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ABSTRACT

Transformer Neural Networks have demonstrated leading perfor-

mance in many applications spanning over language understanding,

image processing, and generative modeling. Despite the impressive

performance, long-sequence Transformer processing is expensive

due to quadratic computation complexity andmemory consumption

of self-attention. In this paper, we present DOTA, an algorithm-

architecture co-design that effectively addresses the challenges of

scalable Transformer inference. Based on the insight that not all con-

nections in an attention graph are equally important, we propose

to jointly optimize a lightweight Detector with the Transformer

model to accurately detect and omit weak connections during run-

time. Furthermore, we design a specialized system architecture for

end-to-end Transformer acceleration using the proposed attention

detection mechanism. Experiments on a wide range of benchmarks

demonstrate the superior performance of DOTA over other solu-

tions. In summary, DOTA achieves 152.6× and 4.5× performance

speedup and orders of magnitude energy-efficiency improvements

over GPU and customized hardware, respectively.
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Figure 1: The graph perspective of self-attention.

1 INTRODUCTION

In recent years, Transformer Neural Networks have drawn a surge

of interests from the deep learning community. Lots of Transformer

models have been proposed and demonstrated superior perfor-

mance over traditional Deep Neural Networks (DNNs) [12, 52]. The

use of Transformers has spanned over a wide range of applica-

tion domains including language understanding [4, 41, 43], image

processing [5, 11, 38], and generative modeling [7, 42, 46].

The key to the stunning performance of Transformers is the self-

attention [52] mechanism. Self-attention relates different positions

of a sequence by evaluating the pair-wise importance between

the input tokens. This process can be understood as creating and

aggregating over an attention graph to compute the output feature

of each token. As shown in Figure 1, the dense 4×4 attention matrix

is interpreted as the Laplacian representation of a graph with each

vertex corresponding to one token. Therefore, the attention graph

is directed and complete, where the edge weights are assigned by

the attention weights, i.e., SoftMax probabilities. The output of self-

attention is one-step aggregation over the attention graph. Each

vertex collects features from its incoming vertices and performs

weighted sum to update its own feature vector.

Despite the significant representational power on sequence mod-

eling, standard self-attention mechanism cannot scale with long

sequences. As shown in Figure 1, using full attention graphs un-

avoidably incurs quadratic complexity in both computation and

memory consumptionwith regard to sequence length. Thus, deploy-

ing Transformers for long-sequence modeling tasks is challenging

for current hardware platforms.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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We observe that a significant portion of edges in attention graphs

are weak connections with negligible contributions to the output,

as illustrated in Figure 1. In other words, only a small portion of

connections are important to deliver long-range representations.

Therefore, instead of creating a full attention graph, we propose to

detect and omit weak connections and skip the unnecessary compu-

tations. Furthermore, after attention detection, feature aggregation

only need to be performed over the selected strong connections.

However, weak connection detection is difficult as inaccurately

omitting strong connections will not only disturb the immediate

attention output but also cascade to subsequent Transformer layers,

degrading the overall model performance. Unlike graph pruning or

weight sparsity commonly used in traditional DNNs, each attention

graph need to identify its unique strong connections at runtime

depending on the inputs. Therefore, the cost of the detection mech-

anism is critical to deliver overall performance speedup and energy

saving. Prior work fails to deliver a satisfying solution for weak

attention detection, as they either suffer from poor detection qual-

ity [18], or from hardware inefficiency [17, 22, 27, 48, 50].

To tackle the problem,we introduceDOTA, an algorithm-architecture

co-design that reduces the cost of self-attention and boosts the per-

formance and efficiency of long-sequence Transformer inference.

We first design and train a lightweight Detector along with the

Transformer model. The training process is formulated as a joint

optimization problem to minimize both attention detection loss and

model loss. We adopt low-rank transformation and low-precision

computation to reduce the overhead of attention detection, and

we rely on the joint optimization process to ensure the attention

detection quality.

Furthermore, we explore architecture support to translate the the-

oretical savings to real performance speedup and energy reduction.

We address three system-level challenges through our architecture

design. Firstly, to support large Transformer models with various

configurations, we need to effectively disassemble the algorithm

and identify the essential components. Prior work designs accel-

erators for specific component like self-attention block [17, 18].

Instead, DOTA provides an efficient abstraction of the model and

presents a unified architecture to support all components, achiev-

ing better area- and energy-efficiency. Besides, we further analyze

different levels of parallelism on top of the proposed abstraction

and present a scalable system architecture (Section 4.1). Secondly,

low-precision computation is essential to the cost of the attention

detection mechanism. To support multi-precision computations,

we design a Reconfigurable Matrix Multiplication Unit (RMMU)

that can be dynamically orchestrated to satisfy the throughput

requirements of different computation precision (Section 4.2). Fi-

nally, when computing the attention output with the sparse atten-

tion graph, DOTA outperforms prior work by adopting the Token-

Parallel dataflow with software-enabled workload balancing and

hardware-enabled out-of-order execution. These techniques can

further improve system performance and energy-efficiency.

In summary, our work makes the following contributions:

• We propose to detect sparse attention graphs to compute for

self-attention, which can significantly reduce both computation

complexity and memory consumption.

• We present a trainable Detector to effectively select important

attention connections. The proposed method achieves both hard-

ware efficiency and detection accuracy, yielding an adequate

trade-off between computation savings and model quality.

• We design DOTA, a scalable inference system that addresses three

hardware challenges of executing long-sequence Transformer

models with attention detection.

• DOTA improves the performance and energy-efficiency of Trans-

former inference. On average, DOTA achieves 152.6× and 4.5×

performance speedup and orders of magnitude energy-efficiency

improvements over GPU and state-of-the-art customized acceler-

ator, respectively.

2 BACKGROUND AND MOTIVATION

Firstly, we introduce the preliminaries of Transformer model ar-

chitecture and the challenges of serving long sequences. Secondly,

we find that weak connections exist in attention graph and can be

omitted without hurting performance. Finally, we present the op-

portunity to detect weak connections for more computation savings

and the need for architecture support.
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Figure 2: Transformer model architecture.

2.1 Preliminaries of Transformer

A typical Transformer model is composed of stacked encoder (de-

coder) blocks as shown in Figure 2. At the beginning, the input

sentence with 𝑛 tokens is first transformed into an embedding ma-

trix 𝑋 ∈ R𝑛×𝑑 . Then, the input embedding matrix is processed by

blocks of encoders. We split each encoder into three stages, namely

Linear Transformation, Multi-Head Attention, and Feed-Forward

Network (FFN). In the transformation stage, we multiply the input

with three weight matrices to obtain Query (Q), Key (K), and Value

(V) as

𝑄,𝐾,𝑉 = 𝑋𝑊𝑄 , 𝑋𝑊𝐾 , 𝑋𝑊𝑉 (1)

After linear transformation, the attention weights 𝐴 ∈ R𝑛×𝑛 is

defined as

𝐴 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇
√︁

𝑑𝑘
) (2)
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Figure 3: Breakdown of attention operations vs. other opera-

tions when scaling sequence length.

where SoftMax(·) is computed row-wise. Finally, the output values

are generated bymultiplying attention weights𝐴with the projected

values 𝑉 as

𝑍 = 𝐴𝑉 . (3)

The output of the Multi-Head Attention is added with the en-

coder’s input through a residue connection, and a layer normaliza-

tion is applied afterwards. Finally, a Feed-Forward Network (FFN)

containing two fully-connected (FC) layers, followed by another

residual connection and layer normalization is applied to gener-

ate the output of the encoder. As presented in Figure 2, the same

encoder structure is repeated and stacked for multiple times in a

single Transformer. Usually, a classifier is added at the end to make

predictions.

2.2 Weak Connections in Attention

Transformer-based models equipped with the self-attention mecha-

nism are promising in a wide range of applications that need long

sequence modeling capabilities. However, the quadratic computa-

tional complexity of self-attention, w.r.t. sequence length, hinders

the deployment of Transformers. Hence, we are in need of scalable

acceleration for Transformers, especially for emerging sequence

modeling workloads.

To better illustrate the scaling challenge of Transformers, we

show the comparison of self-attention, as in Eq. 2 and Eq. 3, vs.

linear transformations as in Eq. 1 and FFN in terms of floating-point

operations (FLOPs). One characteristic of self-attention operations

is that these are parameter-free general matrix-matrix product

(GEMM), other than GEMM routines as in linear transformations

and FFN, where onematrix is parameterized and commonly referred

as the weight matrix. As shown in Figure 3, the parameter-free

attention GEMM operations become the bottleneck when scaling

sequence length.

The root cause of the quadratic complexity in self-attention is

the fully-connected attention graph, where all pairs of sources

and targets are computed. With that, we post the hypothesis that

not all connections in attention graphs are equally important and

contribute significantly to attention outputs. In other words, there

exist extremely sparse attention graphs with weak connections

omitted that can achieve performance on par with full attention

graphs.

To test our hypothesis, we experiment on a pre-trained Trans-

former model. Specifically, we regard small values in attention

graph (Eq. 2) as weak connections and remove these values while

Table 1: Transformer evaluation accuracy results, i.e., SQuAD

F1 scores, when omitting different portion of attentions.

Retention full 20% 15% 10% 5%

F1 Score 91.4 91.4 91.3 91.1 90.2

keep the rest of the model intact. The remaining important connec-

tions are determined by row-wise top-k search after obtaining full

attention graphs. Retention ratio is used to indicate the portion of

preserved connections. We use BERT-large as the baseline model,

and evaluate it on the SQuAD v1.0 dataset with a total number of

10,570 samples. Table 1 gives the performance results in terms of

F1 accuracy. As shown by the table, we can omit almost 90% of the

connections in the attention graphs with negligible performance

degradation.

2.3 Detect and Omit Weak Connections

Although omitting attention connections are effective, we still need

to compute all the attention scores and the follow-up SoftMax nor-

malization to obtain the attention weights for omission. Putting it

in another way, the parameter-free multiplications and the SoftMax

operations in Eq. 2 that result in weak connections in attention

graph 𝐴 are wasted. Hence, we propose an efficient method to first

detect weak connections prior to the computations in Eq. 2, such

that we can save computations in the attention bottleneck. The

underlying principle is that the weak connections with small values

in attention weights 𝐴 will also have small values in raw attention

scores 𝑆 = 𝑄𝐾𝑇 correspondingly.

The detection mechanism needs to be both efficient and accurate.

On the one hand, approximation methods such as angular distance

approximation [23] can be efficiently implemented in hardware

but cannot provide accurate detection of weak connections, espe-

cially when scaling sequence length. On the other hand, inefficient

detection could offset the computational saving. At last, although

omitting weak connections is straightforward, it can cause the

workload imbalance issue and irregular data accessing. Our DOTA

features an algorithm-architecture co-design to support efficient

and accurate detection for weak attention connections and provides

architecture support for computation saving from omission.

3 WEAK ATTENTIONS DETECTION

Given the challenge of efficient and accurate detection of weak

attentions, we propose a learning-based method that can effectively

detect the relative importance of connections in attention graphs.

As shown in Figure 4, our detection method uses low-rank linear

transformations to estimate attention scores. Then, from estimated

scores, we can use top-k selection to generate bit-masks with zeros

indicating the weak attentions. The low-rank transformations of

query and key are from the optimization of estimation loss. We

further propose model adaptation to improve performance from

degradation via jointly optimizing model loss and estimation loss

with weak connection omission enabled.

3.1 Low-Rank Linear Transformation

We introduce a pair of low-rank linear transformations for query

and key as in

𝑄̃, 𝐾̃ = 𝑋𝑃𝑊𝑄 , 𝑋𝑃𝑊𝐾 (4)
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scores computed by low-rank linear transformations.

, where 𝑃 ∈

√︃

3

𝑘
· {−1, 0, 1}𝑑×𝑘 is a sparse random projection matrix

[1] to reduce the dimensions of input feature 𝑋 . Therefore,𝑊𝑄

and𝑊𝐾 both contain 𝑘 × 𝑘 parameters, where 𝑘 is much smaller

than 𝑑 . Since the estimated attention scores, as in 𝑆 = 𝑄̃𝐾̃𝑇 , are

only used to select weak attentions based on relative importance,

the low-rank transformations can afford low-precision computa-

tions, such as INT4 fixed-point arithmetic. The quality of low-rank

transformation is determined by reduced rank 𝑘 and the compute

precision.

We use the mean squared error (MSE) as the estimation loss to

optimize low-rank transformation parameters, as in

𝐿𝑀𝑆𝐸 =

1

𝐵
| |𝑆 − 𝑆 | |2

2
=

1

𝐵
| |𝑄𝐾𝑇 − 𝑄̃𝐾̃𝑇 | |2

2
(5)

, where B is the mini-batch size. Here we omit the scaling factor

for simplicity.

With estimated scores 𝑆 = 𝑄̃𝐾̃𝑇 , we can select the important

connections by comparing the scores with thresholds. An atten-

tion connection can only be preserved if the score is larger than

the threshold. The threshold value can be determined by top-k

searching or tuning from the validation set.

3.2 Model Adaptation with Joint Optimization

When attention scores are masked out to generate sparse attention

graphs, the remaining important attention weights are scaled up as

the denominator in SoftMax becomes small. The disturbed atten-

tion weights will degrade model quality. As a countermeasure, we

propose to fine-tune model parameters with constraints of weak

attention omission, referred as model adaptation. With adaptation,

the model evaluation accuracy can recover to be on par with full

attention baselines, while the computational costs are significantly

reduced.

Given a pre-trained model, our method jointly optimize the

model parameters and the low-rank transformation parameters by

minimizing the loss function as

𝐿 = 𝐿𝑀𝑜𝑑𝑒𝑙 + 𝜆𝐿𝑀𝑆𝐸 . (6)

After joint optimization, the low-rank transformation parame-

ters are adjusted to capture the relatively important attention con-

nections. Besides, the original model parameters are also adapted to

the sparse attention graph to compute for outputs. Therefore, we are

able to recover the model performance after introducing aggressive

weak attention omission. During inference, the sparse attention

graph can benefit all three sub-layers of the self-attention block,

reducing the computational costs of attention weights, softmax

function, and attention outputs.

3.3 Intuitive Explanation

Our method estimates attention scores with a low-rank matrix 𝑆 .

When training the model with loss function in Eq. 5, the gradient

from 𝐿𝑀𝑆𝐸 will be passed to both the low-rank 𝑆 and the original

attention score 𝑆 . Intuitively, this loss function not only makes 𝑆

a better estimation of 𝑆 , but also makes 𝑆 easier to be estimated

by a low-rank matrix, i.e., by reducing the rank of 𝑆 . On the other

hand, the loss 𝐿𝑀𝑜𝑑𝑒𝑙 guarantees the rank of 𝑆 to be high enough to

preserve the model accuracy. In other words, the joint optimization

of 𝐿𝑀𝑜𝑑𝑒𝑙 and 𝐿𝑀𝑆𝐸 implicitly learns a low-rank 𝑆 with the rank

learned depending on the difficulty of the task.

Our design brings two advantages. First, the rank of 𝑆 will be

automatically adjusted to tasks with different difficulty. Hence, our

method can potentially achieve higher accuracy on difficult tasks

compared with fixed-rank approximation methods. Second, as the

rank of 𝑆 only implicitly influences the rank of 𝑆 , the final result is

less sensitive to the hyper-parameter 𝑘 .

4 DOTA SYSTEM DESIGN

We present DOTA’s hardware system, which is capable of per-

forming scalable Transformer inference by efficiently utilizing the

detected attention graph. We specifically address three system-level

challenges. First, long-sequence Transformer models involve large

GEMM/GEMV computations with configurable hidden dimensions.

Therefore, to effectively execute different Transformer models, we

need to disassemble the algorithm and identify the essential com-

ponents. We provide abstraction of the model that helps us to

design a scalable and unified architecture for different Transformer

layers, achieving good area- and power-efficiency. (Section 4.1).

Second, apart from implementing normal precision arithmetics,

DOTA also needs to support low-precision computations required

by the attention detection. Instead of separately implementing all

the arithmetics, a reconfigurable design would be preferred as it can

dynamically balance the computation throughput ofmulti-precision

computations. (Section 4.2). Finally, to efficiently compute over the

detected attention graph, we should tackle the workload imbal-

ance and irregular memory access caused by attention sparsity

(Section 4.3).

4.1 Overall System Architecture

We use Figure 5 to illustrate the overall system architecture of

DOTA, and explain how it execute a single encoder block. Running

decoders can be considered as a special case of encoder with strict

token dependency. As depicted by the figure, DOTA processes

one input sequence at a time. Different input sequences share the

same weights while requiring duplicated hardware resources to be

processed in parallel. Therefore, we can scale-out multiple DOTA

accelerators to improve sequence-level parallelism.

For each encoder, we split it into three GEMM stages namely

Linear Transformation, Multi-Head attention, and FFN. The GEMM

operations in different stages need to be computed sequentially

due to data dependency, while each GEMM can be cut into mul-

tiple chunks and processed in parallel. Therefore, as shown by

Figure 5, we locate 4 compute Lanes in the DOTA accelerator and

dedicate each Lane to the computation of one chunk. For exam-

ple, during Transformation stage, each Lane contains a fraction of
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weight𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 and generates a chunk of QKV. We make the

chunk’s size equal to the attention head size ℎ𝑑 . Thus, for Multi-

Head Attention, each Lane can directly use the chunks previously

generated by itself to compute for self-attention, keeping the data

local during execution. Finally, the FC layers in the FFN stage can

be orchestrated in a similar way.

As we can see, different compute Lanes share the same input at

the beginning of a encoder, whereas the weights and intermediate

results are unique to each Lane. Therefore, we avoid data exchang-

ing as well as intermediate matrix split and concatenation among

the Lanes. An exception of the above discussion is that, at the end

of Multi-Head attention and each FC layers in FFN, we need to

accumulate the results generated by each Lane. In DOTA, this is

handled by a standalone Accumulator. We locate four Lanes in one

DOTA accelerator because 4 is the least common multiple of the

attention head numbers across all the benchmarks we evaluated.

More Lanes can be implemented for higher chunk-level parallelism.

Inside each Lane, as shown in Figure 6, there is an SRAM buffer, a

Reconfigurable Matrix Multiplication Unit (RMMU), a Detector for

attention selection, and aMulti-Function Unit for special operations

such as Softmax and (De)Quantization. As discussed above, one

large RMMU is utilized to execute all different-precision GEMM

operations in each stage. Specifically, RMMU first computes low-

precision (IN2/4) estimated attention score. The low-precision re-

sults are sent to the Detector to be compared with preset threshold

values for attention selection. Besides selecting important atten-

tions to be calculated later, the Detector also contains a Scheduler

to rearrange the computation order of these important attention

values. We incorporate this reordering scheme to achieve balanced

computation and efficient memory access (Section 4.3).

S
R

A
M

Reconfigurable-

MMU

Lane

Exp

Quantizer

Adder Tree

DivExp

Quantizer

Adder Tree

Div

> Scheduler
Attention

Mask

Reordered

Index

Detector

Figure 6: Architecture of each compute Lane.

After obtaining the reordered attention selection results, RMMU

starts to compute the attention output under FX16 precision (equa-

tion 2, 3). In order to avoid overflow during the computation, we

need to dequantize the FX16 computation results of 𝑄 ∗ 𝐾 into

floating-point numbers before applying the softmax function. This

is done in the Multi-Function Unit, and scaling factors are stored

in the global SRAM buffer, which is accessible to the MFU. Thus,

the exponent and division are done using floating-point arithmetic.

The softmax results are quantized again to keep the consecutive

computation (𝐴 ∗𝑉 ) still in fixed-point format.

4.2 Reconfigurable Matrix Multiplication Unit

As presented in Figure 6, each compute Lane contains a Reconfig-

urable Matrix Multiplication Unit (RMMU) which supports MAC

operation in different precision. Low-precision computation occurs

during the attention detection. Naively, we can support this feature

with separate low-precision arithmetic units, but with the cost of
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multi-precision multiplier. The key is to build up high precision multiplication data path with low precision multipliers. In

low precision mode, we split and multiply the input operands with pre-stored weights and perform in-multiplier accumulation.

Therefore, the computation throughput is quadratically improved while input/output bit-width are kept the same as high

precision mode.

extra resources to implement all supported precision levels. Be-

sides, the decoupled design can only provide constant computation

throughput for each precision, but the ratio of attention detection

with respect to the other parts of the model varies from benchmark

to benchmark. Thus, we need to dynamically control the computa-

tion throughput of attention detection and computation to achieve

better resource utilization and energy-efficiency.

To tackle this problem, we present RMMU as shown in Figure 7.

The key idea is to design computation engine with configurable

precision. As we can see from Figure 7, RMMU is composed of a 32×

16 2-D PE array, where each PE is a fixed-point (FX) MAC unit. The

PE supports FX16, INT8, INT4, and INT2 computations. FX16 is used

for important attention computation and the rest are for attention

detection. The RMMU can be configured to different precision at a

row-wise granularity. Therefore, we can flexibly control how many

rows of PE use FX16 for computation and how many rows adopt

low precision to balance the computation throughput.

We design the multi-precision multiplier based on two common

knowledge of computing arithmetic. Firstly, a fixed-point multi-

plier is essentially an integer multiplier, only with a different logical

explanation of the data. Secondly, we can use low-precision multi-

pliers as building blocks to construct high-precisionmultipliers [49].

Without loss of generality, we present the implementation of an

FX4/INT2 multiplier in Figure 7 (c). As we can see, each operand is

divided into MSBs and LSBs and then sent to an INT2 multiplier. A

INT2 multiplier takes one fraction from each operands and gener-

ates a 4-bit partial sum. Therefore, we need four INT2 multipliers

to generate all the required partial sums. The four partial sums

are shifted and accumulated to give the final 8-bit result. On the

other hand, if the multiplier is in INT2 computation mode, the four

INT2 multipliers is able to provide four times higher computation

throughput. Note that, we need 16-bit input and 16-bit output each

cycle to facilitate all the INT2 multipliers. However, an FX4 multi-

plication only requires half the bit-width (8-bit for input/output).

We address this problem by keeping half the input stationary in the

multiplier, and accumulate the INT2 multiplication results before

sending them out. Therefore, the input bit-width is the same as FX4

computation while the output consumes 6-bit instead of 16-bit. In

other words, when working on INT2 data, we utilize the multiplier

as a tiny input-stationary MAC unit which can perform 4 INT2

multiplications and accumulations each cycle.

To summarize, we implement multi-precision PEs in the RMMU

and ensure a scalable computation throughput when using the low-

precision data. Our final design implements FX-16 multiplier built

up from low-precision INT multipliers as discussed above.

4.3 Token-Parallel Dataflow for Sparse
Attention Computation

After RMMU generates estimated attention scores, we use the De-

tector unit to select important attention connections. Specifically,

as depicted in Figure 6, the Detector loads estimated attention

scores from SRAM and compare them with preset thresholds. A

binary mask is generated after the comparison, with 1s represent-

ing the selected connections. The Scheduler further processes the

binary mask to rearrange the computation order for each token,

and stores the reordered connection IDs in the Queue. Later, RMMU

will load Key and Value vectors according to these IDs to compute

the attention output. Multiple tokens are processed in parallel, each

corresponding to one row of the attention matrix. We name this

Token-parallel dataflow, which can improve Key/Value data reuse

and reduce total memory access. In this subsection, we use three

different examples to demonstrate the benefits, challenges, and

our solutions to compute the attention output with the detected

attention graph and Token parallelism.

Token-Parallel Dataflow. As shown by the example in Figure 8,

the 4×5matrix is the sparse attention graph with important connec-

tions marked with crosses. Prior work process each Query (Token)

one by one, meaning that the attention weights and output are
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Figure 8: Token-level parallelism reduces key/value vector

memory access.

computed row by row. As a result, we need to load ten keys from

the memory, even though only four different keys are required. On

the contrary, processing all four queries in parallel, as shown in

Figure 8, significantly reduces the total memory accesses because

some key vectors can be loaded once and shared by multiple rows.

This example shows that exploring token-level parallelism benefits

memory accessing when attention weight matrix has such row-wise

localities. We observe similar locality in real attention graphs. On

one hand, there are usually some important tokens in one sentence

that attend to multiple tokens. On the other hand, a token is likely

to attend to its neighbor tokens within a certain window size. We

perform design space exploration (see Section 5.5) and find that

processing four queries in parallel is a good trade-off point for hard-

ware resources consumption and memory access savings. Thus, in

DOTA, each Header processes four query vectors in parallel.

WorkloadBalancing.One challenge of parallel token processing is

the workload imbalance issue among different rows. Figure 8 shows

that different queries may have various numbers of important key

vector pairs, which may further cause resource under-utilization

and performance degradation. One solution is to let early-finished

PEs switch to the processing of other queries. However, this will

generate extra inter-PE communications as well as query reloading.

Therefore, we tackle this problem directly from algorithm perspec-

tive without affecting the underlying hardware. Specifically, we

add a constraint to force all the rows in the attention matrix to

have the same number of selected attention connections. This con-

straint ensures that each vertex in the selected sparse attention

graph have same number of incoming edges. We will further prove

in Section 5.2 that the added constraint has negligible influence on

model accuracy.

Out-of-Order Execution. Finally, we propose hardware-enabled

out-of-order execution to further improve key/value reuse and

reduce total memory access. As shown in Figure 9, suppose all

four queries have balanced workload and are processed in paral-

lel. With left-to-right computation order, we first compute (𝑞1, 𝑘1),

(𝑞2, 𝑘2), (𝑞3, 𝑘3), (𝑞4, 𝑘3), and then (𝑞1, 𝑘2), (𝑞2, 𝑘3), (𝑞3, 𝑘5), (𝑞4, 𝑘4),

and finally (𝑞1, 𝑘3), (𝑞2, 𝑘4), (𝑞3, 𝑘6), (𝑞4, 𝑘5). Consequently, some

originally shared keys will have to be reloaded and the locality

is broken. In this example, the required total memory access is 11

vectors, which is only one vector less compared with no parallelism.

To address this problem, we design a locality-aware scheduling

algorithm to reorder the computation of each query. As shown

in Figure 9 and 10, we start with issuing the keys that are shared

by most queries. When scheduling partially shared keys like 𝑘2,

we also need to schedule computations for the unassigned query,

Dataflow Procedure
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Figure 9: Even with token parallelism, the computation order

of each row still matters and affects total memory access.

which is 𝑞4. To do so, we first look for keys that belong to 𝑞4 alone.

If not found, we move on to keys shared by 𝑞4 and another query,

and so on. In this example, there are no key vectors that are owned

by 𝑞4. Therefore, we go to the second best choice, which is 𝑘5. Thus,

in the first round, we schedule 𝑘2 for 𝑞1,2,3 and 𝑘5 for 𝑞4. Although

this breaks the locality of 𝑞5, the greedy search ensures overall

minimal memory access. Besides, since each query is scheduled for

exactly one connection at each round, and they have same total

connections, this ensures the synchronization of each rows and

maximizes resource utilization and performance. The complete

scheduling algorithm is presented in Algorithm 1. Note that, the

scheduling only needs to be performed once, and the generated

computation order is reused for computing attention output using

attention weights 𝐴 and Value matrix 𝑉 .

Algorithm 1 Locality-Aware Scheduling Algorithm.

Require: A set of buffers 𝐵 that store the selected connection IDs

for query 𝑞1, 𝑞2, 𝑞3, 𝑞4. e.g., 𝐵0110 stores IDs that are required

by 𝑞2 and 𝑞3.

Ensure: A computation order that achieves optimal Key and Value

data reuse.

1: Issue all the IDs in 𝐵1111 (required by all 4 queries)

2: while 𝐵1110 is not empty do

3: Issue an ID in 𝐵1110
4: if 𝐵0001 is not empty then

5: Issue an ID in 𝐵0001
6: else

7: Search and Issue an ID in 𝐵𝑥𝑥𝑥1
8: Move the issued ID from 𝐵𝑥𝑥𝑥1 to 𝐵𝑥𝑥𝑥0
9: end if

10: end while

11: Repeat 2-10 for all the other buffers.

We design a Scheduler to implement the scheduling algorithm.

As shown in Figure 10, the Scheduler first stores each connection

ID in the corresponding buffer according to the 4-bit binary mask

generated after threshold comparison. For example, according to

Figure 9, ’1’ is stored in buff-1000, ’2’ is stored in buff-1110. Then,

the Scheduler starts issuing computations from buff-1111. Besides,

when 𝑘5 is scheduled for 𝑞4 during the step-1, ’5’ will be moved

to buff-0010, meaning that now it only belongs to 𝑞3. We use a
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Figure 10: Design of the Scheduler and the scheduling process

of Figure 9.

Finite-State Machine to implement the condition statements and

control logic.

In summary, we explore token-level parallelism with software-

enabled workload-balancing and hardware-enabled out-of-order

execution to efficiently compute the attention output. The proposed

strategy can be generalized and used in other applications with the

same two-step matrix multiplication chain as shown in equation 7.

(SoftMax is optional.)

𝑂 = (𝑄 ∗ 𝐾) ∗𝑉 = 𝐴 ∗𝑉 (7)

More importantly, even with out-of-order execution, the final result

is automatically generated in a regular order. Because the irregular

computation only affects the intermediate matrix A, which is com-

pletely consumed during the computation. In contrast, exploring

same reordering in CNN would require a crossbar-like design to

correctly store the output result [31].

4.4 System Design Completeness

Decoder Processing For decoders, since the input tokens have

to be processed sequentially, the core operation would be GEMV

and the performance is memory-bounded. DOTA reduces total

memory access by efficiently filtering out majority of the attention

connections.

MemoryModules The on-chip memory is implemented as banked

SRAM module that can be configured to store different types of

data. We implement a custom simulator to obtain the capacity and

bandwidth requirement of the SRAM module. We facilitate each

Lane with a 640KB SRAM (10 64KB banks). Therefore, DOTA has

a total on-chip SRAM capacity of 2.5MB. The bandwidth require-

ments of embedding layer and decoders are significantly higher

than other layers. Therefore, we make sure the SRAM bandwidth

meets the need of the computation-bounded layers, while leaving

embedding and decoder to be memory-bounded.

Table 2: Configurations, Power, and Area of DOTA under

22nm Technology and 1GHz Frequency.

Hardware

Module
Configuration Power(𝑚𝑊 ) Area(𝑚𝑚2)

Lane
4 Lanes

per accelerator
2878.33 2.701

Lane

RMMU 32*16 FX-16 645.98 0.609

Filter Token Paral. = 4 9.13 0.003

MFU
16 Exp, 16 Div

16*16 Adder Tree
60.73 0.060

Accumulator 512 accu/cycle 139.21 0.045

DOTA

(w/o SRAM)
2TOPS 3017.54 2.746

SRAM 2.5MB 0.51(Leakage) 1.690

5 EVALUATION

In this section we present the evaluation results of DOTA.

5.1 Evaluation Methodology

Benchmarks. Our experiments include series of representative

Transformer benchmarks with challenging long-sequence tasks.We

first run BERT (large) [12] on question answering task (QA) using

the Stanford Question Answering Dataset (SQuAD) [45] v1.1 with a

sequence length of 384. To scale our evaluation to longer sequences,

we further select three tasks from Long-Range-Arena [51] (LRA),

which is a benchmark suite tailored for long-sequence modeling

workloads using Transformer-based models. Specifically, the first

benchmark performs image classification on CIFAR10 [28], where

each image is processed as a sequence length of 1K. The second

task is a text classification problem built on the IMDb reviews

dataset [33] with a sequence length of 2k. The third task aims to

identify if two papers in the ACL Anthology Network [40] contain

a citation link. The papers are modeled as 4k input sequences to the

Transformer model. Finally, we use GPT-2 [42] to evaluate causal

language modeling (LM) on Wikitext-103 [34] using sequences of

4K length.

Software Experiment Methodology.We implement our atten-

tion detection mechanism on top of each baseline Transformer,

and jointly optimize the model with attention selection enabled.

We study the effectiveness of our method by evaluating the model

performance in terms of accuracy or perplexity with respect to

the retention ratio of the sparse attention graph. Besides, we fur-

ther compare DOTA’s accuracy with state-of-the-art algorithm-

hardware co-design (ELSA [18]) and pure software Transformer

models presented in LRA [51].

Hardware Experiment Methodology. The system configuration

and consumption of DOTA is shown in Table 2. We implement

DOTA in RTL, and synthesize it with Synopsys Design Compiler

using TSMC 22nm standard cell library to obtain power and area

statistics. The power and area of SRAM module are simulated by

CACTI [35]. We implement a custom simulator for performance and

energy-efficiency evaluation. The simulator is integrated with the

software implementations of the Transformer models. We further
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Figure 11: Model accuracy of DOTA comparing with dense baseline and ELSA under different retention ratios across the

benchmarks. The performance metric of GPT-2 is perplexity score, the lower the better. The other dataset uses accuracy, the

higher the better. The purple line indicates the best results provided by the LRA benchmark.

conduct design space exploration to search for optimal system

design choices.

HardwareBaselinesWequantitatively compareDOTAwithNVIDIA

V100 GPU and ELSA [18], while qualitatively discuss the difference

between DOTA and other customized hardware (See Section 6).

When comparing with GPU, we scale up DOTA’s hardware resource

to have a comparable peak throughput (12 TOPS) as V100 GPU (14

TFLOPS). The energy consumption of DOTA is also re-simulated

for fair comparison. When comparing with ELSA’s performance,

we extend and validate our simulator to support ELSA’s dataflow.

Then, we re-synthesize DOTA with the same data representation,

computation resources and technology node as ELSA to compare

the energy-efficiency.

5.2 Algorithm Performance

We present the model accuracy of DOTA in Figure 11, and com-

pare it with dense Transformer model as well as other software

baselines. For DOTA, we first add the row-wise attention connec-

tion constraint and then select optimal quantization precision and

dimension reduction factor (𝜎) based on design space exploration

(Section 5.5). For ELSA, our implementation delivers aligned results

on QA compared with the original paper, and we extend it to other

datasets.

As we can see, across all the tested benchmarks, DOTA is able

to achieve comparable or slightly higher model accuracy compared

with the dense baseline, while selecting only 3 ∼ 10% of the atten-

tion connections. Furthermore, DOTA significantly outperforms

ELSA in accuracy-retention trade-offs. For example, on QA task

with 1.5% of accuracy degradation interval, DOTA delivers 3.3×

higher reduction ratio by keeping 6% of the connections, while

ELSA needs to keep 20%. The gap becomes even larger on long-

sequence benchmarks, which indicates that our detection method

is more scalable with long sequence. Furthermore, we also provide

leading results given by the LRA [51] benchmarks on image classi-

fication, text classification, and document retrieval tasks. As shown

in the figure, DOTA achieves on-par or better accuracy than LRA’s

leading results with 5% to 10% of retention ratio.

5.3 Speedup

Figure 12 presents the speedup of DOTA over the baselines. We

evaluate both stand along attention block as well as the end-to-end

performance improvements. We provide two versions of DOTA by

setting the accuracy degradation of DOTA-C (Conservative) to be

less than 0.5%, and limiting the degradation of DOTA-A (Aggres-

sive) within 1.5%. As for ELSA, although it fails to reach the above

accuracy requirement, we follow the original setting [18] and set

the retention ratio to be 20% for performance evaluation.

As we can see, comparing with GPU, DOTA-C achieves 152.6×

and 9.2× average speedup on attention computation and Trans-

former inference, respectively. On the other hand, DOTA-A achieves

on average 341.8× and 9.5× speedups at the cost of a slightly higher

accuracy degradation. The speedup mainly comes from three as-

pects. Firstly, DOTA benefits from highly specialized and pipelined

datapath. Secondly, the attention detection mechanism significantly

reduces the total computations. Finally, the Token-parallel dataflow

with workload balancing and out-of-order execution further im-

proves resource utilization.

The end-to-end speedup is lower than that of attention com-

putation, since the proposed detection method is tailored to the

cost reduction of self-attention blocks. We add another baseline

by assuming the accelerator always works at its peak throughput,

and the attention computation has a ignorable cost. Combining

this peak throughput assumption and Amdahl’s law [3], we can

derive the theoretical speedup upper bound for DOTA. As we can

see, the real performance of DOTA is relatively close to the upper

bound by virtue of the extremely small retention ratio and hard-

ware specialization. We only compare DOTA and ELSA on attention

computation performance, because ELSA does not support end-to-

end Transformer execution. As we can see from Figure 12 (b), on

average, DOTA-C is 4.5× faster than ELSA and DOTA-A is 10.6×

faster. This improvements mainly come from lower retention ratio

and Token-parallel dataflow.

The latency breakdown in Figure 12 (c) delivers two key mes-

sages. Firstly, the latency of attention estimation is negligible com-

pared with the overall consumption. Therefore, the Detector is both

accurate and hardware efficient as we expected. Secondly, with the

proposed detection method and system architecture, the cost of

attention has been significantly reduced. The new performance

bottleneck is Linear computation, which can be optimized with

weight pruning and quantization. These classic NN optimization

techniques can be fluently transplanted on DOTA, because our sys-

tem is designed on top a GEMM accelerator with multi-precision

arithmetic support and sparse computation dataflow. Overall, DOTA

delivers scalable Transformer inference acceleration.
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Figure 13: Energy-efficiency comparisons.

5.4 Energy-Efficiency

As shown in Table 2, each DOTA accelerator consumes a total power

of 3.02W. RMMU and Accumulator are the two major contributing

factors to the dynamic power consumption, whereas SRAM and

RMMU together occupies the most chip area. We compare DOTA’s

energy-efficiency with GPU and ELSA. The results are shown

in Figure 13. As we can see, DOTA-C achieves 618∼5185× and

1.97∼5.14×energy-efficiency improvements over GPU and ELSA,

while DOTA-A achieves 1236∼8642× and 3.29∼12.20× improve-

ments over these two baselines. The energy saving mainly comes

from two parts. Firstly, despite the attention estimation overhead,

the proposed attention detection largely reduces overall cost of

attention computation and memory access. Secondly, both external

memory access and on-chip SRAM access are saved to a large extent.

On one hand, the hardware specialization helps improve interme-

diate data reuse between the pipeline stages. On the other hand,

Token-parallel dataflow effectively utilizes attention connection

locality to improve Key/Value data reuse. The energy breakdown

of DOTA exhibits similar pattern as the latency breakdown. That

is, with effective attention reduction, FC-layer consumes around

84.9∼99.3% of the total energy cost, while attention detection only

consumes 0.11∼0.34%. This further illustrates the efficiency of the

proposed algorithm-hardware co-design.

5.5 Design Space Exploration

We search and select optimal architectural settings for DOTA through

design space exploration.

Dimension Reduction Scale As discussed above, the dimension

reduction scale 𝜎 directly affects the size of the input and weight

matrices involved in attention detection. Therefore, a small 𝜎 can

effectively control the overhead of attention estimation, but the

Detector’s performance will also be limited. We experiment on

the Text classification benchmark, fixing the retention ratio and

quantization precision while only adjusting the scale values. The

results are shown in Figure 14 (a).

As we can see, for Text classification, the scale factor can be as

small as 0.2 without affecting the overall model accuracy. There-

fore, the hidden dimension in approximation is floor(64*0.2)=12,

compared with the original dimension 64. Besides, 𝜎 is a hyper-

parameterwhich does not influence the underlying hardware. There-

fore, each benchmark can use its own optimal 𝜎 value.
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Figure 14: Influence of (a) dimension reduction factor 𝜎 and

(b) quantization precision on overall model accuracy using

Text classification benchmark. Retention ratio = 10%.

Precision of Attention Detection Another factor that affects

the attention detection cost is the choice of quantization precision.

Furthermore, the precision also influences the design complexity

of RMMU. For each benchmark, we fix 𝜎 and retention ratio and

sweep over different quantization precision. Figure 14 (b) presents

the experiment results on Text classification benchmark. As we

can see, the quantization precision could be as low as 2-bit with

negligible accuracy degradation. After our experiments, we found

that INT4 is a safe precision for all the benchmarks, while some

can tolerate INT2 computations. Therefore, our final RMMU design

supports INT2, INT4, and INT8 apart from FX16. INT8 computation

is required when 𝑋 ,𝑊𝑄 , and𝑊𝐾 are INT4 data. As the estimated

𝑄̃ and 𝐾̃ will be in INT8 precision.

Token Parallelism Our token-parallel dataflow leverages locality

among important attention distribution to improve memory access.

Higher parallelism increases data reuse and reduces total mem-

ory access, but also results in growing size of the Scheduler unit.
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Therefore, we aim to find an optimal trade-off point that achieves

lowest overall energy consumption. Figure 15 shows the case on

Text classification benchmark with Retention ratio to be 10%. The

left axis indicates the normalized memory access cost of Key and

Value, while the right axis is the required number of buffers in

the Scheduler. Figure 15 mainly delivers two key messages. Firstly,

as shown by the solid blue bar, leveraging row-parallelism does

help reduce memory accesses, but increasing the parallelism has

diminishing returns. This is because attention distribution exhibits

certain but only a limited degree of locality. Secondly, increasing

row-parallelism causes exponential growth in scheduling overhead.

In Figure 15, this is shown by the red line (buffer requirement)

and the dotted blue bar (scheduling energy consumption). After

summing up the memory cost (solid blue bar) and scheduling cost

(dotted blue bar) together, we choose the shortest one because it

represents the sweetest spot with the lowest total energy consump-

tion. As we can see, parallelism 4 has the lowest total height, which

means 4 is the best setting for Text classification. We also evaluate

on other benchmarks and most benchmarks have an optimal paral-

lelism to be or around 4. Therefore, we choose 4 as the final setting

in DOTA.
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Figure 15: Key/Value memory access (left axis) and Scheduler

buffer requirement (right axis) with different Token paral-

lelism. The hatched area is the projected cost of Scheduler.

6 RELATED WORK

In this Section, we mainly discuss related work on efficient Trans-

former models from the algorithm perspective and hardware ac-

celerators for Transformers and Self-Attention. For general DNNs,

quantization and low-precision support have been proposed [16, 19ś

21, 36]. While sharing the high-level similarity, our method focuses

on attention operations that are not parameterized. Hence, those

methods applied on model parameters are not applicable to our

scenario. Our work is in the scope of dynamic pruning on atten-

tions as we discussed and compared with other related work. Ap-

proximation for DNNs is also a line of related work [2, 29, 32, 44].

Finally, hardware accelerators for DNNs are related to executing

the non-attention components of Transformers [6, 8ś10, 13ś15, 24ś

26, 30, 47, 55].

6.1 Efficient Transformer Models

Recent studies propose efficient variants of Transformer models to

mitigate the quadratic memory complexity of long sequence model-

ing [27, 48, 50]. However, these methods are impractical for efficient

inference as they focus on training memory footprint reduction

while trading off more computations for clustering or grouping.

Another line of work exploit static or fixed sparse patterns in

attention, such as local windows, block-wise, dilated, or a combina-

tion of static patterns [11, 39, 54]. However, as discussed in Section

2, the sparse attention graphs are inherently dynamic depending

on input sequences. Hence, these approaches lack the capability of

capturing dynamic sparse attentions.

6.2 Attention and Transformer Accelerators

There have been a few recently proposed work targeting the ac-

celeration of attention and Transformer. MnnFast [22] skips the

computation of specific value vectors if its attention weights is

lower than the threshold. This method can only benefit the at-

tention output computation rather than attention weights com-

putation. 𝐴3 [17] is the first work to apply approximation to the

attention weights for computation reduction. However,𝐴3 involves

a sorting-based preprocessing phase that needs to be done outside

the accelerator, causing inevitable performance and energy over-

head. ELSA [18] improves the approximation method by directly

using sign random projection to estimate the angle between query

and key vectors. Although the approximation becomes much more

hardware friendly, the detection accuracy and model quality is hurt.

DOTA addresses all of the above limitations by simultaneously

concerning detection accuracy and efficiency. In terms of hardware

design, prior work only implements attention block with no token

parallelism, while DOTA supports end-to-end inference accelera-

tion with Token-parallel dataflow to improve system performance.

SpAtten [53] proposes cascade token pruning and head pruning

to reduce the cost of both self-attention block and subsequent layers

in the Transformer model. The proposed method can be regarded

as adding structured sparsity constraints to the attention matrix,

as it directly removes several rows and columns. Based on our

visualization and experiments, we believe that despite a certain

degree of locality, such constraint is not flexible enough to capture

the irregularly distributed attention connections. As for hardware

design, SpAtten supports both decoder and encoder processing, but

it is also mostly tailored to attention acceleration with very few

discussions on end-to-end execution.

Finally, OPTIMUS [37] proposes a GEMM architecture to accel-

erate Transformer inference. It focuses on accelerating sequential

decoding process and proposes technique to maintain resource

utilization. Although OPTIMUS avoids computing redundant at-

tention weights, such redundancy is due to naturally existed token

dependency, rather than the weak connections we discussed in this

work. Thus, the self-attention still has quadratic cost and OPTIMUS

does not scale on longer sequences.

7 CONCLUSION

In this work, we address the challenge of scalable Transformer

inference. Specifically, we first propose algorithm optimization to

reduce the quadratic cost of self-attention mechanism. Our method

efficiently detects and omits weak connections in attention graphs

to skip the corresponding computations and memory accesses. Fur-

thermore, we provide system-level support for end-to-end large

Transformer model inference.We first effectively abstract the Trans-

former model to design a scalable and unified architecture. Then,
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we implement the proposed attention detection method with ef-

ficient hardware specialization techniques. Our final evaluation

results sufficiently demonstrate the effectiveness of the proposed

algorithm and system design.
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