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ABSTRACT

Despite the trend of incorporating heterogeneity and specialization

in hardware, the development of heterogeneous applications is lim-

ited to a handful of engineers with deep hardware expertise. We

propose HeteroGen that takes C/C++ code as input and automati-

cally generates an HLS version with test behavior preservation and

better performance. Key to the success of HeteroGen is adapting

the idea of search-based program repair to the heterogeneous com-

puting domain, while addressing two technical challenges. First,

the turn-around time of HLS compilation and simulation is much

longer than the usual C/C++ compilation and execution time; there-

fore, HeteroGen applies pattern-oriented program edits guided by

common fix patterns and their dependences. Second, behavior and

performance checking requires testing, but test cases are often

unavailable. Thus, HeteroGen auto-generates test inputs suitable

for checking C to HLS-C conversion errors, while providing high

branch coverage for the original C code.

An evaluation of HeteroGen shows that it produces an HLS-

compatible version for nine out of ten real-world heterogeneous

applications fully automatically, applying up to 438 lines of edits to

produce an HLS version 1.63× faster than the original version.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Error handling and recovery; • Computer systems

organization→ Heterogeneous.
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1 INTRODUCTION

Heterogeneous computing, which builds on domain-specific accel-

erators represented by FPGA and GPU, has shown great promise in

performance improvement and energy efficiency. The past decade

has seen a proliferation of highly-integrated heterogeneous com-

puting tools and platforms, such as Intel’s CPU+FPGA multi-chip

packages [20, 48], Amazon’s FPGA-enabled AWS cloud [8], Mi-

crosoft’s FPGA-enabled Azure cloud [46], as well as Google’s TPU

cluster [24]. However, despite their wide availability in industry,

these platforms are notoriously difficult to program. As such, de-

veloping heterogeneous applications1 can only be done by a small

handful of programmers with deep hardware design expertise.

There have been continuous efforts to lower the bar for program-

ming with accelerators. Among these efforts, the most successful

one is high-level synthesis (HLS) [15]. HLS raises the level of pro-

gramming abstraction from hardware description languages (such

as Verilog) to C/C++ dialects (such as HLS-C), enabling C/C++ de-

velopers to easily program for FPGAs. Although HLS significantly

simplifies accelerator programming, it still requires a substantial

amount of manual rewriting from developers to turn a regular

C/C++ program into its HLS counterpart, because HLS supports

only a subset of the C/C++ language constructs. As a result, devel-

opers often have to battle a sea of HLS compatibility errors (e.g.,

łERROR: [XFORM 202-876] Synthesizability check failed: recursive

functions are not supported.ž) before their code can even compile. In

fact, a quick search on Xilinx’s FPGA HLS development forum [59]

brought us thousands of Q&A posts on how to fix HLS compatibility

errors; a study of these posts (ğ5.1) reveals numerous confusions and

challenges real-world developers have experienced in restructuring

application logic to make their code HLS compatible.

Furthermore, to reap performance benefits, developers must

explicitly optimize their HLS programs by taking into account low

(microarchitectural) level hardware details. For example, they often

need to expressmicroprocessor level parallelism (e.g.,with pragmas)

in their HLS-C code. Configurations such as pipeline depth often

need to be specified as well. Despite various attempts [14, 53, 53,

60] to simplify manual rewriting (e.g., by providing libraries for

common data structures [61] or that can substitute recursions [53]),

it is still a tedious and error-prone process, precluding practical

adoption of HLS and the hardware accelerators it supports.

HeteroGen. This paper presents HeteroGen, an automated tool

that takes as input a regular C/C++ program and produces its HLS-

C counterpart without involving any human developer in the loop.

1In this paper, term łheterogeneous applicationž refers to programs that consist of host
code, which runs on a CPU, and kernel code, which can be offloaded to an accelerator
such as FPGA.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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On one hand, HeteroGen is a transpiler that performs behavior-

preserving source-to-source translation from C/C++ to HSL-C by

automatically resolving compatibility issues; on the other hand, it

is an optimizer that checks whether the updated code has superior

performance than the original version. Although HeteroGen does

not guarantee to generate łoptimalž code, it represents a best-effort

approach to produce the highest level of HLS compatibility and

efficiency improvement within a time budget.

Realizing these benefits requires two major steps: (1) automati-

cally resolving compatibility issues and (2) generating code with

better performance. Our key insight is that these two steps can be

organically combined in an iterative code edit process, known in the

software engineering community as evolutionary program repair.

At the heart of HeteroGen is a search-based repair process with a

unified objective function that aims to simultaneously reduce the

number of compatibility errors and improve performance. Starting

from the input C program, each iteration of the process applies a

number of edits to the łcurrentž program version, with the goal

to generate a new version optimized for both compatibility and

performance. This process terminates when a user-specified time

budget is reached.

Essentially, fixing compatibility errors is a hard constraintÐour

tool always attempts edits to ensure HLS compatibility. Improving

performance is a soft constraintÐeach iteration applies the edits

with the largest performance potential when multiple repair can-

didates are available, although the chosen edits may not lead to

optimal performance improvement. In other words,HeteroGen puts

higher priority on HLS compatibility and test behavior preserva-

tion (although in most cases, edits HeteroGen ends up choosing

edits that both improve performance and fix compatibility issues).

When the budget runs out, HeteroGen terminates the search, ei-

ther producing an error-free version with better performance in

most cases, or reporting an incomplete version with generated tests

to guide the remaining manual edits. If all errors are fixed before

the budget runs out, HeteroGen still continues the search to apply

performance-improving edits.

Challenges. While search-based program repair has been exten-

sively studied [29, 31, 57], naïvely applying existing techniques

would not work in our setting. Existing techniques assume that

each program variant can quickly compile and run; their success

builds on a łtrial-and-errorž approach that often involves thousands

or even millions of repetitive edits and runs. However, compiling an

HLS-program requires an expensive synthesis/simulation process,

which takes orders-of-magnitude longer (e.g., minutes to hours)

than compiling a regular C program. As a result, existing techniques

are prohibitively expensive when adopted directly to repair HLS-C

programs.

Rationale for testing as opposed to static verification. Apply-

ing an edit may alter program semantics and hence the resulting

program must be validated to guarantee correctness. HeteroGen

uses test generation and execution to check behavior preservation,

as opposed to static verification for two reasons. First, there exists

no validating HLS compiler that guarantees semantic equivalence

between C programs and HLS-C versions. When a programmer

transforms C to HLS-C, currently, there is no way to verify equiva-

lence other than executing both versions with test inputs. Second,

it is theoretically impossible to build such a validating compiler

between C and HLS-C because all dynamic and unbounded data

structures must be finitized to static-size implementations with

finite resources in FGPA. Therefore, in the presence of finitization

necessity, it is infeasible to ensure semantic equivalence between

resource-unbounded SW implementation against resource-finite

hardware implementation.

To overcome these challenges, we develop three novel techniques

as elaborated below:

1. Automated Test Generation.Determining whether an iteration pro-

duces a better program candidate requires understanding whether

this candidate (1) preserves the behavior of, and/or (2) outperforms

the current version. This also requires tests to execute programs

and measure their functional and performance results. For example,

if a candidate passes all tests and outperforms the current version,

the candidate is accepted by the search algorithm as the new łcur-

rentž for further exploration. However, most programs do not come

with tests and it is unrealistic to require tests from developers.

To solve this problem, HeteroGen uses a novel test generation

technique to automatically generate tests. Inspired by automated

fuzz testing [7], our technique monitors the branch coverage of

the original C code to find inputs that diversify branch executions.

It stores the intermediate program states in the input C program,

mutates them to generate new kernel inputs, and ensures that the

mutated inputs are type-valid for HLS. With the generated tests,

HeteroGen executes both the input C program and each generated

HLS version, using result differentiation as a fitness function [57].

2. Dependence-Guided Search Space Pruning. To repair compatibility

errors, there is a huge search space (of possible program edits).

To tackle this challenge, HeteroGen leverages common HLS re-

pair patterns. With a study of more than 1,000 posts from Xilinx’s

HLS Q&A forum, we summarize six common repair patterns, re-

garding dynamic data structures, unsupported data types, dataflow

optimization, loop parallelization, struct and union, and top func-

tions. Applying these patterns not only repairs compatibility errors

but also leads to improved performance. We encode them into pa-

rameterized repair templates at the level of abstract syntax trees,

providing strong guidance in the search regarding what to edit.

Based on the observation that these templates often exhibit de-

pendence [40, 41], HeteroGen explicitly models the dependence

and precedence among these templates. Such dependence informa-

tion is used to expedite the exploration of applicable repairs using

evolutionary algorithms [57]. For example, suppose that there are

multiple ways of applying repairs but some repairs depend on others

(e.g., repair B depends on A, D depends on B or C), an evolutionary

algorithm can enumerate the space of applicable repairs in an order

described by their dependence (e.g., {A, C, AB, ABD, . . . }).

3. Early Candidate Rejection Using Coding Styles. To overcome the

challenge of long HLS compilation time, HeteroGen leverages a

lightweight LLVM-based checker to validate repairs. Our key in-

sight here is that if a repair does not conform to HLS coding styles, it

does not need to be compiled. For example, when inserting an HLS

unroll pragma to enable loop optimization, HeteroGen invokes an

LLVM front-end for HLS to check whether such a pragma appears

only within a loop body. In doing so, HeteroGen quickly rejects

invalid repairs before they get compiled.
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Figure 1: HeteroGen takes as input an original kernel program (P𝑜𝑟𝑖𝑔). It auto-generates test inputs for P𝑜𝑟𝑖𝑔, and an initial

version P𝑏𝑟𝑜𝑘𝑒𝑛 with estimated HLS types. Next, it finds repair locations based on an HLS error symptom, explores the space

of applicable repairs based on fix patterns, and evaluates behavior preservation via differential testing.

Results.We have evaluated HeteroGen on ten publicly available

real-world applications. Out of the ten programs, HeteroGen man-

aged to produce an HLS-compatible version fully automatically for

nine. HeteroGen repaired all of HLS compatibility errors, with an

average of 2,437 tests generated per application, achieving branch

coverage of 97%. It automated 9 to 438 lines of edits to produce an

HLS version, which is, on average, 1.63× faster than the original C

version. All of the repaired programs produce identical input-output

behavior under the generated tests.

We have compared HeteroGen with three alternatives (1) Het-

eroGen without the coding style checker, (2) HeteroGen with-

out dependence-based repair exploration, and (3) prior work Het-

eroRefactor [33]. Dependence-guide search expedites the iterative

process by 35× compared to (2). The lightweight LLVM checker

avoids unnecessary HLS compilation and simulation, leading to

an overall of 4× speedup compared to (1). HeteroGen achieves 5×

transpilation success compared to (3).

We provide access to artifacts of HeteroGen at https://github.

com/UCLA-SEAL/HeteroGen.

2 BACKGROUND

Code Rewriting for HLS. HLS for FPGA [15, 17] has raised the

abstraction of hardware development by automatically generat-

ing register-transfer level (RTL) descriptions from code written

in C-like dialects for HLS. However, a developer must perform a

substantial amount of manual rewriting before it can run on an

FPGA chip. While the instruction set architecture (ISA) for CPU

defines integer arithmetics at 32 bits, in FPGA, individual bitwidths

could be programmed [33]. At a high level, regular software de-

velopers often allocate variables with a size large enough for all

possible input values. Such a practice may lead to wasted on-chip re-

sources, impacting the maximum operating frequency, parallelism,

and power consumption. Thus, developers must finitize the bitwidth

manually to achieve resource efficiency. For example, in modern

ML applications where on-chip resource usage is input-dependent,

determining an optimized bitwidth is a daunting task.

HLS dialect languages are a strict subset of C/C++ and certain

constructs or coding styles are unsupported [50]. A developer must

manually restructure the program to make the computation logic

synthesizable at the hardware level. This is also a difficult task due to

the large discrepancy between C/C++ and a HLS C-dialect. During

code conversion, there are four primary causes of incompatibility

errors:

First, FPGA has no capabilities for managing data structures of an

unbounded size. Thus, function calls to dynamic memory manage-

ment such as malloc and free must be replaced by pre-allocated

static arrays of a conservatively large size. Similarly, recursions

must be transformed to loop-based iterations because all required

hardware resources need to be pre-allocated. Second, HLS compilers

support fewer data types than C/C++. For example, a long double

type is not synthesizable and must be converted to a HLS floating

type such as fpga_float<8,71>. Third, pointers are strictly for-

bidden in HLS, except for special-purpose pointers that are used

to express hardware interfaces. Thus, a developer must manually

eliminate pointer declarations and usages.

Finally, FPGA provides inherent hardware-level parallelism thr-

ough pipelining of different computation stages or by duplicating

processing elements. As such, developers must manually insert a

number of pragmas (i.e., pre-processor directives) to specify how

computation pipelining and duplication should be implemented.

For example, #pragma HLS array_partition partitions a large

array into smaller arrays to allow for simultaneous operations. A

significant number of HLS incompatibility issues arises in specify-

ing such pragmas. For example, when a developer defines an array

A with 13 elements but inserts #pragma HLS array_partition

factor=4, an HLS compiler may produce the following warning

łERROR: [XFORM-711] Array A failed dataflow checking,ž because

13 is not a multiple of 4.
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1 void init(Node **root) {

2 *root = (Node *)malloc(sizeof(Node));}

3 ...

4 void traverse(Node *curr) {

5 ...

6 - int ret = visit(curr->val);

7 + fpga_uint<7> ret = visit(curr->val);

8 traverse(curr->left);

9 traverse(curr->right);}

10

11 float kernel(float input[]) {

12 init(root);

13 ...

14 traverse(root);}

(a) Initial HLS-C Version with HLS data types

1 Node Node_arr[NODE_ARR_SIZE];

2 void init( Node_ptr *root) {

3 *root = (Node_ptr) Node_malloc (sizeof(Node))

; }

4 ...

5 void traverse_converted( Node_ptr curr)

6 {..}

7

8 float kernel(float input[]) {

9 init(root);

10 ...

11 traverse(root);}

(b) HeteroGen converted code

1 void traverse_converted (Node_ptr curr){

2 void stack<context> s(STACK_SIZE);

3

4 while(s.empty()=false){

5 context c = s.pop();

6 goto c.location;

7

8 L0:

9 c.location = L1;

10 s.push(c);

11 s.push({curr: Node_arr[curr].left});

12 continue;

13 L1: ...}}

(c) Stack-based implementation of traverse

Figure 2: Working example of HeteroGen.

Automated ProgramRepair. Search-based program repair [21, 42,

57] has shown promises for patch generation and repair. Without

loss of generality, the overall procedure of evolutionary program re-

pair [57] can be described as follows. Starting from a base program

that fails (i.e., does not satisfy a repair success oracle), program re-

pair generates a new program variant in each iteration by applying

code edits to a current program variant. Next, the program variants

are evaluated using a fitness function. This process is repeated until

a program variant that passes all tests is found.

These techniques build on two fundamental assumptions: (1)

the program under repair can be quickly compiled and executed

(e.g., milliseconds) and (2) test cases (or an alternative oracle) are

available to assess the fitness of a repair. Unfortunately, neither of

these assumptions holds for heterogeneous applications, because

an HLS program takes minutes and hours to compile and test cases

are unavailable in most cases.

3 HETEROGEN OVERVIEW AND EXAMPLE

System Architecture. HeteroGen consists of five components, as

shown in Figure 1: (1) test input generation, (2) initial HLS version

generation, (3) identification of repair locations, (4) repair space

exploration, and (5) fitness evaluation. Steps (3) to (5) repeat as a

part of iterative repair constrained by a given time limit.

HeteroGen takes as input an original C/C++ program P_orig.

First, it generates test inputs tomaximize branch coverage in P_orig.

Second, it runs P_orig with test inputs and constructs an initial

HLS version P_broken by estimating the maximum size of HLS data

types for individual input variables. Then by compiling P_broken

with a HLS compiler, it finds whether any HLS compatibility error

exists. Guided by these error symptoms, it explores applicable edits

and terminates the repair process if the variant corrects all HLS

compatibility errors, preserves identical test behavior, and yields

better performance than the original version.

Working Example. Consider a binary tree program (128 LOC)

shown in Figure 2a. Suppose Alice would like to synthesize this

entire program on FPGA using an HLS compiler. The HLS compiler

would report three error messages indicating that the pointer usage

for dynamic memory management (lines 2) and the recursion (lines

8-9) are not supported, such as łERROR: [XFORM 202-876] Syn-

thesizability check failed: recursive functions are not supported.ž

and łERROR: [SYNCHK 200-61] unsupported memory access on

variable curr which is (or contains) an array with unknown size at

compile time.ž

Without HeteroGen, Alice would have to manually rewrite code

to use static array accesses and iterations instead. Such manual

refactoringwould take significant efforts (i.e.,an extra of 196 LOC), to

produce a working version of 324 LOC. Unfortunately, since no test

inputs are available, Alice can only roughly verify the functionality

of the rewritten program with handcrafted or random inputs.

HeteroGen solves this painful problem by automating the code

conversion process. Based on the original C program, HeteroGen

first generates 1,800 test inputs of floating point arrays in 50minutes

because the kernel function accepts data of the floating point type

as input in line 11 of Figure 2a. These inputs achieve full branch

coverage. Next, HeteroGen profiles this programwith the generated

tests and finds that the maximum value for the local variable ret is

83. HeteroGen updates its data type to fpga_uint<7> to create an

HLS version to begin with. Without any manual effort from Alice,

HeteroGen uses the HLS error messages that arise during HLS

compilation to search for applicable fixes. It then applies, (1) the

array replacement edit (highlighted in red) to replace malloc with

array-based memory accesses Node_malloc in line 3 of Figure 2b;

(2) the pointer removal edit (highlighted in blue) to replace pointers

Node * to array indices Node_ptr; (3) the stack replacement edit

(highlighted in green) to replace recursions with iterations based

on stack in line 2 of Figure 2c; and (4) the array resizing edit to

experiment with different array sizes in line 1 of Figure 2b and line

2 of Figure 2c. After many iterations of applying other applicable

edits, HeteroGen generates a final version with 464 LOC that does

not have errors and outperforms the original C program.

Caveat andUsage Scenario.HeteroGen takes the kernel functions

in a C/C++ application as input and generates their equivalent HLS-

C versions. In other words, HeteroGen does not reinvent the wheel

of finding performance bottlenecks and code to be offloaded to HW

accelerators and instead assumes that kernel code to be transformed

is specified. Many existing tools such as e.g., valgrind [55] could

identify kernel code by profiling an application.

Porting kernel functions to FPGAs involves error fixing and

parallelization, both of which are challenging tasks. HeteroGen

focuses on error fixing; although it can also lead to increased effi-

ciency by applying performance-improving edits. HeteroGen does

not perform auto-parallelization and -tuning that often require
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Table 1: Example HLS compatibility errors.

Type ID Error Symptom Repair

Dynamic Data Structures 729976 [1]
Allocating an array with unknown size leads to

łERROR: Dynamic memory allocation is not supportedž
Specify the array size

Unsupported Data Types 752508 [2]
The long double variable leads to

łERROR: Call of overloaded ‘pow()’ is ambiguousž

Type transformation, followed by explicit

type casting and operator overloading

Dataflow Optimization 595161 [3]
Inserting dataflow pragma leads to łERROR:

Argument ‘data’ failed dataflow checking"
Pragma exploration

Loop Parallelization 721719 [4]
Inserting dataflow pragma and unroll pragma

fails the pre-synthesis
Pragma exploration

Struct and Union 1117215 [5]
Struct leads to łERROR: Argument ‘this’ has an

unsynthesizable struct typež

Insert an explict constructor and

make the connecting stream static

Top Function 810885 [6]
Incorrect configuration leads to łERROR: Cannot

find the top function in the designž
Configuration Exploration

Algorithm 1: HeteroGen’s test generation.

Input :a program 𝑃 with kernel function 𝐾 , sample inputs 𝑠 for 𝑃

1 Function getKernelSeed (𝑃 ,𝑠)

2 return arguments sent to 𝐾 in 𝑃 .run(𝑠)

3 Function fuzzing(𝑃 , 𝑠)

4 𝑘𝑠 = getKernelSeed (𝑃 ,𝑠);

5 𝑡𝑦𝑝𝑒 = argument’s type in 𝐾 ;

6 𝑖𝑛𝑝𝑢𝑡𝑠 .append(𝑘𝑠);

7 while given time budget do

8 𝑡𝑒𝑠𝑡_𝑐𝑎𝑠𝑒_𝑙𝑖𝑠𝑡 = Mutation(𝑖𝑛𝑝𝑢𝑡𝑠 .pop(),𝑡𝑦𝑝𝑒);

9 foreach 𝑡𝑒𝑠𝑡_𝑐𝑎𝑠𝑒 ∈ 𝑡𝑒𝑠𝑡_𝑐𝑎𝑠𝑒_𝑙𝑖𝑠𝑡 do

10 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝐾 .run (𝑡𝑒𝑠𝑡_𝑐𝑎𝑠𝑒);

11 if 𝑁𝑒𝑤𝐶𝑜𝑣 (𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘) then

𝑖𝑛𝑝𝑢𝑡𝑠 .append(𝑡𝑒𝑠𝑡_𝑐𝑎𝑠𝑒) ;

12 end

13 end

algorithmic redesign with intimate knowledge of hardware. In real-

world development, we envision developers can use HeteroGen

in a łchange-and-fixž loop where in each iteration they can apply

algorithmic and/or hardware-specific changes first to produce a

łdraftž and then use HeteroGen to generate a compatible and more

performant version from that draft.

4 TEST GENERATION
Our goal is to find an HLS-C program that is able to pass HLS compi-

lation and that yields equivalent behavior between CPU and FPGA.

In practice, programmers perform HLS differential testing between

CPU and FPGA using handcrafted or random inputs. Existing test

generation techniques, such as AFL [7], are not directly applicable

to heterogeneous applications for two reasons: (1) it targets the

end-to-end application as opposed to the kernel code only, while

the goal of HLS differential testing is to compare input-output be-

havior of the kernel under CPU vs. FPGA; (2) the input mutation

strategy used in existing techniques does not consider HLS data

type compatibility; as such, when the newly generated kernel in-

puts are not compatible with HLS-data types, most inputs would

fail at the kernel entry point without exercising any kernel logic

further.

Algorithm 1 outlines HeteroGen’s input generation strategy. It

starts the test generation process with an original program that

consists of both host and kernel code as well as an initial set of

8.2 %

Dynamic Data Structures

16.1 %

Dataflow Optimization

25.7 %

Unsupported Data Types

16.1 %

Loop Parallelization
19.8 %

Top Function

14.1 %

Struct and Union

Figure 3: HLS compatibility error types in Xilinx forum.

inputs that are randomly generated. Function getKernelSeed cap-

tures the actual value states at the entry of the kernel function,

e.g., actual values passed to the kernel function. Such intermediate

state is then used as the seed input for kernel input generation.

The insight behind extracting a seed rather than handcrafting a

random seed is that such intermediate states are ensured to be valid,

leading to improved fuzzing efficiency. Next, HeteroGen analyzes

the argument types used in the kernel function, and inserts addi-

tional type checkers in the fuzzing loop, as shown in line 5 and

line 8. In other words, HeteroGen generates hard-to-reach corner

case inputs with valid HLS data types. HeteroGen then executes

the program with every newly generated input in line 10. During

this execution, HeteroGen collects feedback which indicates code

coverage information. If an execution results in new code coverage

(i.e.,NewCov), then the corresponding input is added to the input

queue for further fuzzing in line 11.

Initial HLS-C Version Generation. HeteroGen generates the ini-

tial HLS version for a C/C++ application by estimating the HLS data

types in the kernel code. Similar to [33], HeteroGen profiles the

kernel code to keep track of the maximum values for intermediate

variables with the generated tests. For example in Figure 2a, a pro-

grammer uses a 32-bit integer for the variable ret by default in line

6, which is a higher bitwidth than what is actually necessary. Het-

eroGen finds that it has a max value of 83Ðit then only needs 7 bits

instead of 32 bits. It parses the program’s AST, identifies the variable

declaration node for ret, and then modifies the corresponding type

as shown in line 7 in Figure 2a.
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1 int top(int in) {

2 long double in_ld = in;

3 in_ld = in_ld+1;

4 return in_ld;

5 }

(a) Original Code

1 int top(int in) {

2 - long double in_ld = in;

3 + fpga_float<8,71> in_ld = in;

4 - in_ld = in_ld+1;

5 + in_ld = sum_80(in_ld,

6 + thls::to<fpga_float<8,71>,

thls::convert_policy(0xF)>

float(1));

7 return in_ld;}

(b) Repaired Code

Figure 4: Example repair for unsupported data type.

5 AUTO-REPAIRING COMPATIBILITY
ERRORS

After generating the initial version with estimated HLS types, Het-

eroGen automatically evolves the program to succeed HLS compi-

lation while finding the code variant with best performance among

all applicable edits. In particular, inspired by automated repair, we

develop novel techniques specifically to address the need of seman-

tics preservation and performance optimization in HLS where a

naïve łtrial-and-errorž approach is prohibitively expensive. For this,

we design fix patterns that are specific to common error types found

in our study of real-world HLS compatibility errors. We expedite

the search space exploration by both reducing the repair attempts

using dependence-based search and reducing the HLS compilation

time for each repair using coding style checks.

5.1 A Study of HLS Compatibility Errors

To understand real-world HLS compatibility errors, we collected

1,000 posts from Xilinx’s HLS Q&A forum using a keyword-based

search with the search term łhigh level synthesis errorž and łC

synthesis error.ž We carefully examined the accepted answers and

associated comments to understand the root causes of underlying

HLS incompatibilities and summarize their repair solutions. We

then distilled and grouped these root causes into six categories,

each reflecting an underlying HLS incompatibility issue: dynamic

data structures, unsupported data types, dataflow optimization,

loop parallelization, struct and union, and top functionsÐi.e., each

hardware design has a top function specifying its module entry point

and inserted pragmas specify the module’s configuration interface.

The pie chart in Figure 3 illustrates the proportion of these six

error types. The most frequent source of HLS incompatibility is

unsupported data types, which accounts for a quarter of total cases.

Such errors occur when eliminating pointers or when adding sup-

port for custom HLS data types. Configuration-related top function

errors, dataflow optimization, and loop parallelization are other

major sources of HLS incompatibility, as it requires deep hardware

platform knowledge to specify appropriate pragmas. 14% of HLS

incompatibilties are caused by the use of struct and union. Last but

not least, dynamic data structures contribute to 8%, due to the use

of malloc, free and recursive functions.

Table 1 summarizes each HLS incompatibility type, a representa-

tive example post ID, its error symptom, and corresponding repair

edits. Examples for each type are shown below.

• Dynamic Data Structures: Post No. 729976 [1] shows an exam-

ple where a developer attempts to allocate an array MY_DATA

line_buf_a[WIDTH][cols] where the value of cols is un-

known at compile time. Thus, HLS does not know the exact

1 #include <hls_stream.h>

2 struct If2 {

3 hls::stream<unsigned> &in;

4 hls::stream<unsigned> &out;

5

6 unsigned doRead(){...}

7

8 void doWrite(unsigned v){...}

9

10 void do1(){...}

11 };

12

13 void top(hls::stream<unsigned> &

in, hls::stream<unsigned> &

out) {

14 #pragma HLS DATAFLOW

15 hls::stream<unsigned> tmp;

16 If2{ in, tmp }.do1();

17 If2{ tmp, out }.do1();

18 }

(a) Original Code

1 #include <hls_stream.h>

2 struct If2 {

3 hls::stream<unsigned> &in;

4 hls::stream<unsigned> &out;

5 //1 Insert constructor

6 + If2(hls::stream<unsigned> &i,

hls::stream<unsigned> &o) :

in(i), out(o) {}

7 ...

8 void do1() {..}

9 }

10

11 void top(hls::stream<unsigned> &in,

hls::stream<unsigned> &out) {

12 #pragma HLS DATAFLOW

13 //2 static the stream

14 - hls::stream<unsigned> tmp;

15 + static hls::stream<unsigned> tmp

;

16 If2{ in, tmp }.do1();

17 If2{ tmp, out }.do1();

18 }

(b) Repaired Code

Figure 5: Example repair for unsynthesizable struct.

amount of hardware resources to allocate, leading to a failed

synthesis with two errors łERROR [SYNCHK-31] dynamic

memory allocation/deallocation is not supportedž and łER-

ROR [SYNCHK-61] unsupported memory access on variable

line_buf_a.ž To correct these errors, the array size must be

declared as a constant after experimentation with different

array sizes. Performance implication: fixing these errors re-

duces communication frequency between CPU and FPGA.

• Unsupported Data Types: Post No. 752508 [2] presents an

example of unsupported data type long double. Initially, a

trigonometric function is declared with long double vari-

ables, leading to arithmetic operator overloading errors. Fig-

ure 4 demonstrates code repairs to fix such errors. Lines 2-3

in Figure 4b replace a long double type to a float type

with a custom bitwidth fpga_float<8,71>. Line 6 explic-

itly performs this type casting by changing a 32-bit integer

to this float type, because implicit type casting is not well

supported in HLS. Line 5 manually overloads a correspond-

ing custom arithmetic operation for this type. Performance

implication: customizing data types reduces resource con-

sumption, which directly impacts the parallelism level and

operating frequency.

• Dataflow Optimization: HLS developers may insert #pragma

HLS dataflow to enable task-level pipelining, allowing over-

lap and simultaneous execution of involved tasks. In Post

No. 595161 [3], a sub-function my_func(char data[128])

is called twice in top_function, inducing łERROR: Array

‘data.0’ failed dataflow checking,ž because the same input

data is passed to two simultaneous my_func invocations.

Such dataflow optimization errors could be fixed by seg-

menting the original input data into multiple small arrays

of different sizes to enable simultaneous, independent com-

putation. Performance implication: segmenting data creates

finer-grained tasks, leading to increased degree of paral-

lelism.

• Loop Parallelization: Similar to dataflow optimization, loop-

optimization specific pragmas can induce HLS errors. In post

No.721719 [4], łERROR [HLS-70] Pre-synthesis failedž occurs

after inserting an unroll pragma in the loop body. However,

this error occurs only with an unrolling factor of 50 or more
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Table 2: Parameterized edits for each error type.

Type Example Parameterized Edits

Dynamic Data Structures array_static($a1:arr,$i1:int), insert($a1:arr,$d1:dyn), resize($a1:arr), stack_trans($d1:dyn), etc.

Unsupported Data Types pointer($v1:ptr), type_trans($v1:var), array_static($a1:arr), type_casting($v1:var), etc.

Dataflow Optimization delete($p1:pragma,$f1:func), move($p1:pragma,$f1:func), insert($p1:pragma,$f1:func), etc.

Loop Parallelization index_static($l1:loop), mem_reset($l1:loop), init($l1:loop), explore($p1:pragma,$l1:loop), etc.

Struct and Union
constructor($s1:struct), flatten($s1:struct), stream_static($f1:stream,$s1:struct),

inst_static($s1:struct,$v1:name), pointer($s1:struct), etc.

Top Function delete($p1:pragma,$f1:func), move($p1:pragma,$f1:func), insert($p1:pragma,$f1:func), etc.

1 static bool is_recursion(FunctionDeclaration *func){

2 auto ref = isFunctionRefExp(i);

3 auto ref_func = ref->getAssociatedFunctionDeclaration();

4 auto def_ref_func = ref_func->get_definingDeclaration();

5 if(def_ref_func == func)

6 return true;}

Figure 6: Repair location for recursion.

because of two interacting pragmas: a pre-existing dataflow

pragma and the unroll pragma with factor 50. This error

could be removed by setting up an explicit total number

of iterations performed by a loop, making all indexed items

static, and exploring combinations of pragma dataflowwith

a different tripcount. Performance implication: unrolling a

loop appropriately leads to parallelization and performance

improvement.

• Struct and Union: To use structs and unions in HLS, a de-

veloper must declare supporting hardware level implemen-

tations accordingly. Post No. 1117215 [5] demonstrates an

error caused by unsynthesizable structs shown in Figure 5.

Using two struct instances in lines 16-17 in Figure 5a is not

supported in HLS, because there are no corresponding con-

structor and data transfer implementations at the hardware

level. To fix this error, a developer must declare an explicit

constructor in line 6 in Figure 5b and an associated static

streaming function tmp in line 15 in Figure 5b. Performance

implication: supporting structs and unions also reduces fall-

back and communication.

• Top Function.: A top function is a module entry point (i.e.,

a hardware interface), and an error may occur when its

configuration such as a clock frequency or a device name

is incorrect, has an incorrect data path, or misspells a top

function name, e.g., Post No. 810885 [6].

Key Takeaway. Common fix patterns extracted from user posts can

provide clear guidance in the search process so that each iteration

can focus on meaningful edits rather than trying out random edits

most of which are guaranteed not to work. In fact, all but one

programs in our experiments were successfully fixed with these

patterns guiding the search process. Five of these six patterns can

also improve performance. As a result, most of our edits can lead to

more efficient programs as well. How to parameterize these patterns

and encode their dependences will be discussed in the following

sections.

5.2 Repair Localization

Spectrum-based fault localization is a commonly used technique

in locating where to apply repairs [29, 35, 57]. HeteroGen designs

an HLS-specific repair localization method based on HLS compiler

error messages. The key insight here is that HLS compiler error

messages often provide a crucial hint on which language constructs

must be modified to make it HLS compatible. For example, based

on an error message łERROR: [XFORM 202-876] Synthesizability

check failed: recursive functions are not supported,ž we can locate a

recursive function whose invocation target name is the same with

its defining declaration (line 5 in Figure 6). HeteroGen is equipped

with an error-type specific localization. Currently, HeteroGen clas-

sifies each HLS error message to one of the six types described

in ğ5.1 by extracting keywords such as łrecursion,ž łdataflow,ž or

łstruct,ž etc. Then it finds potential repair locations for each error

type. In HeteroGen, this repair localization module is designed

for extensibilityÐfor a new HLS error type, a user can add a new

corresponding repair localization module.

5.3 Repair Exploration

Given a heterogeneous application, the HLS compilation process

involves a series of operations: scheduling, resource allocation, bind-

ing, and mapping, etc. This process, together with the simulation,

can take several minutes to hours, depending on kernel logic com-

plexity. Such high latency makes HLS not suitable for traditional

evolutionary repair where, after each repair attempt, a compiler is

invoked and the compiled program is executed with given inputs.

Below we describe how HeteroGen reduces automated repair time.

HLS Coding Style Validity. HLS has a phased, top-down compi-

lation and execution flow. Our observation is that we can always

safely terminate the compilation for a program that does not adhere

to HLS coding styles. Such style checking can be performed without

setting up a time-consuming HLS environment. Thus HeteroGen

leverages a lightweight LLVM frontend specifically for HLS cod-

ing style checks before invoking the full HLS compilation process.

For example, when inserting an HLS array_partition pragma

to enable parallel operations on arrays, HeteroGen invokes this

checker to ensure this pragma is inserted within the boundaries of

the function, where the array variable is defined. Although such

LLVM-based checking has non-zero cost, this time is negligible com-

pared to invoking the full HLS compilation process with hardware

resource allocation, scheduling, binding, and technology mapping.

Dependence-basedRepair Exploration. In prior work, automated

program repair leveraged fix patterns extracted from correct ref-

erence code [66], bug fix histories [31, 39], or human-written pat-

ches [29] and used such patterns to explore the space of repair

candidates. In the HLS domain, there is a unique opportunity to

draw hints on where to apply repairs based on HLS compiler error

messages. For each error message, HeteroGen maps the message
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1 struct If2 {

2 ...

3

4 If2(hls::stream<unsigned> &i,

5 hls::stream<unsigned> &o)

6 : in(i), out(o)

7 ...};

8

9 void top(hls::stream<unsigned> &in, hls::

stream<unsigned> &out) {

10

11

12 hls::stream<unsigned> tmp;

13 static hls::stream<unsigned> tmp;

14 If2{ in, tmp }.do1();

15 If2{ tmp, out }.do1();

16 }

(a) Parameterized Edits for Struct and Union

constructor(If2)

stream_static(tmp,If2)

➊

➌

1 struct If2 {

2

3 hls::stream<unsigned> &in;

4 hls::stream<unsigned> &out;

5 unsigned doRead() const{

6 unsigned doRead(hls::stream

7 <unsigned> &in)const{

8 ...} ...};

9

10 void top(hls::stream<unsigned> &in, hls::

stream<unsigned> &out) {

11 hls::stream<unsigned> tmp;

12

13 If2in,tmp.do1(); If2tmp,out.do1();

14 do1(in,tmp); do1(tmp,out);

15 }

(b) Alternative Parameterized Edits for

Struct and Union

flatten(If2)

inst_update(If2)

➋

➍

pointer($v1:ptr)

array_static($a1:arr)

type_trans($v1:var)

type_casting($v1:var) op_overload($v1:var)

flatten($s1:struct)constructor($s1:struct)

stream_static
($f1:stream,$s1:struct)

inst_static
($s1:struct, $v1:string)

inst_update($s1:struct)

(c) Dependence and Precedence Structure

➊ ➋

➌
➍

➎
➏

➐

➑

➒ ➓

Figure 7: Dependence Structure of Parameterized Edits. Red marks additions, and gray marks deletions.

to an error type, corresponding fix patterns, and the dependence

relations among constituent repair edits, as shown in Table 2.

HeteroGen encodes the repair operations as parameterized edits

whose variable, function, and type names could be concretized to a

given context. For example, the HLS error on struct and union, the

following edits may be needed:

• constructor($s1:struct): insert a constructor of $s1 if

not existed;

• flatten($s1:struct): flatten $s1 with its standalone vari-

ables and methods;

• stream_static($f1:stream, $s1:struct): make a static

data transfer streaming function $f1 for struct $s1 instances,

if exists;

• inst_static($s1:struct, $v1:string): make a static in-

stance of struct $s1 with an assigned name $v1;

• pointer($s1:struct): rewrite pointers in struct $s1.

Since a single error could be fixed in multiple ways, we define a

set of constituent edits and describe dependence relations of those

edits. For example, for the Struct and Union error type, ten con-

stituent edits could be defined, as shown in Figure 7. Figure 7a

shows the code differences before and after parameterized edits

➊➌ in which we insert an explicit constructor in the struct If2

followed by making the connection stream tmp static. Alternative

parameterized edits ➋➍ are shown in Figure 7b in which we flat-

ten the struct If2 with standalone methods and update all the

associated instances.

We summarize the dependence relations among parameterized

edits for this error type in Figure 7c. Evolutionary algorithms

can use this type-specific dependence structure to enumerate the

space of applicable repairs, for example {➊, ➋, ➊➌, ➋➍, ➊➌➎,
➋➍➑,. . . }. During this search process, HeteroGen records the sim-

ulation time for different repair candidates, and finds the variant

with the best performance within the search space. If errors of other

types arise in a variant, HeteroGen adds this variant to the queue

and repeats the dependence-based search until any repair candidate

behaves identically with the original program.

Similarly, to fix a dynamic memory allocation error, developers

may need an array_static($a1:arr, $i1:int) edit to declare

an array with size i1, and such edit naturally requires a subsequent

resize($a1:arr) edit to experiment with different array sizes for

$a1. However, these two edits cannot work in a reverse order. Het-

eroGen extracts edits for removing dynamic memory allocations,

pointers, and recursions based on [33] and leverages dependence

relations among constituent repair edits to accelerate enumeration

of applicable repairs.

Behavior Preservation via Differential Testing. Using a set of

tests generated from ğ4, HeteroGen executes the original C/C++

application on CPU. Then it compares the outcome against the

simulation outcome of a heterogeneous variant being constructed.

HeteroGen computes the ratio of tests that have identical behav-

ior, and compares the simulation latency of the generated tests

between CPU and FPGA. In other words, HeteroGen considers both

semantics preservation and performance improvement as a code

generation goal.

6 EVALUATION

We evaluate following research questions:

RQ1 How often can HeteroGen produce a heterogeneous appli-

cation that can guarantee the same behavior with better

performance?

RQ2 How efficient and effective is HeteroGen’s test input genera-

tion for aiding HLS compilation?

RQ3 How efficient is HeteroGen’s evolutionary repair?

RQ4 How does HeteroGen’s auto-generated version compare to

themanual developer version and priorwork of HeteroRefac-

tor [33] in terms of performance and code size?

Benchmarks. We evaluated HeteroGen with ten C/C++ applica-

tions with FPGA as accelerators, listed in Table 3. They include

eight microbenchmarks (P1-P8 ) from prior work [33] or gathered

from Xilinx forum, and two real-world applications (P9-P10) from

the Rosetta benchmark [67]. All of these programs were taken from

publicly available sources, and their issues represent real-world

programming challenges.

These programs may look small to researchers of pure-software

systems, but they are larger than other benchmarks on specialized

hardware accelerator synthesis. Our evaluation subjects have up

to 465LOC, compared to 200LOC for MachSuite[49] and 100LOC

for Intel’s t2sp [22]. The complexity of HeteroGen’s transpilation

depends on types of HLS compatibility errors, not the code size of
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Table 3: Subjects and overall results.

HLS Improved

ID Subject Compatibility Performance?

P1 signal transmission ✓ ×

P2 arithmetic computation ✓ ✓

P3 merge sort ✓ ✓

P4 image processing ✓ ✓

P5 graph traversal ✓ ✓

P6 matrix multiplication ✓ ✓

P7 bubble sort ✓ ✓

P8 linked list ✓ ✓

P9 face detection ✓ ✓

P10 digit recognition ✓ ✓

the original program. A bigger program could be handled as long

as the compatibility error is one of the six supported types.

Experimental Environment. All experiments were conducted on

a machine with Intel(R) Core(TM) i7-8750H 2.20GHz CPU and 16

GB of RAM running Ubuntu 18.04. The test generation was built on

AFL version 2.52b [7]. The code transformation was implemented

based on LLVM version 8.0.0 [37]. The converted programs were tar-

geted at a Xilinx Virtex UltraScale+ XCVU9P FPGA on a VCU1525

Reconfigurable Acceleration Platform. Latency was reported by the

FPGA simulator.

6.1 Program Conversion Effectiveness

We assess HeteroGen’s efficacy by inspecting if the produced HLS-

C program achieves both HLS compatibility and better performance.

We empirically set three hours as the terminating time limit. As

shown in Table 3, HeteroGen has successfully fixed all HLS com-

patibility errors in all programs, and nine of them outperform the

original programs. Because HeteroGen’s fix patterns are drawn

from real-world HLS compatibility fixes, by construction, it pro-

duces HLS-compatible code, although some fixes may not improve

performance. When multiple repair candidates are applicable to

fix the original program, HeteroGen produces the most efficient

version. After a careful investigation on P2-P10, we conclude that

HeteroGen realizes performance benefits primarily through explor-

ing loop- and array-related pragmas to enable parallelization. For

P1, however, the program transforms 3-dimensional RGB signals to

YUV signals via basic arithmetics without any loops or arrays. As

such, HeteroGen could not perform any performance-improving

edits.

6.2 Test Generation

We run test generation for each subject with a random seed andman-

ually terminate the fuzzing process until AFL’s process timing

indicator shows that 30 minutes have passed since exercising the

last new path. In other words, we generate new tests until branch

coverage is no longer increasing significantly despite new input

generation. We repeat the process three times and report the aver-

age numbers of generated tests, execution time, and corresponding

branch coverage in Table 4 (HeteroGen in column HG). In sum-

mary, the generated 2,437 (average) tests cover 97% branches in

our subjects. This is a significant improvement because not all sub-

jects come with tests and pre-existing tests reach only 36% branch

coverage.

Table 4: Generated tests.

HG Existing

# of Time # of

Subject Tests (mins) Cov. Tests Cov.

P1 27 35 100% N/A N/A

P2 6,930 50 100% N/A N/A

P3 1,800 50 100% 10 25%

P4 47 55 100% N/A N/A

P5 38 41 100% 10 40%

P6 14,896 35 100% 4 33%

P7 399 35 100% N/A N/A

P8 54 50 100% N/A N/A

P9 43 84 70% 1 15%

P10 133 67 100% 11 70%

1 void traverse(Node_ptr curr)

2 {

3 traverse(Node_arr[curr].left);

4 traverse(Node_arr[curr].right);

5 }

(a) Recursive program

1 void traverse_converted(Node_ptr curr)

2 { stack<context> s(1024);

3 stack<context> s(2048);

4 while (!s.empty()){...} }

(b) Stack-based repair

Figure 8: Red marks the repair with the generated tests,

while blue marks the repair with pre-existing tests only.

For the programs that come with existing test cases, we run

HeteroGen with both existing tests and generated tests. For P3 [33],

HeteroGen transforms the recursive traversal in lines 2-3 of Fig-

ure 8a to a stack-based implementation. With pre-existing tests,

HeteroGen initially sets the stack size as 1024; however, after gener-

ating more tests, 44% of the tests produce outcomes different from

CPU. Finally, after experimentation with a different stack size and

setting it to 2048, all tests produce identical results between CPU

and FPGA. This demonstrates the absolute requisite of incorporat-

ing automated test generation in converting C programs to HLS-C

variants to ensure behavior preservation.

6.3 Speedup for Repair Process

HeteroGen leverages a two-fold approach to expedite the repair

process: dependency-based exploration to reduce the number of re-

pair attempts and coding style check to reduce latency. We conduct

an ablation study to evaluate the benefit of each optimization in

isolation. For this, we create two alternative versions as baselines:

• WithoutChecker is a downgraded version of HeteroGen

that invokes the full HLS compilation process in each repair

attempt without using an LLVM-based HLS style checker.

• WithoutDependence is a downgraded version of HeteroGen

that chooses any candidate edit in a random order. This

version still invokes an LLVM-based HLS style checker.

To assess speedup enabled by dependence-based exploration,

Figure 9 shows the wall-clock time of the same repair tasks for

HeteroGen and WithoutDependence. HeteroGen is up to 35X faster

than WithoutDependence. Multiple coordinated edits are neces-

sary for repairing HLS compatibility errors. HeteroGen takes the

advantage of dependence relations to accelerate enumeration of

applicable repairs, while WithoutDependence applies random edits

in each iteration, leading to a much larger search space. For exam-

ple, the naïve probability of selecting ➌, given that ➊ is already

selected, in Figure 7c is 10% (= 1/10) in WithoutDependence. In this

case, HeteroGen applies ➌ after ➊ based on dependence.
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Figure 9: Time and HLS invocations. WithoutDependence

fails to achieve HLS compatibility within 12 hours for P9.

To assess speedup enabled by LLVM-based HLS coding style

checks, we compare HeteroGen with a downgraded version With-

outChecker that invokes the full HLS compilation for each repair

attempt. We report the number of HLS tool chain invocations. In

Figure 9, the black bars show the percentages of invoked HLS pro-

cesses in all repair attempts for each subject. In P3, HeteroGen can

obviate the need of invoking the full HLS tool chain by 75%, which

results in a 4× speedup. HeteroGen achieves such a speedup by

checking HLS-coding styles first, and invokes the subsequent HLS

process (e.g., hardware resource allocation, scheduling, technology

mapping and binding, etc.) only if the candidate repair conforms to

HLS coding styles. This early termination saves time but does not

sacrifice HeteroGen’s repair capability, because most HLS compati-

bility errors could reliably be reported in the beginning phase of

hardware synthesis.

6.4 Comparison with Human Generated
Programs and HeteroRefactor

Table 5 reports the comparison between HeteroGen ( HG) and prior

work HeteroRefactor [33] (HR). The human-generated versions are

either from the accepted answers of online posts, or are shipped

with the Rosetta benchmark [67]. For HeteroRefactor, we ran its

publicly available version on the same subject programs.

Code Edit. We measure the size of code edits by calculating the

number of added lines with respect to the total lines of code in the

original program.

First, we note that both HeteroGen’s generated HLS programs

and human-generated HLS programs produce identical test behav-

ior between CPU and FPGA for all subject programs. As an example,

if we manually port program P9 to FPGA HLS, 3272 line edits are re-

quired. Such edits utilize a trace-based memory banking technique

to pipeline memory access patterns in the Viola-Jones algorithm.

In contrast, HeteroGen applies 144 line edits to produce an HLS

version. On average, HeteroGen automates 143 line edits, reducing

HLS programming effort.

Table 5: Comparison againstmanual edits andHeteroRefac-

tor [33].

Origin ΔLOC Runtime (ms)

ID LOC Manual HR HG Origin Manual HR HG

P1 15 78 ✗ 69 0.21 0.11 ✗ 0.35

P2 24 8 ✗ 9 0.96 0.45 ✗ 0.53

P3 121 276 342 356 1.46 1.09 1.19 1.13

P4 285 136 ✗ 32 8.4 2.01 ✗ 3.28

P5 85 144 ✗ 438 1.68 0.91 ✗ 1.17

P6 19 25 ✗ 16 1.13 0.35 ✗ 0.89

P7 50 45 ✗ 25 3.6 2.31 ✗ 2.59

P8 131 156 ✗ 298 3.46 1.28 3.46 1.79

P9 465 3272 ✗ 144 101 33 ✗ 47

P10 117 61 ✗ 35 24.3 10.5 ✗ 13.6

Second, when comparing HeteroGen against prior work Het-

eroRefactor [33], we find that HeteroRefactor works only for P3

and P8 out of 10 programsÐ20% vs. 100% transpilation success for

HeteroRefactor and HeteroGen respectively. In fact, HeteroRefac-

tor ’s scope is limited to dynamic data structures, while HeteroGen

’s scope includes additional dataflow, loop parallelization, struct

and union, unsupported data types, and top functions. Therefore,

by definition, HeteroGen has a superior capability in transpiling C

to HLS-C than HeteroRefactor.

Performance. We assess the performance improvement by com-

paring the runtime of (1) the converted program on FPGA; and

(2) the original kernel code on CPU. The execution latency is re-

ported by the HLS simulator. On average, HeteroGen’s converted

versions and the manually crafted versions are 1.63× and 2.43×

faster than the original CPU versions, respectively. For P3 and P8,

HeteroRefactor ’s generated code is 1.53× slower than Hetero-

Gen ’s output, because HeteroGen can perform additional types of

transformations to improve performance.

HeteroGen does not primarily target performance gains. Het-

eroGen is implemented in an extensible manner such that it is

easy to include new transformation patterns. For example, matrix

partitioning [14] transformation could be added to improve perfor-

mance. HeteroGen provides an infrastructure for code conversion

automation, opening up massive opportunities for incorporating

such (current and future) patterns.

6.5 Limitations

We discuss the limitations of current HeteroGen as follows.

Restricted Platform. HeteroGen is designed for heterogeneous

computing with FPGA only. The integrated repair edits are ex-

tracted based on Vivado HLS errors and their corresponding cor-

rections. The key idea of HeteroGen could generalize to other

FPGA-based platforms by updating the current set of repair edits.

Over-Estimated Bitwidth. The generated test inputs reflect the

value range for each type. Consequently, when finitizing resources,

HeteroGen often overestimates the stack size, array size, and bit-

widths based on the declared types in the original C program. Such

type-based over-estimation could lead to resource waste in the

transformed program.

Insufficient Performance-Improving Edits. HeteroGen focuses

on legacy code rewriting for HLS compatibility errors. Thus, code

transformations for algorithmic redesigns or auto-parallelism to

enhance performance are left as future work.
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7 RELATED WORK

Heterogeneous Computing with FPGA. Heterogeneous comput-

ing delivers superior performance for diverse applications (e.g.,

machine learning, data analysis and graph processing) [25ś27, 32,

38, 54, 62, 63]. Programming complexity control has been a long

challenge for the adoption of FPGA acceleration. State of the art

techniques for advancing heterogeneous computing fall into four

primary categories.

Programming languages and compilers.HLS compilers extend C/C++

with ad hoc annotations to express hardware-level concerns [12, 15].

Calyx [43] is a new intermediate language for generating hardware

accelerators. It separates the specification of an accelerator’s data

path from its execution schedule, and aims to generate desired archi-

tecture without resorting to low-level RTL engineering. KLOCs [25]

proposes a new heterogeneous memory system, and uses a compiler

transformation for Verilog to produce performance optimized code.

Domain-specific ISAs. Domain- or application-specific ISAs [16, 19,

56] provide customization opportunities for general ISAs to reduce

storage/control overhead by generating compact code, thereby pro-

viding a simple programming environment/flow and making FPGA

acceleration accessible.

Hardware abstractions. FPGA hardware abstractions [28, 62] pro-

vide systems support for resource management. For example, SYN-

ERGY [32] virtualizes FPGA workloads across a cluster of Altera

SoCs and Xilinx FPGAs on Amazon F1. Optimus [38] proposes a

hypervisor that supports scalable shared-memory virtualization.

Simulation tools: Various simulation tools are designed for bet-

ter accuracy and performance estimation [26, 27]. For example,

FirePerf [27] enables a set of system-level performance profiling

capabilities integrated into the FPGA simulator.

Unlike these works, HeteroGen aims to simplify HLS program-

ming, improving developer productivity and program performance.

Code Rewriting for HLS. Enabling high level synthesis of recur-

sive structures has been a long challenge, because unlike CPU, the

address space for each array is separate in FPGA. Thomas et al. [53]

provide a C++ template library for supporting recursion in HLS but

would require a developer to manually rewrite control statements

using lambdas. SynADT [61] is an HLS library for linked lists, bi-

nary trees, hash tables, and vectors, and it internally uses arrays

and a shared system-wide memory allocator [60]. HeteroRefac-

tor [33] builds the dynamic data structure support, and bitwidth

optimization for integers and floating points in HLS programs. Un-

fortunately, code refactoring is error-prone itself and these tools do

not generate tests that can validate functionality. Moreover, these

tools are not automatedÐthey do not account for compatibility

issues and require developers to manually refactor their code.

In contrast, HeteroGen automatically converts a C/C++ program

to its equivalent HSL-C variant for FPGA-based heterogeneous

computing without requiring any developer involvement.

Test Generation. Fuzz testing generates new inputs by mutating

previous inputs to expose unseen program behavior and it has been

highly effective in revealing various bugs, including correctness

bugs [10, 44, 45, 64, 65], security vulnerabilities [11, 18], and per-

formance bugs [58]. One important angle to push test generation

towards hard-to-reach corners or specific error types is to encode

diverse feedback information as a fuzzing guidance metric. For

example, while AFL [7] mutates a seed input to maximize cumula-

tive branch coverage, MemLock [58] uses memory consumption

as performance-side feedback to detect abnormal memory behav-

ior. HeteroGen takes a similar approach. In addition to monitoring

branch coverage, HeteroGen inserts a type checker by analyzing

the arguments of kernel code and uses such additional feedback.

Thus, generated inputs can better serve the purpose of driving the

program execution to a deep path.

Superoptimizers. Superoptimizers use a stochastic process to gen-

erate instruction sequences with better performance. Churchill et

al. [13] propose a new architecture for superoptimizers by incorpo-

rating a fully sound verification technique to ensure correctness and

a bounded verification technique to guide the search to optimized

code. STOKE [52] formulates the loop-free binary superoptimiza-

tion task as a stochastic search problem and produces programs

either match or outperform the code produced by gcc -O3, icc -O3.

cSTOKE [51] improves STOKE by using the knowledge of input

restrictions to generate binaries that ensure correctness only on

the restricted inputs. Although superoptimizers perform an iter-

ative optimization process similar in spirit to our search process,

they optimize assembly code, which does not have types and thus

compatibility issues that HeteroGen has to deal with.

Program Repair. Starting from a faulty program that deviates

from its intended behavior, the automated repair process iterates

fault localization, candidate repair generation, and repair evalua-

tion [29, 31, 35, 39, 57]. To minimize unfruitful repair attempts, sev-

eral techniques [9, 23, 30, 47] leverage smart encoding of complex

repairs. Some explores the space of repair candidates by leveraging

fix patterns learned from correct reference code [36, 66], bug fix

histories [31, 34, 39], or human-written patches [29]. Inpired bySY-

DIT [40] and LASE [41], HeteroGen extracts complex repairs from

example patches and encode repairs in terms of parameterized AST

edits with dependence relations. However, all repair techniques

build on the assumption that the target program can be compiled

quickly. On the contrary, HeteroGen uses novel techniques that are

specifically designed to address the need of behavior preservation

and performance optimization in an environment where a naïve

łtrial-and-errorž approach is prohibitively expensive.

8 CONCLUSION

This paper presents HeteroGen, a C-to-HLS-C transpiler that solves

the painful HLS code conversion problem with novel techniques

specifically designed to address the need of semantics preserva-

tion and performance optimization. HeteroGen produces an HLS-

compatible version for nine out of ten real-world heterogeneous

applications fully automatically and achieves an overall of 1.63×

speedup compared with the input programs.
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