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Figure 1: Network architecture of our two-stream 3D-CNN. Our network has only 3 layers (4 layers included LCN). Temporal
oriented frame skip based on the duration differences ofME andMaE (where Δ𝑡𝑀𝐸 < Δ𝑡𝑀𝑎𝐸 ). LCN is applied using a convolutions
kernel which performs local contrast normalisation as described in Equation 1. Each convolutional block consists of depthwise
separable convolution, batch normalisation and dropout. The residual dense layer possesses the skip connections that shares
weights. Two dense nodes were used at the end to resemble the presence of ME and MaE.

ABSTRACT
Facial expression spotting is the preliminary step for micro- and
macro-expression analysis. The task of reliably spotting such ex-
pressions in video sequences is currently unsolved. Current best
systems depend upon optical flow methods to extract regional mo-
tion features, before categorisation of that motion into a specific
class of facial movement. Optical flow is susceptible to drift error,
which introduces a serious problem for motions with long-term
dependencies, such as high frame-rate macro-expression. We pro-
pose a purely deep learning solution which, rather than tracking
frame differential motion, compares via a convolutional model, each
frame with two temporally local reference frames. Reference frames

are sampled according to calculated micro- and macro-expression
duration. As baseline for MEGC2021 using leave-one-subject-out
evaluation method, we show that our solution performed better in
a high frame-rate (200 fps) SAMM long videos dataset (SAMM-LV)
than a low frame-rate (30 fps) (CAS(ME)2) dataset. We introduce a
new unseen dataset for MEGC2022 challenge (MEGC2022-testSet)
and achieves F1-Score of 0.1531 as baseline result.

CCS CONCEPTS
• Computing methodologies→ Computer vision; • Applied
computing → Psychology.
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1 INTRODUCTION
Facial expression is the main way people convey visual informa-
tion of human emotion. It can predict a person’s current state of
emotion. Facial expressions can be classified into two groups: macro-
expression (MaE) and micro-expression (ME). These classifications
are based on their relative duration and intensity, where MaE (also
known as a regular facial expression) lasts from 0.5 to 4.0s [27]
and has higher intensity; ME occurs in less than 0.5s and has lower
intensity. ME occurs more frequently in high-stake and stressful
circumstances [7, 8]. As it is an involuntary reaction, the emotional
state of a person can be revealed through analysing MEs.

Earlier works of ME are based on datasets of short clips contain-
ing categorised ME (i.e., SAMM [5, 6], SMIC [16], and CASME
II [26]). These were used to facilitate ME expressions recogni-
tion [21, 30]. With recent interest in ME and MaE spotting, re-
searchers created long video datasets, SAMM Long Videos (SAMM-
LV) [28, 29] and CAS(ME)2 [20], to better represent spontaneous
emotion for ME andMaE spotting. This paper focuses on automated
spotting of MaE and ME on SAMM-LV and CAS(ME)2. We produce
the baseline results for two Facial Micro-expressions Grand Chal-
lenge (MEGC), i.e. MEGC2021 [15] and MEGC2022. To increase the
level of challenge, we introduce a new unseen dataset.

Most of the previous methods utilise long short-term memory
(LSTM) [4, 25] or optical flow [10, 23, 25, 32] to detect temporal
correlation of video sequences. LSTM is a recurrent neural network
that computes sequential time steps with a new element of the input
sequence being added to the network at each time step [22]. Optical
flow computes the differences of two image frames every time
when it is applied within a video sequence. Both LSTM and optical
flow are computationally expensive. In addition, optical flow has
weaknesses such as drifting over frames [2] and is very susceptible
to illumination changes [24].We also noticed that previous attempts
lack duration centred analysis. We take advantage of the major
difference between ME and MaE (they occur for different duration,
where ME occurs less than 0.5s while MaE occurs in 0.5s or longer)
and propose a two-stream network with a different frame skip
based on the duration differences for ME and MaE spotting.

The main contributions are:
• Our approach is the first end-to-end deep learning ME and
MaE spotting method trained from scratch using long video
datasets.

• Our method uses a two-stream network with temporal ori-
ented reference frame. The reference frames are two frame
pairs corresponding to the duration difference of ME and
MaE. The two-stream network also possesses shared weights
to mitigate overfitting.

• The network architecture consists of only 3 convolutional
layers with the capability of detecting co-occurrence of ME
and MaE using a multi-label system. This method has the po-
tential to be used on lightweight devices (e.g., smartphones)
in real-time.

• To make the network less susceptible to uneven illumina-
tions, Local Contrast Normalisation (LCN) is included into
our network architecture. LCN drastically improves the over-
all network performance across a range of configurations
and parameters.

Figure 2: Preprocessing: (Top) Face alignment and data aug-
mentation (randomised brightness and contrast change) on a
subject of SAMM-LV; and (Bottom) Image normalised using
LCN. Despite the brightness and contrast differences, the
facial features remain well-preserved.

2 PROPOSED METHOD
Our goal is to detect ME and MaE within long video sequences. By
using the duration difference of ME and MaE, we propose a two-
stream 3D-Convolutional Neural Network (3D-CNN) with temporal
oriented frame skips. We define the two streams as ME and MaE
pathways, as illustrated in Fig. 1. They are structurally identical
networks with shared weights, but differ in frame skips. We use 3
convolutional layers and pool all the spatial dimensions before the
dense layers using global average pooling. This design constrains
the network to focus on regional features, rather than global facial
features. Next, we further propose that normalising the brightness
and/or contrast of the images. This is important for generalisation
and real world applications, as there is likely more variation in skin
tone and brightness between different individuals, and lighting
conditions. Therefore, we apply LCN to all images before presented
to our network.

2.1 Preprocessing
Facial Alignment OpenFace 2.0 [1] is used for facial alignment.
It is a general-purpose toolbox for facial analysis. OpenFace uses
Convolutional Experts Constrained Local Model (CE-CLM) [31] of
84-points for facial landmark tracking and detection. Based on the
detected facial landmarks, the face in each frame of a video sequence
is aligned and extracted. In our experiment, image resolution is
112×112 pixels, which is the default output resolution of OpenFace.
Local Contrast Normalisation (LCN) LCN [12] was inspired
by computational neuroscience models that mimic human visual
perception [17] by mainly enhancing low contrast regions of im-
ages. LCN normalises the contrast of an image by conducting local
subtractive and divisive normalisations [12]. It performs normalisa-
tion on local patches (per pixel basis) by comparing a central pixel
value with its neighbours. The unique feature of LCN is its divisive
normalisation, which consists of the maximum of local variance
or the mean of global variance. If an area of image has very low
variance (approximately 0), dividing with a small value will form a
bright spot. Dividing using the mean of global variance mitigates
this issue. The main advantage of this method is robustness towards
the change in brightness or contrast (shown in Figure 2). The facial
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features are well preserved despite the random changes in bright-
ness and contrast. This can be a solution to address the weakness
of overused conventional optical flow method of dealing with un-
even lighting. In our implementation, Gaussian convolutions are
used to obtain the local mean and standard deviation. Gaussian
convolution acts as a low pass filter which reduces noise. It also
speeds up the local normalisation process as it is a separable filter
(where 2-dimensional data can be calculated using 2 independent
1-dimensional functions).

The general equation of LCN can be described as

𝑔(𝑥,𝑦) =
𝑓 (𝑥,𝑦) −𝑚𝑓 (𝑥,𝑦)
𝑚𝑎𝑥(𝜎𝑓 (𝑥,𝑦), 𝑐)

(1)

where 𝑓 (𝑥,𝑦) is the input image,𝑚𝑓 (𝑥,𝑦) is the local mean estima-
tion, 𝜎𝑓 (𝑥,𝑦) is the local variance estimation, 𝑐 is the mean of local
variance estimation and 𝑔(𝑥,𝑦) is the output image.

2.2 Network Architecture
We propose a two-stream network using a 3D-CNN (network ar-
chitecture shown in Figure 1). Our network takes advantage of the
duration differences of ME and MaE and encouraging one network
to be more sensitive to ME and the other to MaE. This is made
possible by using a different number of skipped frames in each
respective stream (using the maximum duration of a ME, 0.5s, as
the threshold for the duration difference). Our network consists
of depthwise separable convolutions, which has about 10% less
parameters compared to regular convolution counterpart.
Input Layer The input of this network consists of 4 images. The
frame pair in the first stream has a shorter frame skip compared to
the latter pair. The frame skips are determined based on the 𝑘-th
frame. The 𝑘-th frame, described by Moilanen et al. [18], is the
average mid-point of odd-numbered facial expression interval of
the whole dataset. These pairs are then fed into two separate but
identical neural networks with shared weights.
Weighted loss function To the best of our knowledge, we are
the first in ME spotting to weight imbalanced datasets using a loss
function. The datasets used in our experiment are imbalanced, and
there are more neutral frames relative to frames containing ME
or MaE. We also weighted the loss based on ME and MaE, as ME
occurs less than MaE. The loss can be described as

𝐿𝑜𝑠𝑠 = −
𝐶′∑︁
𝑖=1

𝑀𝑖 · [𝑊 · 𝑡𝑖 · 𝑙𝑜𝑔(𝑠𝑖 ) − (1 − 𝑡𝑖 ) · 𝑙𝑜𝑔(1 − 𝑠𝑖 )] (2)

where 𝑡𝑖 is ground truth labels, 𝑠𝑖 are the predictions, 𝐶 ′ is the
number of expression types (𝐶 ′=2 in our case, for ME and MaE),
W is the weighting factor that functions to penalise more when
the network predicts ME/MaE wrongly as neutral and 𝑀𝑖 is the
weighting factor for expression (ME or MaE).

We only apply weighted loss function when training SAMM-
LV as we found out model trained with SAMM-LV improves with
weighted loss function. The effects in CAS(ME)2 is negligible. We
used 𝐶 ′ = 2, 𝑀0 = 0.9 (for ME), 𝑀1 = 0.1 (for MaE). Coefficient W
used is 3. All the weighting factors are used to address the dataset
imbalance. W is used to address different number of ground truth
labels of ME/MaE and neutral; 𝑀0 and 𝑀1 is used to address the
imbalanced labels of ME and MaE.

Depthwise Separable Convolution We use depthwise separable
convolution of MobileNet [11] that reduces total trainable param-
eters with minimal performance impact. It consists of depthwise
and pointwise convolution. Depthwise convolution is convolution
applied on individual channels instead of all channel at once (as
in regular convolutional). Pointwise convolution is convolution
that uses a 1 × 1 kernel with a third dimension of 𝑑 (where 𝑑 is the
number of channels) on the feature maps.
GAP and Residual Dense Layer A global average pooling (GAP)
layer is used to flatten the convolution output and enforcemodelling
of localised facial movements. It is followed by the final hidden layer
consists of a residual dense layer. This layer is two fully connected
layers with skip connections inspired by ResNet [9].
Output Layer The output layer consists of two dense nodes with
sigmoid activation representing the presence of ME and MaE.

3 EXPERIMENT
This section provides datasets information, training details and
performance metrics of our experiment.

3.1 Datasets
We evaluate our method on two datasets, i.e., MEGC2021 Spotting
Datasets and introduce MEGC2022 unseen test set.
MEGC2021 Spotting Datasets. The datasets used are SAMM
Long Videos (SAMM-LV) [29] with 147 long videos containing
343 MaEs and 159 MEs; and CAS(ME)2 [20] with 87 long videos
containing 300 MaEs and 57 MEs. The original ground truth of
these datasets consist of onset, apex, and offset frame labels of each
facial expression. We label the ground truth of movement from
the onset frame to the offset frame, inclusively. Our ground truth
consists of two labels of binaries where 0 represents absence while
1 represents presence of ME or/and MaE.
MEGC2022 Unseen Test Set. In MEGC2022, we introduce an
unseen test set with 10 long videos, which consists of 5 long videos
from SAMM [5] (SAMMChallenge dataset) and 5 clips cropped from
different videos in CAS(ME)3 [14]. The frame rate for SAMM Chal-
lenge dataset is 200 fps and the frame rate for CAS(ME)3 is 30 fps.
The participants can use SAMM-LV and CAS(ME)2 as training set,
and test on this unseen dataset. For facilitate the spotting challenge
and to enable fair assessment, we do not release the ground truth
for this dataset. The participants will submit their results to our
grand challenge system (https://megc2022.grand-challenge.org).

Table 1: Training configuration. Stream 1 is designed to be
more sensitive to ME, while Stream 2 is more sensitive to
MaE by using different range of frame skips based on the
duration differences of ME and MaE. The 𝑘-th frame is the
average mid-point of facial expression interval. (Note: ★ used
in training and validation, † used in testing)

Dataset SAMM-LV CAS(ME)2

Random frame skip★ (Stream 1 & 2) 25∼75 & 200∼400 3∼9 & 16∼50
𝑘-th frame skip† (Stream 1 & 2) 37 & 217 6 & 19
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3.2 Training
Randomised frame skips are used in training and validation. This
creates a more realistic scenario as the duration of each facial ex-
pression is unknown in real life. For model testing, we used a frame
skip based on the 𝑘-th frame of ME and MaE of each respective
dataset shown in Table 1. The visual differences of frames calcu-
lated using this interval (frames skipped) is larger, making the facial
movements more distinct for the algorithm to spot.

Regularisation Random augmentations (i.e., contrast, gamma
intensity, and gamma gain) on the input images are performed with
a range of 0.5 to 1.5. Other augmentations include 50% probability
of horizontal flip and ±10° of image rotation. Other regularisa-
tions include adding dropout layers and random frame skips during
training and validation.
Training Configuration As shown in Table 1, the results are
evaluated using leave-one-subject-out (LOSO) cross-validation.

3.3 Performance Metrics
We apply the Intersection over Union (IoU) method used in Micro-
Expression Grand Challenge (MEGC) III [10, 13] to compare with
other methods. The interval is then evaluated using the following
IoU method

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ∩𝐺𝑇

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ∪𝐺𝑇
≥ 𝐽 (3)

where 𝐽 is the minimum overlapping to be classified as true positive,
𝐺𝑇 represents the ground truth expression interval (onset-offset),
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 represents the detected expression interval. In our exper-
iment, 𝐽 is set to 0.5.

For MEGC2022, we create an automated evaluation system,
which is available at grand challenge system1. Our evaluation
code is used to standardised the evaluation method and tested on
MEGC2022-testset (unseen dataset). To facilitate future research in
ME spotting, we provide a live leaderboard, where the authors can
continue to use our MEGC2022-testset (with agreement in placed)
and evaluate their results online.

4 RESULTS
4.1 Baseline Result for MEGC2021 Spotting

Task
We convert our results into intervals using automated thresholding
based on ROC evaluation. First, the test results are normalised and
smoothed using a Butterworth filter [3], which is a low-pass filter
that cuts off high frequency noises while retaining low frequency
signals. The main advantage of this filter is it has a flat magnitude
filter whereby signals with frequency below cut-off frequency do
not undergo attenuation. Next, the onset and offset of both ground
truth and the predictions are obtained. Finally, the overlapping was
analysed using the IoU method (where TP must fulfill the criteria
in Equation 3). At the time of producing this baseline result, Pan et
al. [19] is the only deep learning method evaluated on long video
datasets for ME and MaE spotting and without using any post-
processing algorithm. Therefore, we only compare to their result,
as shown in Table 2.

1https://megc2022.grand-challenge.org/

Table 2: F1-score of ME and MaE spotting using our Auto-
mated IoU Method on SAMM-LV and CAS(ME)2-cropped
dataset.

Method SAMM-LV CAS(ME)2-cropped
MaE ME Overall MaE ME Overall

Pan [19] - - 0.0813 - - 0.0595
Ours 0.1863 0.0409 0.1193 0.0401 0.0118 0.0304

It is noted that the result in Table 2 is CAS(ME)2-cropped. When
we aligned the face with OpenFace 2.0 [1], we achieved F1-score of
0.0686, 0.1190, 0.0497 on MaE, ME, and overall, respectively. Our
results show better spotting performance in SAMM-LV compared
to CAS(ME)2. One possibility is SAMM-LV has higher frame rate
(200 fps) and the randomised frame skipping used in our training
pipeline has more variety of input data to be learnt compared to
CAS(ME)2 (30 fps). Hence, our model is able to learn data with more
variation in SAMM-LV and show better performance. ME which
occur in less than 0.5s, has a small window of detection. A lower
ME detection rate in CAS(ME)2 might also be a consequence of the
lower frame rate.

4.2 Baseline Result for MEGC2022 Spotting
Task

Table 3 shows the baseline result to facilitate MEGC2022 Spotting
Task. We achieved an overall F1-score of 0.1351, with 0.1176 and
0.1739 on SAMM Challenge Dataset and CAS(ME)3, respectively.
For evaluation on SAMM Challenge, we train our network using
SAMM-LV; for CAS(ME)3, the network was trained on CAS(ME)2.
It is noted that on unseen dataset, our method performed better in
detecting ME of CAS(ME)3.

Table 3: F1-score of ME and MaE spotting on unseen test set
of MEGC2022 that uses SAMM Challenge and CAS(ME)3

Method SAMM Challenge CAS(ME)3 Overall
MaE ME Overall MaE ME Overall

Ours 0.1739 0.0714 0.1176 0.1622 0.2222 0.1739 0.1351

5 CONCLUSION
We presented a temporal oriented two-stream 3D-CNN model that
shows promising results in ME and MaE spotting in long video
sequences. Our method took advantage of the duration difference
of ME and MaE by making a two-stream network that is sensitive
to each expression type. Despite only having 3 convolutional lay-
ers, our model showed state-of-the-art performance in SAMM-LV
and remained competitive in CAS(ME)2. LCN has proven to have
significant improvement in our model and the ability to address
uneven illumination, which is a major weakness of optical flow.
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