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ABSTRACT
Nonunion is one of the challenges faced by orthopedics clinics
for the technical difficulties and high costs in photographing in-
terosseous capillaries. Segmenting vessels and filling capillaries
are critical in understanding the obstacles encountered in capil-
lary growth. However, existing datasets for blood vessel segmenta-
tion mainly focus on the large blood vessels of the body, and the
lack of labeled capillary image datasets greatly limits the method-
ological development and applications of vessel segmentation and
capillary filling. Here, we present a benchmark dataset, named
IFCIS-155, consisting of 155 2D capillary images with segmenta-
tion boundaries and vessel fillings annotated by biomedical experts,
and 19 large-scale, high-resolution 3D capillary images. To obtain
better images of interosseous capillaries, we leverage state-of-the-
art immunofluorescence imaging techniques to highlight the rich
vascular morphology of interosseous capillaries. We conduct com-
prehensive experiments to verify the effectiveness of the dataset
and the benchmarking deep learning models (e.g., UNet/UNet++
and the modified UNet/UNet++). Our work offers a benchmark
dataset for training deep learning models for capillary image seg-
mentation and provides a potential tool for future capillary re-
search. The IFCIS-155 dataset and code are all publicly available at
https://github.com/ncclabsustech/IFCIS-55.
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1 INTRODUCTION
The primary function of the vascular system is to deliver oxygen and
glucose to metabolically active cells across the capillary bed, while
concurrently removing CO2 and other metabolic waste products.
Arteries and veins can thus be viewed as structures that support
capillary function [6]. The health of capillaries largely determines
the health of an organism. Vascular disorders and their downstream
sequelae are responsible for more morbidity and mortality than any
other category of human disease [14]. Vascular images character-
ize the morphology, distribution, and other important properties
of blood vessels, which are closely related to vascular disorders.
Therefore, analyzing vascular images, especially capillary images,
plays a crucial role in addressing the issue of clinical diagnosis and
pathological analysis [15].

The interosseous capillary segmentation method can be divided
into three main approaches: manual segmentation, semi-automatic
segmentation, and automatic segmentation. Manual segmentation
is a time-consuming and labor-intensive method which makes it
impractical for real-world applications with the growing demand
of data. Semi-automatic segmentation requires manually labeled
vessel edge information, which makes the algorithm only provides
limited convenience to the researcher due to the complex mor-
phology of capillaries in interstitial healing tissue [5]. The state-
of-the-art automatic segmentation methods provide an effective
and efficient way for immunofluorescence capillary imaging seg-
mentation where most of them rely on threshold segmentation and
surface rendering.

The main challenges of immunofluorescence capillary imaging
segmentation are the complexity and diversity of the objects’ mor-
phology, the large gap between the foreground and background,
as well as the incomplete morphology of the vessel images. In re-
cent years, developments in deep learning have opened up the
possibility of end-to-end automatic segmentation of interosseous
capillaries. Consequently, we propose applying such methods to
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improve the performance of capillary segmentation in immunoflu-
orescence imaging [5].

However, to the best of our knowledge, none of the existing work
has been applied to the segmentation of immunofluorescence imag-
ing because of the lack of publicly available datasets. The current
segmentation datasets have little contribution to our problem due
to (1) imaging methods; (2) imaging environments; (3) vessel mor-
phology. Therefore, transfer learning techniques and pretraining
techniques are not suitable for the segmentation of immunofluores-
cence imaging.

In this paper, we propose IFCIS-155 dataset: a high-quality, high-
resolution immunofluorescence capillary imaging dataset for the
segmentation task with well-annotations by experts. Furthermore,
we adapt several state-of-the-art segmentation methods to tackle
this problem. The dataset contains 155 2D interosseous callus cap-
illary images with 256×256 pixels which contain rich capillary
morphology, as well as expert annotated blood vessel repair images
and blood vessel segmentation masks. Data are derived from 24
subjects who perform interosseous capillary sections. We screened
out 19 3D capillary fragments from 3D images of 3072×1024×20
pixels and divided them into 155 2D capillary images. The dataset
included images depicting different morphological vessel segments,
in addition to morphological vessel segments at different locations.
The lack of training data prevents machine learning from being
used to get better results from automatic capillary segmentation
of interosseous capillaries. Here, we provide a publicly available
interosseous capillary dataset and benchmark to fill the gap. Our
experiments on IFCIS-155 data validated the feasibility of automatic
deep learning segmentation for capillary segmentation.

The main contributions of this study can be summarized as:
• We propose a well-annotated interosseous callus capillary
benchmark, IFCIS-155, which is specially designed for image
segmentation in interosseous capillary scenes.

• We introduce a deep learning pipeline and streamline the
research over the IFCIS-155 dataset with several state-of-the-
art segmentationmodels, which could be a baseline reference
for the IFCIS-155 dataset.

• We conduct extensive analyses on IFCIS-155 dataset using
state-of-the-art models with different metrics, as well as
performance comparisons with/without using image aug-
mentation technique.

2 RELATEDWORK
2.1 Datasets on Capillary
Assessment of vascular characteristics plays an important role in
various medical diagnoses[19, 20]. Several datasets of vessels with
different morphologies have been proposed worldwide. There are
relatively mature datasets for fundus capillary images, such as the
STructured Analysis of the Retina (STARE) [10] dataset proposed by
Hoover et al., which includes hand-labeled ground truth segmenta-
tions of 20 images. Each image was digitized to produce a 605×700
pixel image, 24 bits per pixel (standard RGB). In addition, the Digi-
tal Retinal Images for Vessel Extraction(DRIVE) [21] dataset is for
retinal vessel segmentation proposed by J. Staal et al. It consists
of a total of JPEG 40 color fundus images; including 7 abnormal
pathology cases. Each image resolution is 584*565 pixels with 8 bits

per color channel (3 channels). The images were obtained from a
diabetic retinopathy screening program in the Netherlands. All im-
ages are fundus capillaries taken from the back and include manual
segmentation and a circular field of view (FOV) mask.

Fundus imaging technology is mature and clear, however, there
are many other forms of blood vessels in the human body. With
the development of intrathoracic vascular imaging technology, the
Intrapapilary capillary loops (IPCL) [4] dataset proposed by Garcia-
Peraza-Herrera et al. contains 68K binary labeled frames extracted
from 114 patients videos for the detection of the mucosal layer of
oesophagus lesions. In the imaging of interosseous capillaries, Ra-
masamy et al. used a laser scanning confocal microscope to image
interosseous capillaries in their experiments. Most of the current
capillary datasets are different from in vivo capillary morphology
(fundus) or labeling tasks (IPCL). To our knowledge, there is cur-
rently no publicly available annotated interosseous capillary image
dataset.

2.2 Blood Vessel Segmentation
Vessel segmentation has received extensive attention in the past
decade. Due to its importance and broad application prospects,
many image segmentation algorithms have been applied in vessel
segmentation. Although no general algorithm for vessel segmenta-
tion has yet been found, past research can provide many methods
for reference. Many threshold-based image segmentation meth-
ods that show good performance in traditional image segmentation
tasks, have the characteristics of fast calculation speed and high effi-
ciency and have received extensive attention in the past. Such as the
threshold segmentation method, histogram double peak method [1],
maximum entropy method, and Otsu method. Besides the above
methods, the watershed algorithm, and region growing method are
also applied to image segmentation tasks. While these traditional
segmentations are highly efficient, with advances in vascular imag-
ing, more and more vessels with complex shapes are being recorded.
The accuracy of traditional segmentation algorithms is gradually
unable to meet the requirements of blood vessel segmentation tasks
in different scenarios.

With the rapid development of deep learning, it has gradually
achieved state-of-the-art performance in more and more vision
tasks, such as object detection, image classification, semantic seg-
mentation, and object tracking [24]. Due to its data-driven features,
the model can actively learn features from target data and com-
plete specified tasks, which provides great convenience for complex
vessel segmentation tasks. Deep learning models based on convolu-
tional neural networks are widely used in image recognition and
semantic segmentation. For example, the representative FCN [13],
DeepLab [3], UNet [17] and other models all use convolutional
layers for processing. These deep models extract different infor-
mation at different network layers, and the prediction accuracy
can be close to or even higher than that of human beings. Signifi-
cant progress has been made for semantic segmentation of medical
images in related work, for instance, FCN for organ segmenta-
tion [18], SegNet for brain tumor segmentation [2], DeepLab for
liver segmentation [23] and U-Net for cell segmentation, lesion
segmentaition [11, 17]. Recently, in the field of capillary imaging
segmentation, deep learning methods also have been employed,
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Deep tissue imaging
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MTD 80 μm sample section

3D capillary images3D capillary surface 3D capillary imagesMasked capillary surface
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Figure 1: The acquisition process of the IFCIS-155 dataset. The first and second row of the figure shows the process of acquiring
interstitial capillary images. We selected and annotated the 3D fragments of the interstitial capillary images of mice acquired
during the experiment. The third row of the image shows the original and annotated sample image in IFCIS-155. The left of
the third row is the vertical projection of the 3D image, and the right of the third row is the 2D slices selected for training and
testing. From the first row to the third row of 2D slices are the original interosseous capillary images, the capillary boundary
labels, and the capillary filling labels.

such as fundus vessel segmentation [10], body surface capillary
segmentation [8], brain vessel segmentation [7] and zebrafish em-
bryo vessel segmentation [22]. Among them, the UNet model, a
symmetrical expansion path composed of an encoder and a decoder,
has shown excellent results in medical image segmentation tasks.
The encoder is used to obtain image features through convolution
and pooling, and then the decoder is used for precise positioning.
U-Net applies a skip-connection to the network to splice the feature
map generated by the encoder to the up-sampled feature map of
the decoder at each stage to learn the features lost in the encoder

pooling process, which proved the possibility of end-to-end train-
ing from a small sample data with weighted loss. [17] After this,
many UNet-based deep neural network has shown better results in
some biomedical image segmentation tasks. [26]

3 DATASET
One of the main contributions of this paper is the Immunofluores-
cence Capillary Imaging Segmentation Dataset or IFCIS-155. Our
principles in the design of IFCIS are:

• Get the clearest, most complete original image
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(a) (b) (c)

(d) (e) (f)

Figure 2: Histogram of pixel values. These pictures in black show six images selected from the training set, and histogram
pictures show the pixel distribution in each image, where the green lines represent the foreground pixel and the red line
represents the background pixel. The figure shows the proportion of foreground and background in the top right corner. The
abscissa represents the pixel value, and the ordinate corresponds to the number of times the pixel value appears in the image.

• Annotated images contain rich blood vessel morphology and
accurate annotation information

Based on the above two principles, we collected and constructed our
dataset in the following ways. The dataset was collected, annotated,
and partitioned by a total of four experts. The collection process
of the dataset meets ethical requirements and all in vivo animal
protocols were approved by the Institutional Animal Care and Use
Committee (certificate SUSTC-JY20190 427).

Figure 1 shows the image collection process and sample images.
The bilateral monocortical defects (MTD) were made in the tibia
of C57BL/6 mice. This model consists of a 1-mm-diameter circu-
lar defect on the anterior medial surface of the tibia. Mice were
euthanized on post-surgery day 10 and tibias were harvested and
processed depending on the previous method [12]. 3D capillary
images were obtained by using immunofluorescence staining of
endomucin, which could label capillary in bone [16]. And deep con-
focal laser technology has been applied to deep tissue imaging to
scan the callus of the mouse 1mm single-cortical tibial defect model
10 days after surgery. Each initial 3D image is collected with Z-
stacks of 40 𝜇𝑚 in thickness taken at a size of 3072×1024 pixels, x-y
resolution of 0.624 𝜇𝑚 with z-step of 2 𝜇𝑚 in each initial image. The
3D surface of endomucin was created from deep tissue images by
utilizing Imaris (version 7.1, Oxford Instruments, Switzerland), then
masked. 3D images of interosseous capillary callus were acquired
from 24 subjects, then we selected high-resolution 3D interosseous
capillary images with the best signal brightness/sensitivity. Next,
we cut the masked capillary blood vessel images of different mor-
phology were cut into smaller 3D images. The image, which was
manually filled according to the 3D capillary surface, was separated
to create a 2D section.

The dataset contains 155 sets of 256 × 256 pixel 2D training im-
ages, vessel repair images, and vessel filling masks together with 19
3D unlabelled raw images cropped from 3D large-scale interosseous
capillary images. As shown in Figure 2, due e to the difference in the

distribution of pixel values between images during deep immunoflu-
orescence imaging, we performed image enhancement (contrast
stretching) on the original image to facilitate model training.

4 METHODS FOR CAPILLARY
SEGMENTATION ON IFCIS-155

In this section, we discuss a number of models used in the IFCIS-155
dataset. We combine multiple data augmentation, preprocessing,
and baseline methods to analyze the performance of existing mod-
els on the interosseous capillary segmentation task, as well as the
main challenges. Then we propose the pipeline for large-scale im-
age segmentation using deep learning methods together with the
objective functions and the evaluation metrics used during training.

4.1 Data Augmentation
Data augmentation is an operation that generates a new image
while preserving the intrinsic characteristics (e.g., label) of the orig-
inal image. In addition to increasing the number of training sets, ap-
propriate data augmentation strategies can improve the robustness
of the training datasets and the generalization ability of the model.
In particular, when the data size is limited, data augmentation is
essential for model training. Commonly used data augmentation
methods for natural images include rotation, translation, scaling,
cutting, masking, symmetry, etc. In order to preserve the scale infor-
mation of immunofluorescence imaging, we mainly used rotation,
translation, shearing, and horizontal flip in our experiments. This
strategy, which brings an increment of about 10% on prediction
accuracy, allows us to train a model with better robustness under
the condition of limited data.

4.2 Slicing and Preprocessing
As mentioned above, we perform image augmentation on the input
data to make the dataset more conducive to model training. All
image pixels are scaled uniformly until the maximum pixel value
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Figure 3: Slicing and Deep learning pipeline. When the original image does not meet the size of the input image, the sliding
windowmethod will be used to cut the original image into several 256x256 images and then input them into themodel for pre-
diction. After the output result is obtained, the predicted image is reorganized back to the original image size as the predicted
result.

reaches the upper limit. This does not affect conventionally cap-
tured pictures but improves the observability of darker images. In
addition, we randomly divided the data set into five folds of the
same number of images and performed five-fold cross-validation.
Except for the fold for testing, the other four folds can be used for
data augmentation to increase the robustness of the model.

Since the size of the original interosseous capillary images is
usually much larger than the test data, directly inputting large-scale
images brings a large memory and computational burden to the net-
work. When segmenting the original large-scale capillary images,
we use sliding windows to segment the large-scale images into stan-
dard block sizes for prediction. Blocks in adjacent positions overlap.
When the prediction results are aggregated, the overlapping parts
of the prediction results are determined by a joint vote of multiple
blocks to reduce the error in the boundary area.

4.3 Deep-learning Pipelines
4.3.1 Network Architecture.

In this paper, we mainly use UNet and UNet++ as the baseline
methods for testing and analysis of the IFCIS-155 dataset. Figure 3
illustrates the slicing method and deep learning pipeline. During
the training process, we input 256×256 training data and ground
truth. If the shape of the original image is not 256×256, the sliding
window will be used to segment the original image and obtain the
transformed image with 256×256. Then, the image enhancement
(contrast stretching) technique is implemented to adjust the distri-
bution of pixel values and input them into the prediction model.
There are no data leakage issues when splitting datasets.

UNet has received extensive attention since its appearance in
2015 and has been frequently applied to medical image segmenta-
tion tasks. UNet has an encoder-decoder part, which enables UNet

to extract image features and restore segmented masks. Different
from the traditional encoder-decoder network, UNet adds skip-
connection, which restores some spatial features lost during feature
extraction and greatly improves the prediction results. However,
the skip-connection structure of UNet is relatively simple, and may
not work well when performing complex object segmentation tasks.

UNet++ proposed in [25] improved the skip connection form
based on UNet. UNet++ with a richer skip-connection structure is a
multi-scale, high-density convolutional network. And UNet++ has
shown better performance on cell segmentation and brain tumor
segmentation task [26].

4.3.2 Loss Function and Evaluation Criterion .
BCE, binary cross-entropy Since the model only needs to seg-

ment two types of pixels for a single recognition, we use binary
cross-entropy as one of the baseline loss functions:

𝐿 = − 1

𝑁

∑︁
𝑥 ∈𝑋

[𝑦 · 𝑙𝑛𝑦 + (1 − 𝑦) · 𝑙𝑛(1 − 𝑦)]

where 𝑁 represents the number of samples, 𝑋 represents the set
of all pixels, 𝑦 represents the label, and 𝑦 represents the predicted
value. We compute the binary cross-entropy of all training samples
in each batch pixel by pixel.

Joint loss Joint loss is obtained by adding a cross entropy and a
Dice loss:

𝐿𝐽 𝑜𝑖𝑛𝑡 = 𝐿𝐷𝑖𝑐𝑒 + 𝐿𝐶𝐸

𝐿𝐷𝑖𝑐𝑒 = − 2

|𝐾 |
∑︁
𝑘∈𝐾

∑
𝑖∈𝐼 𝑢

𝑘
𝑖
𝑣𝑘
𝑖∑

𝑖∈𝐼 𝑢
𝑘
𝑖
+∑

𝑖∈𝐼 𝑣
𝑘
𝑖

where 𝑢 is the softmax output of the network and 𝑣 is a one hot
encoding of the ground truth segmentation map. Both 𝑢 and 𝑣 have
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Figure 4: Sample results of immunofluorescence capillary imaging segmentation task. The left three columns are the original
image, enhanced image, and the ground truth. The two columns in the middle are the segmentation results of the region
growth method and the Otsu method. The last four columns on the right are the prediction results of the deep model.

shape 𝐼 × 𝐾 with 𝑖 ∈ 𝐼 being the number of pixels in the training
patch/batch and 𝑘 ∈ 𝐾 being the classes.

To evaluate the performance of baseline methods, several evalu-
ation metrics were applied, including accuracy (ACC), recall, pre-
cision, Dice coefficient, and Intersection over Union (IoU). ACC is
used to measure the proportion of correct predictions. Precision
refers to the proportion of true positive samples to all positive
samples. Recall measures the proportion of positive samples that
are correctly identified. And Dice is used to balance precision and
recall. IoU gauges the similarity of ground truth and predicted mask.
These metrics are defined as:

𝐴𝐶𝐶 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐷𝑖𝑐𝑒 =
2 ×𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁
where true positive (𝑇𝑃 ) and true negative (𝑇𝑁 ) refers to the num-
ber of pixels which was correctly predicted for the positive class
and negative class. False positive(𝐹𝑃 ) and false negative(𝐹𝑁 ) repre-
sent the number of incorrect pixels which were predicted for the
positive class and negative class.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Settings
In this section, we evaluate and present the segmentation results
of two traditional segmentation algorithms as well as four deep
learning segmentation models. RTX 3080 and Tesla V100 GPU were
used during training. The segmentation results are expressed as the
average of five training results. Five-fold validation tests were used
in each process of training a deep learning model. The parameters
of the deep learning models were initialized with he normal [9],
and each model has an initial learning rate of 10−4. We trained
each model for 100 epochs with gradient descent using the Adam
optimizer. We tested UNet and UNet++ with different loss functions
and add the models with the best prediction result to the experiment
for comparison, named modified-UNet and modified-UNet++.

5.2 Performance Analysis
The complete restoration of the vascular shape can be used to study
the mechanism of biological phenomena, so we mainly focus on
segmenting the blood vessel region, which is named the immunoflu-
orescence capillary imaging segmentation task. We tested different
models on IFCIS-155 dataset, hoping to restore as many original
capillary shapes as possible. Figure 4 shows the prediction results
of six different segmentation methods for four sample images. The
first three columns (left) in Figure 4 show the original images of
the four sample images (Original), the images obtained after bina-
rization (Binary), and the ground truth (GT) of the blood vessel
annotations.
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Table 1: Quantitative results across 5-fold cross-validation on capillary images.

Models
Metrics Dice IoU Precision Recall Acc

AVG STD BEST AVG STD BEST AVG STD BEST AVG STD BEST AVG STD BEST
Otsu 16.44 - - 10.69 - - 39.83 - - 11.07 - - - - -
RG 12.79 - - 7.85 - - 35.04 - - 8.60 - - - - -
Unet 45.54 34.59 88.30 35.51 32.36 77.13 40.59 41.31 84.85 55.81 45.58 94.81 95.63 2.83 97.99

Unet++ 64.91 11.99 88.83 47.06 13.61 74.22 57.62 4.84 91.07 91.56 2.40 94.37 97.76 0.50 98.30

Note: AVG, STD and BEST denote average result, standard deviation and best result, respectively.

Table 2: Quantitative results across 5-fold cross-validation on capillary images with different loss.

Models Loss Dice IoU Precision Recall Acc
AVG STD BEST AVG STD BEST AVG STD BEST AVG STD BEST AVG STD BEST

Unet BCE 45.54 34.59 88.30 35.51 32.36 77.13 40.59 41.31 84.85 55.81 45.58 94.81 95.63 2.83 97.99
Unet Joint 70.43 24.93 89.78 57.33 26.10 79.03 66.45 3.34 91.81 82.87 2.17 95.00 98.18 0.19 98.45

Unet++ BCE 64.91 11.99 88.83 47.06 13.61 74.22 57.62 4.84 91.07 91.56 2.40 94.37 97.76 0.50 98.30
Unet++ Joint 76.12 25.22 89.81 64.41 25.45 79.52 72.41 28.81 88.41 91.89 3.24 95.63 98.34 0.19 98.63

Note: AVG, STD and BEST denote average result, standard deviation and best result, respectively.

Experiment 1: We first tested IFCIS-155 using different image
segmentation methods, and evaluated the performance of tradi-
tional methods and deep learning methods on the capillary segmen-
tation task. We also quantitatively analyze and visualize the results.
The fourth and fifth columns of images in Figure 4 are the predicted
images obtained using the region growing method and the Otsu
method, respectively. Since most of the center of capillary in origi-
nal images are weakly or not imaging, there is no clear benefit for
solving immunofluorescence capillary image segmentation tasks
with the traditional methods. Therefore, we use the deep learning
models mentioned above for segmentation, and depict the predic-
tion results in the sixth to ninth columns of Figure 4 – prediction
results of UNet, UNet++, Modified-UNet (Mod-UNet), Modified-
UNet++ (Mod-UNet++). We use the Dice coefficient to quantify
the prediction accuracy of these deep learning models in Table 1.
Table 1 compares the prediction results of four algorithms among
five measures. On average, there is a significant difference between
the prediction results of deep learning models and traditional seg-
mentation algorithms. Not surprisingly, the deep learning model
has more than 30% performance improvement on Dice and IoU
compared to traditional segmentation algorithms. In experiment 1,
UNet++ showed the best performance in all indicators.

Experiment 2: Due to the large difference of pixels between the
foreground and background of capillary images shown in Figure 2,
we tested the effects of different loss functions in the deep learning
model and carried out a quantitative analysis. We use joint loss
in experiment 2 to compare with the original model. As can be
seen from Table2, the joint loss brings a certain improvement to
the prediction accuracy of UNet and UNet++. The improvement
reaches 25% in Dice of UNet and 12% in Dice of UNet++. The themes
identified in these comparison shows that joint loss is more suitable
for capillary segmentation tasks

Experiment 3: To explore the effect of data augmentation on
training performance, we performed the data augmentation de-
scribed in section 4.1 on FICIS-155, applied it to train the deep
learning model, and quantitatively analyzed the results. The pur-
pose of experiment 3 was to explore the effect of data augmentation
on training performance. Experiment 3 contains two sets of com-
parative models. We input the augmented and original data into
the same model to compare the prediction performance after model
training. Five metrics were used to evaluate the prediction perfor-
mance in simple statistical analysis. Table 3 shows the impact of
data augmentation on performance. It is apparent from this table
that, in both UNet and UNet++, data augmentation brings a signifi-
cant improvement to evaluation metrics. The improvement reaches
25% in Dice of UNet and 7% in UNet++. Table 4 also presents an
increase in Dice even with joint loss. In evaluating IoU and Preci-
sion, the model after data augmentation also has different degrees
of improvement. Interestingly, the standard deviation of two pairs
of comparison models was observed to have a large gap. Such re-
sults indicate that data augmentation can be applied to IFCIS-155,
although the model has a certain predictive ability for small sample
data.

6 DISCUSSION
Previous studies have shown that the vascular morphology and
structure information of interosseous capillaries can help study
bone development, remodeling, and homeostasis. However, the
segmentation of in vivo blood vessels mainly relies on manual an-
notation or traditional methods to repair the vessel morphology.
Manual annotation is time-consuming and tedious, and the tradi-
tional methods are not scalable to the increased data size. When
provided with a large amount of effective data and labels, deep
learning models have achieved promising performance on surface
vessel image classification tasks and fundus image segmentation
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Table 3: Quantitative results across 5-fold cross-validation on capillary images with/without data augmentation.

Models Data
Aug?

Dice IoU Precision Recall Acc
AVG STD BEST AVG STD BEST AVG STD BEST AVG STD BEST AVG STD BEST

Unet × 45.54 34.59 88.30 35.51 32.36 77.13 40.59 41.31 84.85 55.81 45.58 94.81 95.63 2.83 97.99
Unet ✓ 70.15 3.52 75.70 49.97 4.20 54.38 60.10 5.87 70.85 85.18 2.97 88.59 96.21 0.82 97.50

Unet++ × 64.91 11.99 88.83 47.06 13.61 74.22 57.62 4.84 91.07 91.56 2.40 94.37 97.76 0.50 98.30
Unet++ ✓ 71.77 10.47 80.29 52.61 10.07 60.40 67.80 6.15 73.28 77.08 15.23 88.82 96.78 0.78 97.30

Note: AVG, STD and BEST denote average result, standard deviation and best result, respectively. “Data Aug” indicates the experiments are
conducted with data augmentation.

Table 4: Quantitative results across 5-fold cross-validation on capillary images segmentation task using joint loss with/without
data augmentation.

Models Data
Aug? Loss Dice IoU Precision Recall Acc

AVG STD BEST AVG STD BEST AVG STD BEST AVG STD BEST AVG STD BEST
Unet × Joint 70.43 24.93 89.78 57.33 26.10 79.03 66.45 3.34 91.81 82.87 2.17 95.00 98.18 0.19 98.45
Unet ✓ Joint 84.18 1.90 87.87 69.77 1.99 72.10 78.99 3.59 85.29 90.39 3.07 93.01 97.73 0.36 98.30

Unet++ × Joint 76.12 25.22 89.81 64.41 25.45 79.52 72.41 28.81 88.41 91.89 3.24 95.63 98.34 0.19 98.63
Unet++ ✓ Joint 85.71 2.52 88.30 72.57 2.26 75.60 79.01 5.76 86.36 91.78 1.33 93.39 97.63 0.61 98.14

Note: AVG, STD and BEST denote average result, standard deviation and best result, respectively. “Data Aug” indicates the experiments are
conducted with data augmentation.

tasks. At present, there are relatively sufficient studies on fundus
capillaries, which can be combined with machine learning mod-
els for fundus blood vessel segmentation and diabetic retinopathy
screening. However, due to the lack of publicly available in vivo
capillary images for training, the task of in vivo capillary image
segmentation remains cumbersome and complex. In this study, we
presented the IFCIS-155 dataset, which includes hand-annotated
ground-truth segmentation labels and inpainted capillary labels for
155 images. our experiments show that using augmented data from
IFCIS-155 deep learning models can achieve better segmentation
performance. This dataset contains images of interosseous capil-
laries of different shapes, which can be extended to train models
for other in vivo blood vessel segmentation tasks and have broad
applications in the future.

The acquisition and labeling of medical image data are difficult
and time-consuming. Different from the natural image segmenta-
tion tasks, the medical image segmentation tasks often have limited
data. UNet and related models have been widely used in previous
medical image segmentation tasks since it simply builds an en-
coder and a decoder with skip connection, which provides efficient
information flow and shows excellent performance in describing
and segmenting objects of complex shapes. UNet++ retains the
advantages of skip connection from UNet and introduces a more
comprehensive connection. These models have been used in the
past for small-sample medical image segmentation tasks. Moreover,
it has also shown good adaptability in IFCIS-155. Similar to the
previous medical small sample segmentation task, data augmenta-
tion also improves the robustness of the model in IFCIS-155, which
brings improvements to the prediction effect.

7 CONCLUSION
In this paper, we mainly introduce a challenging, high-resolution
benchmark dataset for interosseous capillary segmentation, IFCIS-
155, which fills the gap in publicly annotated interosseous capillary
datasets. To dissect the IFCIS-155 and facilitate future research on
capillary segmentation, we also conduct an extensive evaluation of
two baselines of the IFCIS-155 challenge, which can be a reference
for future work. The unsatisfying performance on the IFCIS-155
dataset suggests that more attention should be paid to various
types of real-world capillary segmentation. In the future, we plan
to extend the IFCIS-155 dataset to relevant tasks, such as semi-
supervised/unsupervised or few-shot capillary segmentation tasks.
We hope that the IFCIS-155 dataset can help to push the research
to the capillary segmentation task.
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