, we collected our own data using our conferencing
solution with remote-only participants. As a result, we primarily
use these data sources to augment our training data; we do not use
them to construct our test set as our typical remote-only meeting
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scenarios do not have cross-talk. These datasets do not contain
labels for failed interruptions. To the best of our knowledge, there
does not exist a labeled audio dataset that captures the failed in-
terruption category. In this work, we created detailed instructions
for crowd-workers to categorize the different interruption types
(including failed interruptions).

Detecting speech overlaps in VoIP applications is primarily done
through voice activity detectors (VADs) [5, 6, 24, 43]. Baron used
a prosody-based approach to predict interruptions and “jump-in”
points. Pitch and pause features significantly outperformed lan-
guage models in predicting jump-in points [4]. Makhervaks et
al. build a model for detecting “hotspots” (i.e., regions of high inter-
est) during meetings [28]. The model comprises features derived
from speech activity, language model embedding and prosody. Ac-
knowledgements (or agreements) such as “hmm”, “yeah” are com-
monly referred to as “Backchannels” in the literature [30, 36]. In
[36], Ruede et al. categorize backchannels using word embeddings.
In [23] Kennedy et al. built a support-vector based model for cate-
gorizing laughter using mel-frequency ceptral coefficients (MFCCs).
Keyword spotting models represent a special case of accoustic event
detection aimed at detecting only a small set of words [38, 42].

To the best of our knowledge, no work has aimed at categorizing
the different types of speech overlaps in remote meetings. Disam-
biguating failed interruptions from backchannels is at the core of
this challenge as those two event types have similar acoustic char-
acteristics, and they are very similar in duration. Yang et al. and
Fitzgerald et al. built models to detect events they term “disfluencies”
[14, 26]. These include utterance repetitions, revisions, and false
starts. In both these works, the assumption is that the disfluencies
are repaired, which does not lead to a failed interruption. Creating
a model to detect disfluencies (i.e. failed interruptions) is a com-
plex endeavor. This task can benefit from applying self-supervised
approaches applied to other similar downstream tasks such as key-
word spotting [8]. There is a growing body of SSL representations
(embeddings) trained from raw audio data (Wav2Vec [3], HuBERT
[16], WavLM [8]). In terms of the downstream task of automatic
speech recognition (ASR), each of these SSL approaches has been
able to improve on the previous state-of-the-art, demonstrating the
effectiveness of these embeddings for extracting language context.
In our work, we use these embeddings generated from raw audio
as an input to our interruption classifier.

There is only one work in measuring meeting inclusiveness we
are aware of [31]. The authors conducted a survey of 16K employees
(3.3K valid responses) in a large technology company and developed
a multivariate model to extract the relationship between meeting
effectiveness, inclusion, and their contributing factors. The study
showed that 80% of the meetings in this company were inclusive,
showing a significant room for improvement. The model indicates
that participation is the main contributor to the perceived meeting
inclusiveness, 47% larger than the next important factor. Addition-
ally, the survey results included that the top feature request from
participants to improve meeting inclusiveness was a “better ability
for remote participants to interrupt.”

Gender has been studied as a factor in conversations and partici-
pation. Eecke et al. shows that women are more often interrupted
in conversations than men, and that men interrupt women more
often than they interrupt men [12]. Leaper et al. [25] conducts a

meta-analysis that shows men talk more than women in conversa-
tions. James et al. provides a review of the extensive research on
this topic of gender bias in conversation [19].

3 ANALYSIS OF VIRTUAL RAISE HAND AND
INCLUSIVENESS

The VRH feature is designed to facilitate the participation of remote
participants in a popular video-conferencing application. The goal
of this section is to quantify the impact of VRH usage in meet-
ing inclusiveness. Here, VRH usage refers to any interaction with
the VRH feature during the meeting by any of the participants
(either raising a hand or lowering a hand oneself or on behalf of
someone else). The impact is estimated by comparing the meeting
inclusiveness with and without VRH usage for comparable sets of
meetings.

In our system, VRH usage information is available for all meet-
ings through call technical telemetry. Meeting inclusiveness is mea-
sured using a machine learning (ML) model that predicts an in-
clusiveness score based on the rest of the call telemetry (except
for VRH usage). This approach enables a generalizable estimation
based on a large sample of real meetings instead of artificial study
groups. Next, we will describe the development of ML predictor
for inclusiveness score and its application to estimate the impact of
VRH.

3.1 Predictive Model for Inclusiveness
The initial survey results from [31] motivated the development of
an in-app end-of-call questionnaire that measures user-perceived
meeting effectiveness and inclusiveness for a randomly selected
set of meetings. The survey includes two 5-scale questions (3 being
neutral): 1. How effective was this meeting at achieving its goals?
2. How included did you feel during the meeting?

The in-app survey produced more than 40K ratings that when
joined with meeting telemetry were used to fit a predictive model
for meeting inclusiveness and effectiveness. The model consumes
28 engineered features derived from call quality, reliability, meeting
size, audio participation (speaking during the call), video or screen
share usage, meeting duration, and meeting time. All these features
proved to be important in describing the rating variations via a
Graphical model reported in [31]. Similar to [31], the in-app data
also showed that participation is one of the dominant features to
predict and describe inclusiveness.

The model used for predictive purposes in this work is a light-
GBM [21] binary classifier that generates the probability of a user
providing a 4-star or 5-star rating to the inclusiveness question.
Performance on the test set is measured via cross-validation with
50 random test-train splits and shows the AUC to be 0.75+/-0.02 for
the test set.

To predict the user ratings for calls with no user rating, we
convert the predicted probability to a binary score by applying a
threshold that ensures the FPR is not larger than 5%. FPR is defined
as the rate of incorrect classification when the actual user rating
for inclusiveness is not 4- or 5-stars. At 5% FPR, the model has 32%
TPR and can only flag 32% of 4- or 5-star calls with the available
telemetry. Therefore, the predicted baseline of inclusiveness score
by themodel is much lower than the actual user ratings (if available).
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Table 1: Number of Clips by Source and Label

Data Source Raw Audio Hours Labeled By Backchannel Failed Interruption Interruption Laughter Other Total
AMI 100 Crowdsourced 8,760 2,270 5,630 1,650 150 18,450
ICSI 72 Crowdsourced 4,650 1,060 3,570 50 100 9,420

Original Data 77 Crowdsourced 3,840 1,140 2,570 1,430 200 9,180
Original Data 15 Expert 1,310 320 860 340 150 2,970

All 264 All 18,560 4,790 12,630 3,470 600 40,020

However, the model is still sensitive enough to estimate the lift in
predicted scores because of using VRH feature. This is discussed in
the next section.

3.2 Raise Hand Impact on Predicted Meeting
Inclusiveness

We compared the predicted inclusive score between meetings with
and without VRH engagement. Predictions are binary values gen-
erated by the model described in the previous section. Since VRH
is a feature available to all users and is not subject to any con-
trolled experimentation [22], it is not possible to conduct a causal
analysis. Instead we apply Propensity Score stratification [2] as a
pseudo-experiment method.

Propensity score (PS) methods are effective techniques for es-
timating causal relations in the absence of controlled experimen-
tation [9, 17, 35]. [9] showed that if the propensity scores are set
properly, they can eliminate more than 90% of the bias induced
by confounding factors. Confounding factors are any attribute of
the data that may have a different distribution in the treatment
and control samples, and additionally, their impact on the outcome
variable can be mixed with the effect of the outcome variable. In this
study, the outcome variable is meeting inclusiveness, the treatment
group is the set of calls where VRH is used (called VRH calls), and
the control group is the set of calls without VRH engagement.

In this study, the main confounding factors are meeting size,
meeting duration, and the choice of media (e.g., video or screen
share). For example, VRH is mostly used in meetings with 4 or
more participants that are longer than 30 minutes. Therefore, the
distribution of meeting size and meeting duration in VRH calls is
significantly different from average calls. To reduce this bias, we
generate PS values using a logistic regression model that predicts
VRH activity as a function of confounding factors. These PS values
range between 0 and 1 and are used to generate five equal-sized
bins. Within each bin, the distribution of confounding factors is
statistically similar and provides comparable sets for estimating the
VRH impact. According to [33] increasing the number of bins can
improve the accuracy of inference but the margin becomes smaller
with more than 10 bins. In our analysis, the results were mostly
consistent between 5 and 10 bins with minimal gain in the variance
of the predicted delta, i.e., a smaller 95% confidence interval (CI).

Using PS stratification, the impact of VRH on the predicted in-
clusive score is a 3.4% absolute increase with 95% CI of (2.9%, 3.9%).
This means that for meetings with more than 2 participants, using
VRH can improve the predicted inclusive score by an absolute 3.4%
on average at a 95% confidence level based on the ML model for
inclusiveness.

4 DATASET
In this section, we detail our efforts to create an accurate train and
test set for developing our interruption detector. We define the
speech overlap categories in Section 4.1 and specify our dataset
requirements in Section 4.2. Next, we tabulate the data sources used
in Section 4.3. In Section 4.4, we outline our labeling process to
provide an account of the nuances in labeling such a dataset. Finally,
in Section 4.5, the train and test sets are described.

4.1 Speech Overlap Categories
The speech overlap categorization assumes that the floor is held
by a speaker. An interrupter is a second participant that speaks to
create overlapping speech; they may or may not intend to obtain
the floor.

• Backchannel: A short period of conversationwhen a speaker
conveys attention, understanding, or agreement in the back-
ground. The intention is not to obtain the floor. For example:
“yeah”, “Mm-hmm”, "uh-huh".

• Failed Interruption: The interrupter attempts to obtain the
floor by speaking at the same time as the current speaker,
but they fail to obtain the floor.

• Interruption (or successful interruption): The interrupter
overlaps with the first speaker before the sentence of the first
speaker is complete. The interrupter successfully obtains the
floor and the attention of all the other participants.

• Laughter: The interrupter laughs while the first speaker is
talking. The interrupter does not get the floor and does not
intend to get the floor.

• Other: This represents audio overlap scenarios without clear
speech content. This could represent overlaps with no in-
telligible words (e.g., garbled speech, throat clearing), or
background noise (e.g., mouse clicks).

4.2 Dataset Requirements
The CMC system (Microsoft Teams) we are studying can separate
the audio of each remote participant. As a result, we only considered
data sets where the audio of each participant was captured in a sep-
arate channel. This design choice simplifies the solution as a mixed
channel dataset would require the speakers to first be separated (i.e.,
speaker diarization). Our scenario represents multi-party business
meetings, hence we were interested in conversational dynamics
arising from remote meetings with three (3) or more participants.
We restrict ourselves to the English language but captured different
accents. We prioritized accents from the following locales: United
States (US), Great Britain (GB), India (IN), and Germany (DE). These
locales were obtained based on countries with the highest product
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Table 2: Demographic Information of Original Data Source

Demographic Info Sub-categories Count Percentage
Gender Female 292 53%

Male 251 46%
Non-binary 7 1%

Accent US 256 47%
GB 111 20%
IN 111 20%
DE 63 11%

Other 9 2%
Age Group 18-24 98 18%

25-34 184 34%
35-44 107 19%
45+ 161 29%

Total Total 550 100%

usage. The dataset should have an equal representation of male
and female speakers. The age group of the speakers in the dataset
is required to be higher than 18 since these conversations repre-
sent business meetings. For our current version of the dataset, we
restricted ourselves to speakers in low noise conditions with head-
sets and good networks. In the future, we plan to capture data with
varying network (latency), device (e.g., open speakers), and acoustic
(e.g., noise) conditions.

To ensure that we can validate the quality of predictions from
our detector, we set a requirement for the accuracy of the labels in
the test set to be 95% as measured by the Fleiss’ Kappa metric [34].

4.3 Data Sources
In our development process, we use both qualified publicly available
datasets and our original datasets as input data sources.

4.3.1 Public Data Source. We use the AMI Meeting Corpus [7] and
the ICSI Meeting Corpus [20] as our public data sources. Both cor-
pora meet our scenario requirements, however, there are a few limi-
tations too. Both corpora were collected with participants sitting in
the same room with headsets on. This results in two problems: first,
all meetings are face-to-face, which could be different from online
communication; second, with people sitting in the same room, it in-
cludes cross-talk when people’s microphones pick up other people’s
voices. We use these datasets to augment our training data.

4.3.2 Original Data Source. To mitigate the challenges from the
pubic datasets and create accurate test sets for remote meeting sce-
narios, we captured data using our conferencing product. Another
goal of capturing this data was to improve the dataset diversity.
We have collected 90 hours of meeting recordings in 148 meetings.
Each meeting has 3 or 4 participants. The participants join remotely
using our product, and discuss one or more business topics hav-
ing some natural contention (e.g., prioritization, product design,
etc.). In the data collection stage, we also ensure that we have suffi-
cient speaker diversity for gender, accent, and age. In Table 2, We
show the detailed demographic information of our original data at
meeting-participant level.

4.4 Labeling Process
There are two major steps in creating labeled data: 1. Detect speech
overlap using an accurate VAD to create candidate clips, and 2.
Label candidate clips using an accurate labeling procedure. These
clips were used to create the train and test sets. The training dataset
was labeled using a crowdsourcing service [1]. We had experts label
3,000 clips to create a test set with an accuracy of ≥ 95%, and to
help validate crowdsourcing label quality using golden sets.

4.4.1 Candidate Clips. For each meeting, we scan each channel
with an accurate VAD [6] to locate the timestamps where speech
overlap occurs. Given that we don’t want to trigger our feature too
often, especially in active discussions, we also only keep overlaps in
which the interrupter has been silent for at least 3 seconds before
jumping in and the interrupter’s utterance needs to be at least 0.3
seconds long. Then, for labeling and training purposes, we export
a 10-second stereo audio clip for each speech overlap detected. The
5th second of each clip is the start point of the speech overlap. To
improve labeling accuracy the clips are created in stereo, with the
interrupter’s audio on the right channel, while all the other audios
are merged into the left channel.

4.4.2 Crowdsourcing Labeling. We provided detailed instructions
to the crowd-workers for their labeling task. The same instructions
were used by experts as a validation of the instructions. These
instructions specified set-up instructions (e.g., headset usage), train-
ing modules, qualification tests, and golden clips to validate the
quality of the expert labeling [32]. These instructions outlined ex-
amples to help disambiguate areas of confusion. One noteworthy
challenge was to provide labels for clips that had multiple cate-
gories (e.g., a backchannel followed by a failed interruption). We
follow the practice from the ImageNet paper to create a hierarchy of
categories and represent one category per task [11]. The hierarchy
consisted of splitting the overlaps into two levels. Level 1 com-
prised on successful interruption versus no-interruption. For the
no-interruption bucket, the following precedence was followed if
multiple categories were present: failed interruption > backchannel
> laughter > other. This precedence was based on the cost of mis-
classification (failed interruptions are sparser and hence get higher
precedence). We evaluated the quality of the labels by varying the
number of annotators and converged on using 7 unique votes from
annotators.

4.4.3 Expert Labeling. We randomly selected 3,000 clips from our
original data source and had them labeled by internal experts. In
particular, 450 of these clips are labeled by five experts. Multiple
rounds of discussions were conducted to ensure complete alignment
and refinements of the instructions. Overall, 92% of these clips reach
a 5-out-of-5 agreement and a Fleiss’s Kappa of 95%. The rest of the
2,550 clips are labeled by up to two experts. The quality of the 2,550
clips was validated by randomly sampling 150 clips and having
all experts label them to ensure we met the accuracy bar. The
expert labeling effort was critical in creating an accurate test set
and evaluating the crowdsourced labeling system. We iterated on
this process over multiple rounds to ensure the labeling process
had a 100% coverage of clips with speech overlap. Among those
candidate clips, we achieved an accuracy of 95%.
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Figure 2: Proposed model structure for speech interruption detection.

4.5 Train and Test Sets
The total number of clips labeled by crowd-workers and experts is
shown in Table 1.
Test Set: For the test set, we use high-quality expert-labeled clips.
We randomly select 250 clips from each category (not considering
other) to create a fixed test set of 1,000 clips.
Train Set: The train set is comprised of clips labeled by crowd-
workers. We found that the 70% agreement level (i.e., 5 out of
7 provided the same label) provided better model performance
compared to the majority vote. This threshold provided a good
trade-off between high label quality and training data volume. We
did comparisons on 1,100+ clips with the expert labels as ground
truth to arrive at this decision. As a result, we only used clips that
could reach the 70% consensus level.

5 MODEL
The overall model structure is shown in Figure 2. In model training,
we only use the audio after the speech overlap starts. Therefore, the
model input is the last 5 seconds of the two-channel clips described
in Section 4.4.2. The right channel contains only the voice of the
interrupter, and the left channel consists of the mixed voice of all
other participants. A feature extractor is then applied to the raw
waveform to obtain useful features. Because SSL representations
for speech have achieved state-of-the-art performance on several
downstream tasks, in this study, we also extract the high-level
embeddings through pretrained-SSL models.

Before feeding the embeddings to the classifier, a pooling op-
eration along the time axis is used to reduce the input dimension.
Here we use attention pooling (AP) [44] to obtain utterance-level
representation U ∈ 𝑅𝑑×1 from a sequence of frame-level represen-
tations H, where H ∈ 𝑅𝑑×𝑀 is the embedding extracted from the
SSL model, 𝑑 is the dimension of the feature, and𝑀 is the number
of frames. The attention weight Q ∈ 𝑅1×𝑀 of each frame is first
calculated using:

Q = softmax(WH) (1)

whereW ∈ 𝑅1×𝑑 can be treated as a template to decide which frame
is more important. Finally, utterance-level representation U can be
obtained through weighted sum:

U = HQ𝑇 (2)

Utterance-level representation U is then fed into a 5-layer feed-
forward neural network (also called DNN), with the number of
node for each layer as [512, 512, 128, 32, 4] and LeakyReLU [27] as
the activation function. Cross entropy is applied as a loss function
with stochastic gradient descent as an optimizer using a learning
rate of 0.0015.

6 RESULTS
6.1 Performance Comparison Between

Different Input Features and Classifier
Model

In this section, we first show the results of different feature ex-
traction methods. In addition to the SSL embeddings, the results
of using MFCC, magnitude spectrogram, and openSMILE acoustic
feature [13] are also presented as baselines (for openSMILE feature,
we didn’t apply AP, as it is already an utterance-level representa-
tion). Because in this study we care more about the performance of
detecting the failed interruption class, in Table 3, both AUC and TPR
at 1% FPR are based on the failed interruption class. From the table,
it can be observed that the performance of conventional features
such as MFCC and magnitude spectrogram are far away from our
goal. The reason may be because a suitable feature for this task
should be speaker/noise independent [18] and contain seman-
tic information. It may be hard to extract useful information and
discard useless one from traditional features with limited training
data. Comparing the three SSL-based embeddings with base model
size (i.e.,𝑊𝑎𝑣2𝑣𝑒𝑐2𝐵𝑎𝑠𝑒 , 𝐻𝑢𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 and𝑊𝑎𝑣𝐿𝑀𝐵𝑎𝑠𝑒+), WavLM
performs the best which is consistent with the results shown in the
SUPERB benchmark [45] for other speech tasks. For these three
embeddings, we calculate the weighted sum of the representations
from different transformer layers with learnable weights as the
input to the attention-pooling module. We found that this can sig-
nificantly improve the performance compared to that only using
the embedding from the last transformer layer. To further improve
the performance, we apply𝑊𝑎𝑣𝐿𝑀𝐿𝑎𝑟𝑔𝑒 for feature extraction and
get a TPR > 50% at FPR=1%.

Next, we fix𝑊𝑎𝑣𝐿𝑀𝐿𝑎𝑟𝑔𝑒 as our feature extractor and see the
performance with different numbers of input channels and classi-
fier models. From Figure 3 and the first two rows in Table 4, we
can observe that without the information from the left channel
(mixed voice from all other participants), the performance drops
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Table 3: Classifier results for the Failed Interruption class with different input features (Each number is the average result
of 10 different runs). Dimension of 𝐻 and the number of parameters for the end-to-end model (SSL model + classifier) are
also shown (Note that for the dimension 𝑀 , the frame shift for SSL embedding is 20 ms and we use the default setting from
torchaudio library for MFCC and spectrogram).

Failed Interruption:
Input Feature dimension of 𝐻 (𝑑 ×𝑀) # parameters AUC TPR@ 1% FPR

MFCC (2×40) × 401 0.4M 0.667 3.48%
Spectrogram (2×257) × 313 0.4M 0.736 6.24%
openSMILE (2×88) × 1 0.4M 0.816 11.56%

𝑊𝑎𝑣2𝑣𝑒𝑐2𝐵𝑎𝑠𝑒 (2×768) × 249 95M 0.925 32.28%
𝐻𝑢𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 (2×768) × 249 95M 0.934 31.52%
𝑊𝑎𝑣𝐿𝑀𝐵𝑎𝑠𝑒+ (2×768) × 249 95M 0.943 37.80%
𝑊𝑎𝑣𝐿𝑀𝐿𝑎𝑟𝑔𝑒 (2×1024) × 249 316M 0.949 50.93%

Table 4: Comparison between different number of input
channels and classifier models with𝑊𝑎𝑣𝐿𝑀𝐿𝑎𝑟𝑔𝑒 as the fea-
ture extractor

Failed Interruption:
Input channels classifier model AUC TPR@ 1% FPR
2 channels AP+DNN 0.949 50.93%

right channel AP+DNN 0.918 37.93%
2 channels DNN 0.912 31.05%

Figure 3: Learning curve with different numbers of input
channels

seriously, which may be caused by the confusion between failed
interruption and successful interruption (will verify this in the next
section). We then want to see the effect of AP on the model perfor-
mance. Removing AP from the downstream task means that the
flattened frame-level representations H are directly fed into the
DNN classifier. This not only increases the model size of the clas-
sifier significantly but from the third row in Table 4, the TPR also
decreases by 20%. The reason may be because the input dimension
is too large compared to the number of training data.

6.2 Confusion Matrix Analysis
To further analyze the prediction results of𝑊𝑎𝑣𝐿𝑀𝐿𝑎𝑟𝑔𝑒 , we present
the confusion matrix in Table 5 and Table 6 for two channels and
one channel input, respectively. We included another column called
‘Below 1% FPR-threshold’ to represent the cases where the failed
interruption should be the predicted class by the 𝑎𝑟𝑔𝑚𝑎𝑥 (.) func-
tion, but the confidence score is smaller than the threshold for a
1% FPR. From Table 5, it can be observed that the most confusing
case for the model is to distinguish between backchannel and failed
interruption. We argue that this is because both of them have very
similar voice activity patterns (i.e., for the interrupter: a short pe-
riod of speaking, and for other participants: keep talking). In other
words, the model cannot simply tell them by audio energy distri-
bution, it has to infer the intention through semantic information
from SSL embeddings. By comparing Table 5 and Table 6, when
the ground truth is failed interruption, the model with one chan-
nel input is more easily misclassified as a successful interruption,
which verifies our assumption made in the previous section that
left channel (mixed voice from all other participants) can help the
model to distinguish between successful and failed interruption.

6.3 Relation to Other Speech Tasks
Speech interruption classification is a relatively new topic. As a
result, we want to know its relation to traditional speech tasks. As
mentioned in Section 6.1, the SSL-based embeddings come from
the weighted sum of different transformer layers with learnable
weights. The learned weights can hence give us some information
about which layers are more important for a certain task. In Fig-
ure 4, we take the learned layer weights from𝑊𝑎𝑣𝐿𝑀𝐵𝑎𝑠𝑒+ as an
example to compare our weights with those learned in other speech
tasks of the SUPERB benchmark. From the figure, we can observe
that the pattern of our learned weights is most similar to the one
learned in the Keyword Spotting (KS) task. This implies that the
input features used for the two tasks are similar to each other, and
they are the most related tasks. We conjecture that this is because
when the model tries to distinguish between backchannel and failed
interruption, it relies on some mechanism similar to KS (e.g., in the
case of backchannel, the interrupter usually says something like:
“yeah”, and “Mm-hmm”, etc.)
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Table 5: Confusion matrix of the prediction results from𝑊𝑎𝑣𝐿𝑀𝐿𝑎𝑟𝑔𝑒 for two channels input.

Predicted

Ground Truth Backchannel Failed
Interruption Interruption Laughter Below

1% FPR-Threshold
Backchannel 219 6 8 11 6

Failed Interruption 47 131 19 7 46
Interruption 9 1 225 7 8
Laughter 37 0 1 212 0

Table 6: Confusion matrix of the prediction results from𝑊𝑎𝑣𝐿𝑀𝐿𝑎𝑟𝑔𝑒 for one channel input.

Predicted

Ground Truth Backchannel Failed
Interruption Interruption Laughter Below

1% FPR-Threshold
Backchannel 201 4 3 20 22

Failed Interruption 42 85 35 12 76
Interruption 8 4 207 11 20
Laughter 29 0 0 221 0

Figure 4: The learned weights from different layers of the
𝑊𝑎𝑣𝐿𝑀𝐵𝑎𝑠𝑒+ transformer model for different tasks.

7 APPLICATIONS
As an example application of the failed speech interruption detec-
tion, we can nudge the failed interrupter to use the VRH feature, as
shown in Figure 5. In addition, we can also remind the speaker who
didn’t yield that meetings are more inclusive when everyone has a
chance to speak, especially if they are repeatably not yielding in
that meeting. Finally, the failed speech interruption detections can
be logged in the CMC system’s calling telemetry and analyzed to
further improve understanding of meeting effectiveness and inclu-
siveness, to conduct AB tests to evaluate new features in the CMC
system to reduce failed speech interruptions, and to improve the
predictive models of effectiveness and inclusiveness.

8 CONCLUSIONS
In this paper, we describe a method to improve meeting inclusive-
ness through speech overlap analysis. We introduce the challenge of
“failed interruptions” in remote meetings based on our findings. We
created the first accurate labeled dataset to address this challenge

Figure 5: Example application of the failed speech interrup-
tion detector

in CMC systems. By leveraging recent advances in self-supervised
learning representations in speech, we built a detector that achieves
a TPR of more than 50% with a FPR of less than 1%. The dataset
needs to be expanded to support multiple languages and scenarios
such as varying network and device conditions. We plan to use
this dataset to host a challenge and release the baseline model for
stimulating active research on this topic. We are also integrating the
model into Microsoft Teams and conducting AB tests to measure
the improvement of inclusiveness and overall meeting effectiveness.
Finally, we are developing a full-duplex machine learning-based
acoustic echo canceller (e.g., see [41]) that also helps remote partic-
ipants interrupt in a meeting and better participate in meetings.
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