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ABSTRACT
Man is by nature a social animal. One important facet of human
evolution is through narrative imagination, be it fictional or factual,
and to tell the tale to other individuals. The factual narrative, such
as news, journalism, field report, etc., is based on real-world events
and often requires extensive human efforts to create. In the era of
big data where video capture devices are commonly available ev-
erywhere, a massive amount of raw videos (including life-logging,
dashcam or surveillance footage) are generated daily. As a result, it
is rather impossible for humans to digest and analyze these video
data. This paper reviews the problem of computational narrative
generation where a goal-driven narrative (in the form of text with
or without video) is generated from a single or multiple long videos.
Importantly, the narrative generation problem makes itself distin-
guished from the existing literature by its focus on a comprehensive
understanding of user goal, narrative structure and open-domain
input. We tentatively outline a general narrative generation frame-
work and discuss the potential research problems and challenges
in this direction. Informed by the real-world impact of narrative
generation, we then illustrate several practical use cases in Video
Logging as a Service platform which enables users to get more out
of the data through a goal-driven intelligent storytelling AI agent.
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Figure 1: A brief overview of narration in human history.
Left: Cave paintings were found on cave walls that date to
over 10,000 years ago. Middle: Oracle bone script was the
ancestor of modern Chinese characters dated at 1300 to 1100
BCE. Right: Theatrical performance consists of dialogue be-
tween actors that is enriched with music and choreography.

1 INTRODUCTION
The amount of video data generated everyday has seen a rapid
increase in recent years — largely due to the availability of afford-
able and portable video capture devices, cloud-based storage and
streaming services (e.g., iCloud, YouTube, TikTok, etc.). In modern
times, the typical ways that people consume digital data are through
content retrieval, such as via search service [28] or recommender
systems [1, 32, 54, 108], or by interacting with intelligent AI agents
via natural language [3, 15, 29, 61, 84]. Notably, the raw data need
to be first curated by human experts or processed by advanced AI
models, which is often challenging due to scalability, creativity, and
content diversity. Mirrored to one of the most ubiquitous media,
i.e., videos (either long or short), it is rare for this kind of data
to be released without any additional editing. As such, building a
computational system to generate a high quality summary from
raw videos has become increasingly demanding thus far.

In the history of human civilization, narrative is regarded as the
basic vehicle of human knowledge transfer [62] and it is important
for its social, cognitive, and cultural roles in the lives of storytellers
and receivers [13]. It serves as an effective tool for communication
and building relationships, as well as transforming the ways that
humans understand and see the world [5]. Narration — the art of
storytelling — has evolved from cave drawing to linguistic narrative
text (see Fig. 1), and has grown into theatrical performance through
the ages. In present day, films, plays, novels, biography, newsreels
and chronicles are all narratives as they all connect series of events
in a causal manner [44]. However, the creation of a good narrative
is non-trivial, where a compelling narrative requires an interesting
story structure, coherence, informativeness, temporality, causality,
and attracting receivers’ interest [13]. In other words, narrative

6875

https://orcid.org/0000-0002-1239-4428
https://orcid.org/0000-0002-7744-1133
https://orcid.org/0000-0001-8691-5372
https://orcid.org/0000-0003-0600-2579
https://orcid.org/0000-0002-0137-3357
https://orcid.org/0000-0003-0964-1464
https://orcid.org/0000-0002-9993-3059
https://orcid.org/0000-0003-0992-4712
https://orcid.org/0000-0003-4303-9020
https://orcid.org/0000-0002-4846-2015
https://doi.org/10.1145/3503161.3549202
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3503161.3549202
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3503161.3549202&domain=pdf&date_stamp=2022-10-10


MM ’22, October 10–14, 2022, Lisboa, Portugal Yongkang Wong et al.

generation is a complex task that takes humans years of training
to master. In this paper, we discuss a fundamental question — can
an artificial computational system generate narratives?

This study focuses on a particular use case of narrative gen-
eration, namely goal-driven narrative generation with long
videos, where a factual narrative, i.e., stories based on actual
events, is generated. The proposed task takes a user’s query and
multiple long videos (ranging from an hour to a few days) as input,
and then generates a coherent and succinct multimodal narrative.
We note that the research community has made good preliminary
progress through image/video captioning [39, 95], image paragraph
generation [99], story ending generation [27, 36] and video sto-
rytelling [48, 103]. However, a fully computational narrative gen-
eration system is still a challenging and ambitious goal. Not only
it requires robust perceptual capability in both seen and unseen
scenes, it also demands a comprehensive understanding of user
goal, narrative structure and open-domain input. Most importantly,
there exist no single objective story and what is deemed to be
interesting varies across users, topics, and other factors. To help
tackle this daunting problem, we propose a research agenda through
a general processing framework and discuss the potential research
challenges. In addition, we review existing effort from both social
science and computer science perspectives. To summarize, we make
the following contributions:

• We introduce a novel goal-driven computational narrative
generation task for long videos. A general framework is
outlined to encourage domain and style agnostic approach.
The anticipated research challenges are discussed.

• We present a targeted survey on the social science studies
on narratives and bridge the literature to the proposed task.
In addition, we compare the proposed task with existing
literature and outline the key differentiating factors.

• Wedelineate several conceptual applications of user-centered
narrative generation in Video Logging as a Service (VLaaS)
platform, such as smart warehouse, claim report generation,
and unmanned region monitoring.

In the remaining sections, Section 2 positions narrative with find-
ings from social science studies. Section 3 covers the computational
narrative generation task where the comparison with related tasks
(cf. Section 4) and related research problems (cf. Section 5) are also
detailed.We complement these contributions by discussing hownar-
rative generation application can impact our society in Section 6.

2 SOCIAL SCIENCE ASPECT OF NARRATIVE
“Narrative imagining — story — is the fundamental instrument
of thought. [...] It is a literary capacity indispensable to human
cognition generally”.

— by Mark Turner
In social sciences, narratives have been a long studied topic since

the late 1980s. Narrative is regarded as the basic vehicle of human
knowledge [62]. In particular, a narrative is defined as a semiotic
representation of a series of events connected in a temporal and
causal way. Films, plays, novels, newsreels and chronicles are all
narratives in this widest sense [44]. In this study, we will use the
word in a more restricted sense, meaning a linguistic narrative text
or a visual video, or the representation of a series of events by

means of textual or visual modalities. While in literature most of
the events are fictional, our narratives will describe nonfictional
(i.e., factual) events based on the information from the videos.

A linguistic narrative structure has multiple modalities, the two
most important modalities are temporal and spatial [62]. The
temporal modality refers to the representation of events in a time
sequence in a narrative. From the temporal perspective, a narrative
can be seen as a sequence of sentences that flow along in time one
after the other. But the sentences in a narrative contract with each
other more than merely temporal relations, instead, they can be
conceptually and thematically related to each other, for example,
with causal relations. The causal modality indicates the causal
connections between the narrated events. Cohn [11] has stated the
definition of narrative from the causal angle: “a series of statements
that deal with a causally related sequence of events that concern
human (or human-like) beings”.

In this study, we target generating narratives with both temporal
and causal modalities from videos. For example, the following is a
series of video scenes with only temporal modality: “A man with a
bag passes by a bench in a park. A bag is on the bench. A police car
comes”. Alone, this is a non-narrative sequence. But an intelligent
algorithm can postulate connections that would weave these scenes
together into a narrative: “A man abandons a bag on the bench in a
park. Someone nearby spots the abandoned bag and calls the police.
The police drives to the park to take a look”. In this example, causal
ties are necessary to make the narrative a complete story.

Besides the aforementioned modalities, researchers argue that
narrative also has a spatial structure [6, 22, 72]. The sentences in a
narrative can be simultaneously related to sentences both preceding
and following them in complex ways, gives narratives a spatial
configuration. This lays the foundations for narrative diagrams
semiotic, which can be viewed as complex networks of relations
that exist simultaneously in a mental, multidimensional space.

There are many factors that influence the narrative structure,
among which the most prominent is the narrator’s goal. As the
saying goes, “what we say is not as important as how we say it”,
research has shown that goal, or motivation, has strong impact
on the narrative construction [23]. The flexibility and complexity
associated with narrative construction enables us to present the
information in the structure of our choice. The versatility of narra-
tive structure allows us to convey a variety of detailed information
with specific targets and from multiple perspectives. For example,
a structural consideration of narrative construction in our algo-
rithm may cause a person to focus on certain story elements while
ignoring others.

Indeed, it is well-established that narratives can have effects on
readers’ real-world beliefs and attitudes [4]. This phenomenon has
been termed narrative persuasion. In communication research,
such effects have long been investigated in various disciplines such
as health communication [25] and entertainment-education [56].
In strategic political communication and policymaking, the use of
narratives and storytelling are also recognized as effective commu-
nication strategies [57]. Narrative persuasion is also linked to the
evoking of various emotions [34]. The above research provides in-
sights for the design of computational narrative generation, such as
the adjustment of narrative structure based on different motivations
and target impacts.
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Figure 2: An overview of a general narrative generation framework with input video and user’s query. Firstly, the Video Graph
Generator processes the input video into a comprehensive semantic video graph. Secondly, the Narrative Element Retrieval
determine what make an interesting story based on the given query, story templates, and domain knowledge. Finally, the
Narrative Generator output a textual and/or video story corresponding to the user’s query. The story templates and domain
knowledge are explicit knowledge that determine the narrative elements.

3 NARRATIVE GENERATION FRAMEWORK
3.1 Problem Definition
The aim of narrative generation is to generate a coherent and suc-
cinct story from a single or multiple long videos. Specifically, we
consider both raw videos and non-compressed narrated videos,
e.g., movie, TV series, YouTube video, etc. In this paper, we consider
a general narrative generation (NG) framework for long videos em-
ploying the conventional deep learning terminology. Given a multi-
modal query𝑄 concerning a set of long videosV = {𝑉1,𝑉2, . . . ,𝑉𝐾 }
where 𝐾 is the number of videos, the goal of NG is to generate a
narrative — story — in linguistic narrative text 𝑆nar with an optional
narrative video 𝑉nar to complement it.

An overview of the general NG framework is illustrated in Fig. 2.
Briefly, the pre-processing stage converts the input V into a struc-
tured semantic video graph and retrieves the related domain knowl-
edgeKdom based on𝑄 . This stage also determines a preferred story
style and story template Ktem based on the user profile Kusr. In
the NG stage, the framework first selects 𝑁 key narrative elements,
𝐺1,𝐺2, . . . ,𝐺𝑁 , based on the user’s query𝑄 together with theKdom,
Ktem and Kusr. Each of the narrative element is a graph that con-
sists of key actors, actions, and relations. Finally, a corresponding
narrative, 𝑆nar and/or 𝑉nar, is generated.

3.2 Processing Module
3.2.1 Query Encoder. Queries are important inputs to the frame-
work reflecting the users’ intention on which part of information
is of interest and the form the narrative is expected to take. They
are innately unstructured and multimodal, which calls for effec-
tive encoding and fusion methods. For textual queries, vectorised
representation at word [55] or sentence level [45] have been pro-
posed. Upon these representations, sequential models like hidden
Markov model [12], recurrent networks [33, 73, 75] and Trans-
formers [17, 81, 100] are used to model cross-word/sentence con-
text. For speech inputs, audio features like frequency-based coef-
ficients [68, 85] and spectrograms [40, 83] can be used as input to
sequential models as mentioned above for context modelling. Video
encoders like [7, 19, 79] focused on capturing local visual changes
and aggregation of those information for global context modelling.

3.2.2 Video Graph Generator. Video — unstructured temporal vi-
sual data — inherently contains a vast amount of semantic infor-
mation, such as scenes [71], objects [53, 82, 89], fine-grained at-
tributes [10], motion dynamic [96], relationship [47, 51], events [20],
etc. The advances in network architecture [18, 31, 70] has achieved
robust vision-based real-world sensing. Inspired by knowledge
graphs, visual data can be represented as a graph [38, 42], in which
each subject, attribute, and relation are denoted as node 𝑜 and one
(or two) edge is added to form a compositional concept (or relation
triplets) such as ⟨wet, dog⟩ (or ⟨man, carry, box⟩). By parsing the
raw video V into a video graph G, the subsequent processing is
agnostic to the input modality and allows the framework to freely
integrate with different knowledge sources, e.g., Kdom and Ktem.

3.2.3 Narrative Element Retrieval and Structure Modeling. The en-
coded query and generated video graph G are used as inputs to
this module, where a retrieval process guided by external knowl-
edge pinpoints the relevant elements in the video graph and story
templates. Here, the narrative elements are the major events that
compose a narrative. This is similar to cross-modal retrieval [105],
activity retrieval [8], and video moment retrieval [76, 104, 106], but
with external knowledge constraints. Specifically, the user query
will determine what is the goal of the generated narrative, whereas
other knowledge, such as user profile and domain knowledge, will
assist the retrieval to identify more relevant narrative elements and
allow the framework to handle unfamiliar topics. Once the narra-
tive elements are retrieved, the system needs to analyse the causal
relations, hierarchical relations, importance scores and the internal
structures of these elements. The retrieved narrative elements serve
as the factual material and as the input to the narrative generator.

3.2.4 Narrative Generator. With all the information prepared by
previous modules, this module finally assembles narrative elements,
story templates, and domain knowledge into a narrative text 𝑆nar
and an optional narrative video𝑉nar. As discussed in Section 2, the
output narrative is expected to be: (a) correct as measured by natural
language grammar and domain knowledge, and (b) interesting in
terms of human aesthetics and user profile. While (a) is relatively
easier as shown in existing storytelling literature, (b) requires a
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Table 1: Comparison of narrative generation with related tasks. I: Image; V: Video; T: Text.

Task Input Output Multi-hop Long Generation User Storytelling CausalityModality Modality Reasoning Sentences Query

Visual Question Answer I, V, T T !

Visual Dialogue I, T T ! ! !

Image/Video Captioning I, V T ! !

Video Summary V V, T !

Visual Storytelling I, V, T T ! !

Narrative Generation V, T V, T ! ! ! ! ! !

more sophisticated integration of all the above-mentioned modules.
Furthermore, there is no single ground truth narrative as there
may exist multiple variants of narration that are both coherent
and succinct. Hence, there is a need for research in computational
narrative analysis [13] and narrative factual consistency [26, 43, 78].

3.3 External Knowledge
3.3.1 User Profile. The users’ demographic information and inter-
ests are important sources from which the users’ preference on the
output narrative can be inferred. In the context of this work, the
profile affects the user’s expectation on the narrative: the factual
contents it delivers, the arguments it proposes, the literature style
it uses, etc. In recommendation systems literature [1, 32, 54, 108],
it can be represented with respect to existing concepts, other users
by tags [97], concept weights [14], or associative rules[21].

3.3.2 Story Templates. Story templates are schemes that control
how narrative elements are arranged in the generated narrative,
which could be explicitly defined as a cloze game, into which narra-
tive elements are filled. It could also be defined as a set of heuristic
rules, with which a planning algorithm, e.g., IPOCL [63], discovers
an arrangement of narrative elements. Interactionwith humans [69]
also helps the formation of a story. Recent story templates learning
approach including learning the role transition of words from a text
corpus to help generate a fluent story consisting of multiple sen-
tences [60]. The storyline can also be distributed in the parameters
of recurrent models [9, 93]. We aim at learning the story templates
but from a broader perspective. The story templates are expected
to not only guarantee logical correctness, but also ensure a aes-
thetically enjoyable narrative based on user profile. This requires
learning different literature styles from a large text corpus, as well
as take into account user query and other external knowledge.

3.3.3 Domain knowledge. A key factor that differentiates narrative
generation from retrieval task is that it requires the model to go
beyond similarity-based entity matching and achieve human-like
knowledge-based reasoning. Domain knowledge is therefore an
indispensable part of a successful NG framework. Existing knowl-
edge databases provide domain knowledge using highly structured
graphs or logic constraints. For example, Wikidata [77] provides
common sense knowledge, while ConceptNet [74] provides tax-
onomy information between words. ATOMIC [37, 65] goes one
step further by providing causal relationships between events,
which serves as a domain knowledge for machine reasoning. All
these knowledges form the basis of a variety of works on common

sense-aware visual recognition [52, 88], image captioning [87, 99],
VQA [58, 84], and neurosymbolic reasoning [24, 90].

3.4 Evaluation Metrics
3.4.1 Textual Factual Consistency Metric. The quality of narrative
can be objectively validated via textual factual consistency, i.e., RU-
BER [78] and FactCC [43]. The generated narrative is compared
against the human narrated version, and a score between 0 to 1
indicates if the generated narrative has a better factual consistency.
This ensures that the evaluation focus is on the narrative elements
and not on the quality of the sentences. For the output video sum-
mary, one metric is to evaluate whether the output video covers
the semantic content that is relevant to the text narrative.

3.4.2 Human Evaluation. Another aspect of the evaluation is the
quality of style, fluency, and informativeness of the generated nar-
rative (for both textual and visual output). Human evaluation is
recommended as these factors are largely subjective, and the com-
putational evaluation of story quality remains an open problem.

4 COMPARISONWITH RELATED TASKS
In this section, we review several closely related tasks and discuss
the key differentiating factors to the proposed computational narra-
tive generation task. The key differentiating factors are summarized
in Table 1. Note that we neglect the perceptual computer vision task,
such as semantic segmentation [30], detection and tracking [53, 98],
object classification [18], person identification [16], relationship
detection [47, 51, 91, 92], and so on, as those are the fundamental
modules that serve as a building blocks for narrative generation.

First of all, the conventional multi-modal Question Answering
(QA) task (e.g., visual QA [2, 3, 41] and video QA [46, 109]) is formal-
ized by a classification objective, with the aim of disentangling the
capability of visual reasoning and text generation. As such, these
tasks are limited by the inferior generalization in real open-ended
scenarios. To address this, external knowledge is adapted to handle
the open-domain scenario [64]. Another challenge for QA is the
ambiguity in user’s queries as well as the complexity of the multi-
media data. To address this, visual dialogue [15, 61, 80] eases this
pain via answering questions within multi-rounds. Nevertheless,
the outputs are often expressed by a short sentence.

One may question the similarity between narrative generation
and video captioning [50, 101, 107] or video summary [67, 102]. We
argue that the proposed narrative generation is distinguished from
these two tasks by four merits: 1) narrative generation is driven by
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an explicit purpose, which is goal-oriented and benefits from user
queries; 2) it focuses mainly on long videos, as compared to short
videos — often is a narrative by itself — in video captioning or video
summary; 3) the causality is intrinsically ensured by the proposed
narrative generation; and 4) narrative has four basic components,
namely plot, character, conflict, and theme, and is required to be
presented in a chronological order.

The task of storytelling has gained increasing attention [27, 35,
36, 48]. This include producing a story with a stack of images [35] or
videos [48], and story ending generation with multi-sentence story
plot [27, 36]. The targeted scope of these research sheds lights on the
storytelling task and serve as a good foundation for the proposed
narrative generation task. We argue that computational narrative
generation has more inherent challenges, and therefore encourage
the research community to approach the narrative generation task
from multiple perspectives (cf. Section 3 and Section 5).

In a nutshell, narrative generation cannot be simply achieved by
a simple composition of existing tools together due to the presence
of these challenging inherent attributes – multi-hop reasoning, long
sentences and long videos, user query, and causality.

5 RESEARCH PROBLEMS
This section discusses the unique challenges of narrative generation
from three aspects, namely dataset, narrative construction, and
narrative evaluation. These challenges are highly interdependent
and could be considered either singly or jointly in the future work.

5.1 Dataset
5.1.1 Dataset Criterion. To facilitate the narrative generation stud-
ies, new benchmark datasets of long videos are needed. Existing
datasets that satisfy this requirement include VideoSet [103] and
Video Story [48]. Together, they consist of four TV episodes, 7
egocentric videos, and 105 videos from four types of common and
complex events (i.e., birthday, camping, Christmas and wedding).
In future work, the key criteria to create a new dataset is to collect
long videos that has rich semantic events. A common practice
is to adopt narrated videos (e.g., movies or TV series) or social
events from video streaming platforms. However, we note that the
narrated videos is by nature a narrative, and the selection of any
such video should contain sufficiently complex story plots.

5.1.2 Dataset Annotation. There are three types of annotation that
is required for the proposed task. (1) Video Semantics: A video
graph G = (𝑉 , 𝐸) where 𝑉𝑖 is a finite set of vertices and 𝐸𝑖, 𝑗 is
an edge that connects 𝑉𝑖 and 𝑉𝑗 . The node including person, ob-
ject, attribute, action, relationship, etc. (2) Narrative Element and
Structure: While the common approach is to provide the textual
summary of the given video [48, 66, 94, 103], we argue that a per-
fect narrative for each given query is hard to define. Hence, we
suggest that for each query 𝑄 , a set of 𝑁 key narrative elements
𝐺1,𝐺2, . . . ,𝐺𝑁 , i.e., subgraphs in G, that form a compelling story is
annotated. In addition, structured information, such as the causal re-
lationship, hierarchical relation among elements, importance score,
plot, and so on, are also required. This will provide ground truth
for factual consistency. (3) Annotation Confidence: As the an-
notators are likely not the domain experts, it would be important
to allow them to indicate the confidence score for each annotated

attributes. The confidence score should be released as the uncer-
tainty of the annotation (e.g., visual ambiguity) is an important
feature that enables training of better models [49]. Another reason
to indicate the confidence score is that the relations between el-
ements in videos are implicit, but those in narratives are explicit
(cf. Section 5.3.1).

5.2 Narrative Construction
5.2.1 Bridging Story Template, Contents, and Domain Knowledge.
The narrative system we discussed above is a mixture of contin-
uous (e.g., encoded user query) and discrete information (e.g., do-
main knowledge represented as knowledge graph). This has posed
challenges about the integration of all the information into one
narrative generation process. Intuitively, we would like the system
to be end-to-end trainable to incorporate the massive multimedia
data with little human intervention. This requires a flexible usage
of both supervised and unsupervised learning approaches. On the
other hand, embedding discrete knowledge into a continuous space
requires neurosymbolic approaches as a bridge, which is itself an
emerging field with unsolved issues.

5.2.2 Narrative Structure Modeling. A narrative is defined as a
semiotic representation of a series of events connected in a tem-
poral and causal way. Once the narrative elements 𝐺1,𝐺2, . . . ,𝐺𝑁
are retrieved from the raw data or video graph, the system is re-
quired to infer the underlying order and manner (i.e., the structural
framework) that forms a narrative. The types of narrative struc-
ture include linear structure, non-linear structure, parallel structure
and circular plot structure. The characters or events can also be
connected via causal relation, conflict link [86], and hierarchical
relation. In addition, the narrative elements also have different
degrees of importance. The challenge in this research problem is
to infer (1) how the narrative elements and nodes are interlinked
with each other and (2) the corresponding attributes based on the
selected narrative structure.

5.2.3 Personalized Narrative Generation. Although the factual nar-
rative is based on the actual event with underlying temporal and
causal relation, a good narrative is not bounded by a single ob-
jective story and enjoys various forms depending on the user’s
preference. Therefore, it is necessary to consider the user profile
and preference, circumstances, and target audience during the nar-
rative generation process. On one hand, such personalization can
be based on user’s preference on genre, style, or aesthetics. On the
other hand, user’s privacy concern would determine what elements
can be included. For example, if the narrative is generated for family
members, more private information can be included as opposed to
news article. In addition, narrative persuasion would evoke various
type of emotions. These factors have to be jointly considered during
the narrative structure modeling and narrative generation.

5.3 Narrative Evaluation
Given the distinctive nature of narratives in our work, we face
several new challenges in evaluation as discussed below.

5.3.1 Factual consistency. First of all, the evaluation of narrative
completeness will be different from traditional video caption evalu-
ations, as i) we focus on long (e.g., spanning several days) videos

6879



MM ’22, October 10–14, 2022, Lisboa, Portugal Yongkang Wong et al.

and ii) our narrative is goal driven. Therefore, our definition of
completeness will be more flexible based on various goals. In par-
ticular, our evaluation of completeness will need to consider all
the following three aspects: i) whether all goal-related narrative
elements are presented; ii) whether the temporal, causal and spatial
relations of the narrative elements are fully described; iii) whether
the story sufficiently serve the specific goals.

Correspondingly, we need to re-define narrative accuracy in the
long video and goal-oriented scenario. Different from traditional
metrics, our accuracy will be multidimensional. First, it measures
the content’s consistency between narratives and videos. Second,
it evaluates the correlation among narrative descriptions and vari-
ous goals (e.g., if the mentioned stories serve each goal). Finally, it
should be able to assess the fidelity of the narrative elements struc-
ture. For example, the causal relations in videos are often implicit
and subjective to human perceptions. Some causal relations are ob-
vious and definite, but others may be subtle and ambiguous. While
transferring such relations to explicit narratives, accuracy measures
how faithfully such relations are described: “Event A causes event B
to happen” represents a causal relation of high confidence, whereas
“Event B happens after event A” indicates an obscure cause-effect.

5.3.2 High-level Narrative Attribute Assessment. Different from tra-
ditional video captioning, our narrative is goal driven. This means
that it should be able to meet specific requirements from the users,
and fulfill its task of narrative persuasion.

Therefore, besides completeness and accuracy, a good narra-
tive in our study should have certain high-level properties, such
as being coherent, fluent, informative yet compact, and amiable.
In some applications like smart stores (e.g., Amazon Go), privacy-
preserving may be a key requirement for the narratives. The above
attributes are often implicit and subject, yet they are vital contribut-
ing factors to narrative persuasion. Notably, the attributes may be
inter-correlated and even competing. For example, sometimes we
need to consider the trade-offs between informative and privacy-
preserving. All the above create new and tough challenges for the
high-level assessment of narratives. One possible way to tackle
this is to design a subjective evaluation standard for each attribute,
similar to the mean opinion score (MOS) evaluation for audio [59].

6 CONCEPTUAL APPLICATION
Motivated by the real-world impact of narrative generation (NG),
we illustrate how NG can be applied in Video Logging as a Service
(VLaaS). Existing commercial VLaaS applications, such as road con-
dition monitoring1 and geographic information systems2, provide
the data capture and storage solution, advanced analytic, and a cus-
tomized interface that allow its clients to access the data. Another
akin service is Google Photos3 where utilities like photo search,
person album management, and memories generation are provided.

In contrast, NG aims to generate a text narrative with support-
ing video evidences. The user can provide verbal command with a
preferred style and target audience, and the VLaaS platform will
handle it automatically. In the following, we provides three NG
use cases. The first use case is Productivity Monitoring, such as

1http://www.dcl.co.nz/services/video-logging
2https://support.esri.com/en/technical-article/000024386
3https://photos.google.com

Figure 3: An example of incident report generation for in-
surance claim. The goal here is to generate an incident report
of an accident, and the input is the dashcam recording from
the policy holder’s vehicle.

in smart manufacturing or smart retail. This is aligned with In-
dustry 4.0 where big data are combined with advanced AI models
to generate informative reports. For example, the factory can use
the long term causal inference to understand why the production
quality has dropped. On the other hand, footage from the retail
environment can be used to understand how the marketing of new
product affects the customer engagement and sales. The second use
case is Legal Report Generation, where video footage from car’s
dashcam, smart door bell or home monitoring camera can be used
to generate a insurance claims report that highlight the details of
an incident. An example of car accident report is shown in Fig. 3.
The third use case is Unmanned Region Monitoring, where smart
cameras or drones can be deployed over unmanned and remote
areas (e.g., forests, oceans, volcanic regions, etc.) The collected data
can be used to investigate how a forest fire has spread, or to un-
derstand the animal behaviour so the scientist can better preserve
the endangered population. Ultimately, the holy grail of narrative
generation in this use case is to generate a National Geographic
style article without human editing.

7 CONCLUSION
Computational goal-driven narrative generation with long videos
is a challenging and ambitious problem in multimedia research.
We present a particular use case of factual narrative, where events
captured in multiple long videos are analyzed and connected in a
temporal and causal way. The paper introduces a general framework
as the basis to discuss the research problems and challenges, as well
as compare it with related tasks in the multimedia literature.
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