
Deep Learning-Based Acoustic Mosquito Detection in Noisy
Conditions Using Trainable Kernels and Augmentations

Sean Campos∗
Devesh Khandelwal∗

sean.campos@berkeley.edu
deveshkhandelwal@berkeley.edu

School of Information
University of California, Berkeley

Berkeley, California, USA

Shwetha C. Nagaraj
shwethacn@ischool.berkeley.edu

School of Information
University of California, Berkeley

Berkeley, California, USA

Fred Nugen
nooj@berkeley.edu

School of Information
Division of Computing, Data Science, and Society

University of California, Berkeley
Berkeley, California, USA

Alberto Todeschini
todeschini@berkeley.edu
School of Information

Division of Computing, Data Science, and Society
University of California, Berkeley

Berkeley, California, USA

Figure 1: A High-level Overview of the VecNet Mosquito Detection System

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

MM ’22, October 10–14, 2022, Lisboa, Portugal

ABSTRACT
In this paper, we demonstrate a unique recipe to enhance the ef-
fectiveness of audio machine learning approaches [3] by fusing
pre-processing techniques into a deep learning model [12]. Our

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9203-7/22/10.
https://doi.org/10.1145/3503161.3551586

7094

https://orcid.org/0000-0001-8067-909X
https://orcid.org/0000-0002-5875-998X
https://orcid.org/0000-0002-6761-7035
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3503161.3551586
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3503161.3551586&domain=pdf&date_stamp=2022-10-10


MM ’22, October 10–14, 2022, Lisboa, Portugal Sean Campos et al.

solution accelerates training and inference performance by optimiz-
ing hyper-parameters through training instead of costly random
searches to build a reliable mosquito detector from audio signals.
The experiments and the results presented here are part of the MOS-
C submission of the ACM’22 challenge [20]. Our results outperform
the published baseline by 212% on the unpublished test set. We
believe that this is one of the best real-world examples of build-
ing a robust bio-acoustic system that provides reliable mosquito
detection in noisy conditions.

CCS CONCEPTS
• Computer systems organization; • Computing methodolo-
gies→ Simulation evaluation; Computer vision representa-
tions;

KEYWORDS
neural networks, bio acoustics, mosquito event detection
ACM Reference Format:
Sean Campos, Devesh Khandelwal, Shwetha C. Nagaraj, Fred Nugen, and Al-
berto Todeschini. 2022. Deep Learning-Based Acoustic Mosquito Detec-
tion in Noisy Conditions Using Trainable Kernels and Augmentations. In
Proceedings of the 30th ACM International Conference on Multimedia (MM
’22), Oct. 10–14, 2022, Lisboa, Portugal. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3503161.3551586

1 INTRODUCTION
Mosquitoes kill one million people per year [16] and are the deadli-
est animal to humans on the planet. Global warming has increased
the climatic suitability of mosquitoes in already endemic areas
and about 1.4 billion additional people are at risk of malaria and
dengue in urban areas in Africa and Southeast Asia alone. Due
to Covid-19, critical 2020 milestones of The World Health Orga-
nization’s global malaria strategy have been missed, and without
immediate action, the 2030 targets will not be met [17]. There is
an urgent need and an incredible opportunity amongst entomolo-
gists, researchers, and health organizations around the world, to
use innovative approaches in the identification of mosquitoes at
scale, which will, in turn, improve vector control and intervention
strategies. Researchers have been exploring novel ideas to leverage
budget smartphones as acoustic sensors [10]. Mobile services are
expanding in sub-Saharan Africa [11] and these have the potential
to become affordable, non-invasive, automated real-time mosquito
monitoring tools that can be deployed in homes at no extra cost. The
approach will help in producing much-needed surveillance data of
mosquito species behavior and distribution over extensive temporal
and spatial scales to assess ongoing vector-control measures. This
AI-driven solution can replace time-consuming and expensive man-
ual survey and classification tasks (e.g. Polymerase Chain Reaction
(PCR) tests [22]) in remote and resource-constrained areas that bear
the brunt of mosquito-borne diseases [13].

2 DATA
We use the publicly available dataset released as part of the Com-
ParE challenge. The challenge dataset can be downloaded from
Zenodo. Its attributes and the collection methods are described in
detail in the Humbug system [10], while the splits and evaluation

protocols are described as part of the challenge [20]. To validate
model performance the organizers provide two development sets:

• Dev A: Recordings from Tanzania containing mosquito audio
obtained from phones placed in bednets.

• Dev B: Recordings from the UK containing mosquito audio
from lab-cultured mosquito larvae.

The baseline scores on the Dev sets are published as part of the
challenge [20]. As evident from the scores, Dev B, which features a
lower signal-to-noise ratio (SNR) [8], is a more challenging subset.

3 OUR APPROACH
We use a combination of a deep-learning model and data prepro-
cessing techniques like Per-Channel Energy Normalization (PCEN),
trainable kernels, and external data augmentation to create a model
to detect mosquitoes. In the sections below we describe our unique
data processing pipeline. A reproducible pipeline is available on
our GitHub.1

3.1 Pre-Processing
To extract useful features from the audio samples, we convert them
to their time-frequency representation: a spectrogram. This is done
by applying the Short Time Fourier Transform (STFT) [5] oper-
ation to the audio signals. Converting an audio sample into its
time-frequency representation is a common practice in extracting
patterns from raw audio [1]. The spectrograms are then passed as
input to a computer vision backbone [21] for further processing.
Figure 2 below shows different representations of audio. The top
portion represents the raw form (a time series), while the bottom
part represents its time-frequency equivalent after applying STFT.

Figure 2: Waveform and Time-Frequency Representation of
an Audio Signal

The audio samples in the dataset exhibit wide variations (owning
to different recording conditions and the presence of background
noise) and as a result, there is a wide variety of spectrograms that
are sent as input to our backbone architecture. As an example
consider Figure 3, which shows spectrogram representations of
three randomly selected audio files in the dataset. The leftmost
part shows a signal with uniform mosquito activity throughout its
1https://github.com/seancampos/ComParE2022_VecNet/

7095

https://doi.org/10.1145/3503161.3551586
https://doi.org/10.48550/arxiv.2205.06799
https://zenodo.org/record/6478589
https://github.com/seancampos/ComParE2022_VecNet/


Deep Learning-Based Acoustic Mosquito Detection in Noisy Conditions Using Trainable Kernels and Augmentations MM ’22, October 10–14, 2022, Lisboa, Portugal

duration. The middle part shows a signal with sporadic instances
of the presence of mosquito while the rightmost portion shows less
noise and a clear pattern in fundamental mosquito frequency and
its harmonics. The task to extract a discernible pattern gets even
more complex due to the various hyperparameter settings of the
STFT operation.

Figure 3: Spectrogram Representation of a Few Randomly
Selected Files

3.2 Augmentation
We introduce random augmentations on the audio samples so that
the model can learn to separate mosquito buzz from a variety of
soundscapes. During training, for every other recording, we ran-
domly sample files from an external database and add their corre-
sponding tensor value to the tensor representation of the incoming
audio (as indicated in Fig 1). The primary source of external sound
files is the "noise" class in MUSAN [23], which is a general library
of noise, speech, and music. We also supplement the raw files in the
dataset with selected categories from Google Audioset [7] based on
specific misclassifications in our model, including vehicles, other
insects, and babies crying. Unlike the baseline solution, we do not
discard any audio file owing to its duration. For a short audio file
(less than 1.92 seconds), we either pad it with silence or augment
it with audio from the two datasets, MUSAN and Audioset. Our
training and inference sets consist of 1.92-second audio files. Please
refer to our repository for examples. While random augmentations
might impact reproducibility, but it adds robustness to the model
and makes it more generic

3.3 Trainable Front-end
In deep learning based acoustic modeling the most widely used
front-end is the log-mel front-end, consisting of melfilterbank en-
ergy extraction followed by log compression, where the log com-
pression is used to reduce the dynamic range of filterbank energy.
However, there are several issues with the log function. First, a
log has a singularity [6] at 0. Common methods to deal with the
singularity introduce uncertainity and may have different perfor-
mance impacts on different signals. Second, the log function uses
a lot of its dynamic range on low levels, such as silence, which is
likely the least informative part of the signal. Third, the log function
is loudness dependent. With different loudness, the log function

can produce different feature values even when the underlying sig-
nalcontent (e.g. keywords) is the same, which introduces another
factor of variation into training and inference. In their paper, Wang
et al [24] introduce PCEN as an alternative to overcome the above
issues with log filterbank. The key ingredient of PCEN is its use
of automatic gain control [19]. The PCEN functions are also differ-
entiable and hence they are included as a neural network layer so
that it can learn from the attributes of the dataset [24]. PCEN is
well-known to increase the performance of systems that work on
keyword spotting tasks, hence we train a model that learns to spot
mosquito buzz, using the same far-field detection method as Siri,
Alexa, or Google [9].

3.4 Random Masking
We also randomly warp blocks of frequency channel and time steps.
This approach has shown promising results in end-to-end ASR
tasks [18]. This step is part of our pre-processing pipeline and we
use it as a regularization technique to avoid overfitting.

3.5 Trainable Kernels
We move spectrogram generation from CPU to GPU and generate
them on the fly in the training loop [4]. We found an approximately
250% speedup in generation time moving from an AMD 3.9 GHz
3990X Threadripper CPU to a NVIDIA V-100 GPU. Additionally,
since spectrogram generation has a large number of hyperparame-
ters that become fixed after generation, it becomes difficult to search
for optimal parameters during model training. Moving the spectro-
gram generation as part of the model training process onto the GPU
provides several benefits. Hyper-parameters can be searched with-
out running a separate pre-processing pipeline for each iteration.
Additionally, the STFT is implemented as a 1-D convolution, mean-
ing that the kernel is trainable. Thus, the model can learn a custom
Fourier transform suited for our bio-acoustic domain. Finally, at
inference time, there is significant performance improvement and
a simpler pipeline that does not require a pre-processing stage.

Figure 4 below shows how an audio signal is processed through
our pipeline before going to a deep-learning backbone for predic-
tion.

Figure 4: Data Pre-Processing on Raw Audio

7096

https://github.com/seancampos/ComParE2022_VecNet/


MM ’22, October 10–14, 2022, Lisboa, Portugal Sean Campos et al.

4 ARCHITECTURE
We use Pytorch-based backbones to train our models. Figure 1
above represents an end-to-end pipeline from training to inference.
We primarily focus on the Hierarchical Vision Transformer using
ShiftedWindows (Swin) architecture [14] and on CNNs (ConvNeXt)
[15]. Our findings indicate that ConvNeXt outperforms Swin on
this task. To perform an STFT, we use the default STFT parameters
as defined in the baseline configuration2.

5 RESULTS
Table 1 summarizes the Polyphonic Sound Detection Scores (PSDS)
[2] obtained on the development sets by our models. The training
was done on an NVIDIA V-100, 16GB GPU. We were able to achieve
significant improvements on Dev B, which is a more challenging
subset that has a lower SNR [20], without causing any reduction to
the baseline score on Dev A. Our best-performing model showed an
improvement of approximately 2100% over the published baseline.
The ROC curves for PSDS for ConvNext is depicted in Figure 5.

Table 1: Summary of Dev Results (PSDS)

Backbone Dev-Set Baseline Best-Score
ConvNext A .614 .613
ConvNext B .034 .758

Swin A .614 .610
Swin B .034 .040

Figure 5: ConvNext (Left): PSDS Score on Dev A (Right): PSDS
Score on Dev B

5.1 Test Set Results
The access to the test set was hidden and submissions were done by
leveraging a docker template designed to automatically score the
model results over the test data. Out of the allowed five submissions,
our best performing model outperformed the published baseline by
212%. The table below summarizes the results (PSDS) obtained on
the test data.
Table 2: Test Set Results (PSDS scores) on a ConvNext Back-
bone

Data-Set Baseline Best-Score
Test .142 .443

2https://github.com/EIHW/ComParE2022/blob/MOS-C/src/config.py

6 EXPERIMENTS AND RESULTS: ABLATION
STUDY

To verify the importance of the pre-processing techniques in a
quantitative way, we performed an ablation study. We removed
each component from our pipeline one at a time and retrained our
model with the component missing. Figures 7 below show how
the model performed with each component removed. The shorter
bars are more important because that means that the model per-
forms significantly worse when that component is missing from the
pipeline. We notice that “random-masking” [18] on spectrograms
and “PCEN” are the most significant components of the pipeline;
without these components in place, the performance of the model
suffers the most. This should come as no surprise, as indicated in
the section on Trainable Front End (PCEN); the inclusion of this
technique makes our model less vulnerable to the variations in the
incoming audio. Random Masking, on the other hand, prevents
overfitting.

Figure 6: Ablation Study Results - Dev A

Figure 7: Ablation Study Results

7 CONCLUSION
Our models outperformed the published baseline on the test set
by 212% and 2100% on Dev B, which is known to have a very
low signal-to-noise ratio (SNR). The improved sensitivity to low
SNR events comes without any decrease in performance on Dev A.
While detecting the presence of mosquitoes in a real-world setting
presents considerable challenges, our results show that with a well-
designed pipeline and a judicious choice of neural net architecture,
the baseline results can be significantly improved.

7097



Deep Learning-Based Acoustic Mosquito Detection in Noisy Conditions Using Trainable Kernels and Augmentations MM ’22, October 10–14, 2022, Lisboa, Portugal

REFERENCES
[1] Richard AAltes. 1980. Detection, estimation, and classification with spectrograms.

The Journal of the Acoustical Society of America 67, 4 (1980), 1232–1246.
[2] Çağdaş Bilen, Giacomo Ferroni, Francesco Tuveri, Juan Azcarreta, and Sacha

Krstulović. 2020. A framework for the robust evaluation of sound event detection.
In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 61–65.

[3] Francesco Camastra and Alessandro Vinciarelli. 2015. Machine learning for audio,
image and video analysis: theory and applications. Springer.

[4] KinWai Cheuk, Hans Anderson, Kat Agres, andDorienHerremans. 2020. nnaudio:
An on-the-fly gpu audio to spectrogram conversion toolbox using 1d convolu-
tional neural networks. IEEE Access 8 (2020), 161981–162003.

[5] Lutfiye Durak and Orhan Arikan. 2003. Short-time Fourier transform: two
fundamental properties and an optimal implementation. IEEE Transactions on
Signal Processing 51, 5 (2003), 1231–1242.

[6] Philippe Flajolet and Andrew Odlyzko. 1990. Singularity analysis of generating
functions. SIAM Journal on discrete mathematics 3, 2 (1990), 216–240.

[7] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R ChanningMoore, Manoj Plakal, andMarvin Ritter. 2017. Audio set: An ontology
and human-labeled dataset for audio events. In 2017 IEEE international conference
on acoustics, speech and signal processing (ICASSP). IEEE, 776–780.

[8] Don H Johnson. 2006. Signal-to-noise ratio. Scholarpedia 1, 12 (2006), 2088.
[9] Byeonggeun Kim, Mingu Lee, Jinkyu Lee, Yeonseok Kim, and Kyuwoong Hwang.

2019. Query-by-example on-device keyword spotting. In 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU). IEEE, 532–538.

[10] Ivan Kiskin, Marianne Sinka, Adam D Cobb, Waqas Rafique, Lawrence Wang,
Davide Zilli, Benjamin Gutteridge, Rinita Dam, Theodoros Marinos, Yunpeng Li,
et al. 2021. HumBugDB: a large-scale acoustic mosquito dataset. arXiv preprint
arXiv:2110.07607 (2021).

[11] Nir Kshetri. 2022. Economics of the Internet of Things in Sub-Saharan Africa. IT
Professional 24, 1 (2022), 81–85.

[12] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[13] Timothy M Lenton, Hermann Held, Elmar Kriegler, Jim W Hall, Wolfgang Lucht,
Stefan Rahmstorf, and Hans Joachim Schellnhuber. 2008. Tipping elements in
the Earth’s climate system. Proceedings of the national Academy of Sciences 105, 6

(2008), 1786–1793.
[14] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,

and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 10012–10022.

[15] Zhuang Liu, Hanzi Mao, Chao-YuanWu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. 2022. A convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 11976–11986.

[16] Sylvie Manguin. 2013. Anopheles mosquitoes: new insights into malaria vectors.
BoD–Books on Demand.

[17] April Monroe, Nana Aba Williams, Sheila Ogoma, Corine Karema, and Fredros
Okumu. 2022. Reflections on the 2021 World Malaria Report and the future of
malaria control.

[18] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D
Cubuk, and Quoc V Le. 2019. Specaugment: A simple data augmentation method
for automatic speech recognition. arXiv preprint arXiv:1904.08779 (2019).

[19] Juan Pablo Alegre Pérez, Santiago Celma Pueyo, and Belén Calvo López. 2011.
Automatic gain control. Springer.

[20] BjörnW. Schuller, Anton Batliner, Shahin Amiriparian, Christian Bergler, Maurice
Gerczuk, Natalie Holz, Pauline Larrouy-Maestri, Sebastian P. Bayerl, Korbinian
Riedhammer, Adria Mallol-Ragolta, Maria Pateraki, Harry Coppock, Ivan Kiskin,
Marianne Sinka, and Stephen Roberts. 2022. The ACMMultimedia 2022 Computa-
tional Paralinguistics Challenge: Vocalisations, Stuttering, Activity, & Mosquitos.
In Proceedings ACM Multimedia 2022. ISCA, Lisbon, Portugal. to appear.

[21] Mitt Shah, Nandit Pujara, Kaushil Mangaroliya, Lata Gohil, Tarjni Vyas, and
Sheshang Degadwala. 2022. Music Genre Classification using Deep Learning. In
2022 6th International Conference on ComputingMethodologies and Communication
(ICCMC). IEEE, 974–978.

[22] Georges Snounou, Suganya Viriyakosol, William Jarra, Sodsri Thaithong, and
K Neil Brown. 1993. Identification of the four human malaria parasite species in
field samples by the polymerase chain reaction and detection of a high prevalence
of mixed infections. Molecular and biochemical parasitology 58, 2 (1993), 283–292.

[23] David Snyder, Guoguo Chen, and Daniel Povey. 2015. Musan: A music, speech,
and noise corpus. arXiv preprint arXiv:1510.08484 (2015).

[24] YuxuanWang, Pascal Getreuer, Thad Hughes, Richard F. Lyon, and Rif A. Saurous.
2017. Trainable Frontend For Robust and Far-Field Keyword Spotting. In Proc.
IEEE ICASSP 2017. New Orleans, LA.

7098


	Abstract
	1 Introduction
	2 Data
	3 Our Approach
	3.1 Pre-Processing
	3.2 Augmentation
	3.3 Trainable Front-end
	3.4 Random Masking
	3.5 Trainable Kernels

	4 Architecture
	5 Results
	5.1 Test Set Results

	6 Experiments and Results: Ablation Study
	7 Conclusion
	References



