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ABSTRACT

Electronic devices are increasingly the subject of inspection by

authorities. While encryption hides secret messages, it does not

hide the transmission of those secret messagesÐin fact, it calls

attention to them. Thus, an adversary, seeing encrypted data, turns

to coercion to extract the credentials required to reveal the secret

message. Steganographic techniques hide secret messages in plain

sight, providing the user with plausible deniability, removing the

threat of coercion.

This paper unveils Invisible Bits a new steganographic technique

that hides secret messages in the analog domain of Static Random

Access Memory (SRAM) embedded within a computing device.

Unlike other memory technologies, the power-on state of SRAM

reveals the analog-domain properties of its individual cells. We

show how to quickly and systematically change the analog-domain

properties of SRAM cells to encode data in the analog domain

and how to reveal those changes by capturing SRAM’s power-on

state. Experiments with commercial devices show that Invisible

Bits provides over 90% capacityÐtwo orders-of-magnitude more

than previous on-chip steganographic approaches, while retaining

device functionalityÐeven when the device undergoes subsequent

normal operation or is shelved for months. Experiments also show

that adversaries cannot differentiate between devices with encoded

messages and those without. Lastly, we show how to layer encryp-

tion and error correction on top of our message encoding scheme

in an end-to-end demonstration.

CCS CONCEPTS

·Hardware→Communicationhardware, interfaces and stor-

age; · Security and privacy→Pseudonymity, anonymity and

untraceability.
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1 INTRODUCTION

In many cases, encryption alone is insufficient as revealing the

transmission of secret messages opens one to the threat of phys-

ical coercion (commonly called a rubber hose attack [6]) or even

death [27]. Historically such ramifications were limited to spies,

who used dead drops as a cover for communication. For example,

during the cold war, Martha Peterson used dead rats as literal dead

drops to communicate with Aleksandr Ogorodnik, a member of

the Soviet Foreign Ministry, who was relaying secret foreign ca-

bles [49]. The proliferation of computing devices and the rise of

concern about information passing across national borders push

the need to hide the presence of secret messages down to the level

of normal citizens. Consider that at the United States border alone,

searches of electronic devices increased 400% over the last five

years [50, 51]. Such searches extend well beyond the borders of

the United States, with potentially worse consequences in other

nations [1, 11, 14]. In response, travelers are already looking for

ways to hide information. For example, in 2012, a Syrian refugee

smuggled evidence of human rights violations by hiding memory

chips in a wound [4, 33]. Given that border controls are getting

tighter, with greater emphasis on electronic devices, and more ad-

vanced analysis [29], the need to hide the act of communication

grows.

As restrictions continue to reduce the free flow of information,

hiding the presence of secret messages becomes paramount; hiding

the existence of a secret message prevents forceful key disclosure

or other attacks from being attempted, because the attacker is un-

aware of the communication. Such message hiding is referred to

as steganography. Steganography is communication over a covert

channel that is modulated on top of everyday objects. A key prop-

erty of steganography is plausible deniability: attackers are unable

to distinguish between objects that carry covert information and

objects that do not. Plausible deniability is what allows for covert

communication in plain sight. An effective steganography system

provides both analog- and digital-domain plausible deniability and

is able to withstand normal use of the carrier object without dis-

turbing or revealing the secret message modulated on top.

Given the value of being able to hide the existence of data, re-

searchers propose a range of stenographic techniques that work

at various levels of the system stack. The most popular techniques

work at the system level, hiding data in images [12, 53], audio

files [54], video files [40], and within file systemmetadata [5, 30, 35].

Another set of techniques hides data in the transmission of cover

data across a network [55]. These approaches tend to be very

low capacity, because they cannot interfere with the cover dataÐ

otherwise, plausible deniability is lost. A higher capacity set of

techniques encodes data in the device memory itself as opposed

to in digital files stored by the memory; this set of techniques that

hides data in the analog domain of a device is referred to as on-chip

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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(a) Original SRAM
power-on state.

(b) Secret message to
encode into SRAM.

(c) Power-on state after
encoding.

(d) Received message
after error correction.

(e) SRAM’s power-on
state after encrypted
message encoding.

Figure 1: Invisible Bits and its various use cases on SRAM embedded in Texas Instruments MSP432 [21]

stenography. The main target of existing on-chip steganography

techniques is Flash memory: (1) the charge held in a Flash cell [57]

and (2) the program/erase time of a Flash cell [52]. While these

approaches marginally increase the capacity of file- and network-

based techniques, they all suffer from limited resilience, i.e.,

it is easy for the attacker to erase the message, even if they

cannot prove one exists.

In this paper, we design and implement an on-chip stegano-

graphic technique that uses a more ubiquitous on-chip memory

that dramatically increases capacity and resilienceÐwhile providing

both digital- and analog-domain plausible deniability: Static Ran-

dom Access Memory (SRAM). Our system Invisible Bits, encodes

secret messages into SRAM’s analog-domain properties by control-

ling and accelerating the natural aging process that all transistors

experience. SRAM’s power-on state is unique in that individual

cells power-on to a value determined by the relative analog-domain

properties of the cross-coupled inverter gates at the heart of ev-

ery cell. The value an SRAM cell holds determines which of the

two inverters is active. While an inverter is active, it gradually

ages, changing its analog-domain properties; given enough aging,

the power-on state of the cell will change, making analog-domain

changes visible in the digital domain through its power-on state.

We show how to control the direction and rate of this aging process

in a way that allows us to dictate the power-on state of >90% of

SRAM cells. We show that even with such a significant change in

the analog domain, the device functions normally at the digital

level. Figure 1 shows an example image encoded into a device using

Invisible Bits.

Invisible Bits has the following advantages as a steganographic

technique:

• Covert: Invisible Bits does not store information in a tradi-

tional sense, which is attributable to the volatility of SRAMs.

The payload is decoupled from the normal functionality of

SRAM as memory, which provides digital-domain plausible

deniability. To protect against more powerful adversaries,

Invisible Bits encrypts the payload before encoding, which

ensures the indistinguishability of the power-on states of

devices with a message encoded and those without.

• Erase/Write tolerant: Invisible Bits is robust against general-

purpose device operation. That is, an encoded SRAM with-

stands regular memory operation (i.e., read/write) without

introducing significant error in the hidden message.

• Ubiquity:Most computing devices use on-chip SRAM either

as a cache (e.g., desktop-class devices), or main memory (e.g.,

embedded devices), or configuration memory (e.g., Field-

Programmable Gate Arrays), and so Invisible Bits applies to

all of these devices.1

• Constant time operation: Since SRAM cells age due to the

feedback loop inherent in their structure, all SRAM cells (that

have power) age concurrently. Given the speed of writing

to SRAM, payload encoding time is largely independent of

SRAM size and payload size, but dominated by the time it

takes to change SRAM’s analog-domain properties so that

they affect its power-on state.

• Copy tolerant: Sampling power-on state at normal operat-

ing conditions does not alter the encoded payload.

This paper makes the following contributions:

• We show that directed SRAM aging is a covert channel that

one can exploit to transfer data with plausible deniability

(ğ2 and ğ4).

• We implement and evaluate an end-to-end steganography

system using modern, commercially available computing

devices (ğ6).

• We improve information capacity by 100x compared to Flash-

based on-chip steganographic techniques (ğ5.3).

• We show that the proposed system is resilient to long-term

natural recovery (ğ5.1.3) and that it retains the encoded mes-

sage reliably under normal operating conditions (ğ5.1.4).

• We implement and evaluate both error correction and en-

cryption on top of Invisible Bits, showing that encryption

provides analog-domain plausible deniability (ğ5).

2 BACKGROUND AND MOTIVATION

After turning-on a device, the SRAM embedded within the device

retains its power-on state until software overwrites it. SRAM’s

uninitialized power-on state possesses interesting properties such

as temporal and spatial randomness, making it an attractive secu-

rity primitive in numerous applications such as physical unclonable

functions (PUF), random number (TRNG), and device fingerprint

generators [16, 17, 38]. As long as SRAM stores some data, regard-

less of whether it is from a power-on event or from software, it

undergoes analog-domain changes in a process called aging; such

analog-domain changes are reflected digitally in future power-on

1Invisible Bits requires the ability to access SRAM power-on state for a given device,
before it is overwritten.
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Figure 2: (a) 6T SRAM cell schematic (b) simulation wave-

form of startup state of the cell.

states [25]. Invisible Bits harnesses, directs, and accelerates SRAM

aging as means to reliably encode secret messagesÐwithout altering

the functionality of the SRAM.

2.1 SRAM Startup Properties

Figure 2a shows the conventional 6-transistor SRAM cell, which

consists of two cross-coupled inverters (transistors M1 and M2

form Inverter-1, while M3 and M4 form Inverter-2) and two ac-

cess transistors (M5 and M6) that allow access to the logic state

stored in the cell. At design time, aspect ratios of the Inverter-1’s

PMOS and NMOS match perfectly with the PMOS and NMOS of

Inverter-2 [(𝑊 /𝐿)2 = (𝑊 /𝐿)4 and (𝑊 /𝐿)1 = (𝑊 /𝐿)3]. The sym-

metric design maximizes the static noise margin and minimizes

the data retention voltage [18, 19]. Process variation causes post-

manufacturing transistor mismatchÐmaking((𝑊 /𝐿)2 ≠ (𝑊 /𝐿)4
and (𝑊 /𝐿)1 ≠ (𝑊 /𝐿)3; 𝑣𝑡ℎ2

≠ 𝑣𝑡ℎ4
and 𝑣𝑡ℎ1

≠ 𝑣𝑡ℎ3
.

As a result of inverter asymmetry, one inverter turns on faster

than the other, causing an SRAM cell to prefer one power-on state

over another. When the cell is unpowered, all wires are at the

ground voltage. As power is applied to the cell, both node A and

B attempt to follow the supply voltage’s (𝑉𝑑𝑑 ) ramp-up. After this

initial mutual ramp-up, one of the transistors, M2 or M4, turns on

faster due to differences in analog-domain properties, causing its

output node (B or A, respectively) to pull up to the supply voltage,

while the other node is pulled down to the ground by M3 or M1,

respectively. Thus, the post-power-on steady-state voltage at nodes

A and B depends on a hardware-level race condition between the in-

verters. The relative analog-domain properties (primarily threshold

voltage) of the transistors largely determine the race winner. The

grey curves in Figure 2b show that after 2𝑛𝑠 of powering the cell

up, node A and B settle at 𝑉𝑑𝑑 and ground, respectively. Because

the threshold voltage of M4, |𝑣𝑡ℎ4
|, is less the threshold voltage of

M2, |𝑣𝑡ℎ2
|, M4 switches on before M2 and eventually pulls node

A up to 𝑉𝑑𝑑 . Node A is connected to the gate of M1, and it enters

the saturation region (from cut-off) and pulls down node B to the

ground. Thus, the cell’s power-on state is 1.

2.2 Influencing Power-on Behavior

Circuit aging is a natural phenomenon that gradually increases the

threshold voltage of transistors [3]. Bias Temperature Instability

(BTI) and Hot Carrier Injection (HCI) are the primary causes of

circuit aging in modern technology nodes [39]. For the purposes of

analog-domain changes revealed through power-on states, BTI is

of interest, while HCI has less effect [39] and affects both inverters

equally since HCI involves switching and both inverters switch

together. MOS devices suffer from BTI because of surface state

generation in the oxide and substrate interface [15]. Positive Bias

Temperature Instability (PBTI) affects the NMOS, while Negative

Bias Temperature Instability (NBTI) affects the PMOS [23]. When a

PMOS is operational (i.e.,𝑉𝑠𝑔 > |𝑉𝑡ℎ |), a strong vertical electric field

creates interface states, which increases the threshold voltage over

time. When𝑉𝑠𝑔 ≤ |𝑉𝑡ℎ |, the NBTI effect recovers, it partially brings

back the threshold voltage closer to nominal. Note that the recovery

is partial, and so the magnitude of the threshold voltage increases

over time. A similar effect is observable in NMOS devices [31].

Aging-induced degradation has the ability to determine the

power-on state of SRAM cells.2 The power-on state of a cell de-

pends on the post-manufacturing variation in transistors and the

magnitude of aging the transistors have experienced up to this

point; the value held by the cell determines which transistor is

aged. This means that SRAM cells undergo data-directed aging. We

illustrate data-directed aging using a MOSFET Reliability Simula-

tion (MOSRA) in HSpice [48]. Figure 2b plots waveforms generated

from pre-aging and post-aging transient simulation using 45𝑛𝑚

predictive technology model [2]. Assume the cell in Figure 2a is

initially biased towards 1. Considering only PMOS mismatch, M4

turns on earlier than M2; hence, node A is pulled up to 𝑉𝑑𝑑 while

node B is pulled down to the ground. If we keep the cell operational

in this state (with node A = 1 and node B = 0), M4’s threshold

voltage gradually increases (due to NBTI aging). The increased

threshold voltage causes M4 to turn-on at a later time during the

next power-on event. Given enough aging time, the cell ultimately

becomes biased towards 0 as M4 now turns-on later than M2. The

red waveforms in Figure 2b capture this change.

We run two experiments to demonstrate the concept of (1) soft-

ware directed and (2) accelerated aging. As discussed, stressing a

cell with a logic state biases its power-on state complement of that

logic state. That is, we expect the number of cells that power-on to

1 to increase if we write 0 to the entire SRAM and then aggressively

age the device (Figure 3b). Conversely, we expect increased 0s if we

fill SRAM with 1s before aging (Figure 3c). Compare these figures

to the unaged SRAM in Figure 3a.

In the second experiment, we demonstrate the knobs that In-

visible Bits exploits to accelerate NBTI aging for the purposes of

encodingmessages in SRAM’s analog domain. Previous work shows

that both supply voltage and operating temperature of a device

affect the rate of NBTI aging. To validate this, we write 1 to all cells

of four unaged MSP432 microcontrollers. We then exposed each

microcontroller to a different combination of voltage and tempera-

ture, with nominal conditions being (1.2𝑉 , 25◦𝐶) and accelerated

being (3.3𝑉 , 85◦𝐶). Figure 3d shows that voltage has the largest

acceleration effect, which is magnified by increased temperature, a

result supported by previous work [28].

2The impact of transistor aging is known to some degree by the SRAM PUF community,
as modest aging has been used as a denial-of-service attack on SRAM PUFs [37].
Though it is not the focus of this paper, the results of our extreme/controlled aging
suggest that it is possible to clone SRAM PUFs.
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Figure 3: Illustrates (a) startup distribution of an SRAM, data directed aging (b) when an SRAM holds logic 0 , (c) logic 1 during

stress. (d) Illustrates accelerated aging using supply voltage and operating temperature.

3 THREAT MODEL

We adopt a threat model similar to Flash-based on-chip steganog-

raphy techniques [52, 57]. In this threat model, the goal is for two

parties to communicate via a plausibly-deniable covert channel;

depending on the use case, the parties may be separate entities (e.g.,

for data transmission), or the same entity separated in time (e.g.,

for data storage). The communicating parties have full control over

selecting a device as a steganographic medium. The threat model

also assumes that the parties have a pre-shared key that they use

for message encryption/decryption. Lastly, in the on-chip threat

model, data transmission is the limiting factor, not throughput, as

encoding and decoding are separated by the time it takes to transfer

the device; capacity remains crucial as it determines if a message

can fit on a single device.

The threat model assumes that the adversary gets temporary

access to a device, otherwise, the attack devolves into a denial-of-

service attack, which is impossible to stop. While in the adversary’s

possession, they can inspect, copy, overwrite, and erase its digital

contents. In addition to data manipulation, the adversary may use

the device to validate its functionality (e.g., scroll through pictures

and contacts). The only restriction that we place on the adversary

is that their analysis is non-invasive and non-destructive.

4 DESIGN

We leverage the stress-induced analog-domain change of an SRAM

to design a plausibly deniable and resilient information encoding

scheme: Invisible Bits. The design of Invisible Bits consists of twoma-

jor parts: information encoding and information decoding. Figure 4

shows the steps involved with sending and receiving a message

using Invisible Bits. The covert communication process starts by pre-

processing the message. Pre-processing is where the transmitting

party (i.e., Alice in Figure 4) applies their desired error correction

and encryption schemes to the original message. The result is the

payload. The transmitting party takes the payload and creates a

program from it; the program writes the payload to SRAM and then

halts execution by busy waiting. With SRAM set to the desired state,

the transmitting party encodes the state in SRAM’s analog domain

by stressing the device with increased voltage and temperature.

After sufficient stress time (we evaluate the impact of stress knobs

in ğ5), the transmitting party passes the device to the receiving

party. Examples of this could be through the mail, via a dead drop,

or by crossing a monitored border.

Once the receiving party (i.e., Bob in Figure 4) has possession of

the device, they need to extract the information encoded in SRAM’s

analog domain. For this, they first load a program crafted to retain

SRAM’s power-on state, then they capture several power-on states

from the SRAM; this process can either be automated, as we do it

for our experiments or by hand, since it only requires temporarily

removing and replacing the power. The recovered payload is then

passed through decryption and error correction steps if they were

used during message encoding.3

The information encoding scheme consists of two major parts:

4.1 Message Pre-Processing

Before encoding a message into SRAM’s analog domain, it passes

through two optional pre-processing steps: (1) where an Error Cor-

recting Code (ECC) is added on top of the message and (2) where

the message is encrypted. As shown in the evaluation (ğ5), not all

SRAM cells will undergo sufficient aging to change their power-on

state to reflect the value loaded during the payload encoding step.

Thus, to reduce error beyond what is possible through the stress

and time knobs that Invisible Bits provides, we make it possible

to layer ECC on top of Invisible Bits. The actual ECC method is

orthogonal to Invisible Bits, but our analysis of errors from payload

encoding and aging recovery in Section 5.2 provides guidance to

users as to the most appropriate error correction approaches and

the expected error rate and channel capacity.

We also allow users to layer encryption on top of Invisible Bits.

The obvious benefit of encryption is providing confidentiality, but

our analysis in Section 6 shows that encryption also provides analog-

domain plausible deniability, because SRAM’s power-on state prop-

erties before payload encoding match that of a random function. For

a visual example of this effect, compare the pre-encoding power-on

state in Figure 1a, with the post-encoding power-on states for a

raw message in Figure 1c and an encrypted message in Figure 1e.

Unlike ECC, we note that the choice of the encryption algorithm is

crucial: the diffusion that is an important property for block ciphers

means that even a single error in a block results in roughly half of

the bits of the block flippingÐdramatically increasing error rate.

For example, using the industry-standard cipher AES-CBC turns an

error rate of 0.8% into an error rate of 50% as the first erroneous bit

causes the output of all subsequent blocks to become random. Thus,

we advocate a stream cipher, which is error-neutral, i.e., error bits

in the ciphertext are exactly the error bits in the plaintext, no less,

no more. Our implementation uses AES-CTR as the stream cipher,

3We assume that the presence and order of error correction and encryption information
are pre-shared between communicating parties.
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Figure 4: Invisible Bits overview.

where the nonce is the manufacturer’s device ID.4 Once passed

through any error correction and encryption steps, the message

becomes a payload that Invisible Bits encodes in the SRAM.

4.2 SRAM Analog-Domain Payload Encoding

In this step, Invisible Bits encodes the payload into the analog-

domain properties of the SRAM embedded in a computing device.

The first step is the creation of a software program that writes

the payload to the SRAM. To automatically create such a program,

we write a tool that takes a payload expressed as a binary file,

and returns an assembly program that writes that payload to the

SRAM. After the program initializes SRAM’s state, it busy waits in

an infinite loop. The instructions in the assembly program run from

non-volatile memory on the device, i.e., not the SRAM. Invisible

Bits then assembles this program and loads it onto the target device

using the debugger. The second step powers on the target board

at nominal conditions to allow the program to initialize the SRAM

state. The third step is where the encoding occurs as we increase

temperature and voltage to accelerate SRAM aging. After the user-

defined stress time, encoding completes, the device is removed from

the thermal chamber, and a camouflage program is loaded onto the

device.

Algorithm 1 summarizes the entire message encoding process

using Invisible Bits. First, we apply an error correction code (ECC)

on the data (Line 1) and use a pre-shared key to encrypt the data

along with the parity bits (Line 2). Then, we load the program

to the device running at nominal voltage and temperature (Line

3-4). The physical encoding process starts at Line 5, where we

elevate the voltage and temperature to 𝑉𝑎𝑐𝑐. and 𝑇𝑎𝑐𝑐. , respectively.

wait(stress time) controls how long we stress the device. Voltage

𝑉𝑎𝑐𝑐. , temperature𝑇𝑎𝑐𝑐. , and stress time depend on the required bit

error rate, as discussed in ğ5.

4.3 Decoding Payloads via SRAM Power-on
State

Once the receiving party gets access to the device, they have to

extract the payload that the sender encoded in SRAM’s analog

domain. For this, Invisible Bits leverages the observation that the

power-on state of SRAM reflects coarse-grain analog-domain in-

formation about each SRAM cell; specifically, the power-on state

reveals which inverter gate at the heart of the SRAM cell turns-on

first. The goal of the encoding process is to force one of the inverters

to turn-on first by slowing the other inverter through accelerated

NBTI aging (ğ2). Note that this means that the payload revealed

4Having per-device nonces ensures that even the same messages produce different
payloads. This protects against attacks the look for common prefixes in the ciphertext
and attacks that look for the same power-on state across devices.

Algorithm 1: Invisible Bits message encoding

Input: Message (d)

Output: Encoded computing device

Message pre-processing

1: Apply ECC on the message

2: Apply encryption on the message and parity

SRAM analog-domain payload encoding

3: Set {Vdd, Temp} = {𝑉𝑛𝑜𝑚.,𝑇𝑛𝑜𝑚.}

4: Load binaries (Instructions and payload)

5: Set {Vdd, Temp} = {𝑉𝑎𝑐𝑐.,𝑇𝑎𝑐𝑐.}

6: wait(stress time)

through the power-on state is actually the complement of the pay-

load used during the encoding step (like a negative in photography).

Our experiments suggest dealing with inverted encoding requires

no special treatment other than complementing power-on state at

the decoding phase.

Before capturing the power-on state, the receiver loads a pro-

gram on the device that ensures the integrity of SRAM’s power-on

state. For our implementation, we use a program that boots to an

infinite loop, that runs entirely out of Flash memory. Then, to ex-

tract a reliable representation of the power-on state, the receiver

captures multiple power-on states from the device. They use a ma-

jority voting scheme on the state captures to produce the retrieved

payload. While any odd number of state captures works, we find

that taking five captures is sufficient to filter noise.

4.4 Decoded Payload Post-Processing

Post-processing in the decoding phase is the same as encoding

phases but in the reverse order. The only difference is that we have

to start by inverting the majority power-on state from the decoding

step. Algorithm 2 lists the steps to decode the information hidden

in the power-on states of an SRAM. The process starts with power

cycling the device N times and reading out the SRAM power-on

states (Line 1-5), where N is an odd number. In Line 6, Invisible

Bits apply majority voting on the SRAM states across trials. Once

we have SRAM power-on state, we use the decryption and error

correction and retrieve the message (Line 7).

5 EVALUATION

Table 1 lists the devices we test for the implementation feasibility

of Invisible Bits. The list contains devices from single-cycle micro-

controllers to complex general-purpose processors from different
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Algorithm 2: Invisible Bits message decoding

Input: Encoded device

Output: Decoded message

Decoding payloads via SRAM power-on state

1: Set {Vdd, Temp} = {𝑉𝑛𝑜𝑚.,𝑇𝑛𝑜𝑚.}

2: repeat

3: Power cycle the device

4: Get power-on states

5: until N times

Decoded payload post-processing

6: Apply majority voting

7: Apply decryption and ECC

vendors.5 We test these devices for their power-on state accessibil-

ity and aging acceleration. Although the magnitude of 𝑉𝑎𝑐𝑐. , 𝑇𝑎𝑐𝑐. ,

stress time, and message extraction error rate vary based on a de-

vice’s manufacturing technology, SRAMs across the spectrum of

devices behave regularly and predictably. Unless otherwise stated,

we use MSP432P401 [21] devices for most of our experiments,

keeping the analysis and discussion consistent.

We develop a control board that allows us to expedite the eval-

uation process by automating the power-on state sampling and

accelerated aging. Although our setup is automated, encoding and

decoding are able to be done by hand without changing the results.

Figure 5a shows the high-level schematic diagram, and Figure 5b is

a picture of the evaluation platform. The setup mainly consists of a

controller, debug hardware, debug host, power source, and thermal

chamber. The controller supplies power directly if the target device

consumes a small amount of power (a few mA) but switches to an

external power supply unit if the target demands higher current

(e.g., processor). The target device runs software written in assem-

bly to read and write to the SRAM. When the target device is a

microcontroller, a debugger directly reads out its main memory’s

power-on state and sends it to the debug host (e.g., PC). However,

processor cache access requires co-processor (for ARM Cortex-A

device) operations to read cache contents.

All of our measurements eliminate the SRAM data remanence

effect by driving the supply voltage of the device to the ground state,

rather than waiting for it to discharge naturally. Our evaluation

setup uses a Test-Equity thermal chamber [47] to control the tem-

perature during measurements. To achieve maximum acceleration,

we elevate the supply voltage and temperature to 3.3𝑉 (2.75x the

nominal) and 85
◦𝐶 (3.4x the nominal),6 respectively, during the

encoding period.

5.1 Error Profiling

To exchange or store information reliably, we need an understand-

ing of the system’s error profile. The spatial distribution of error

and capacity are the determinants in managing errors in a system.

5Most of our tested devices are from ARM as these are popular in mobile devices and
provide a standard debug port to access internal memories across different architectures.
However, we test devices from different silicon vendors as SRAM aging responses vary
depending on the manufacturing technology.
6We use the device datasheet to guide our search for the stress voltage and temperature.

Controller

Device
Debugger

Thermal chamber

Power source

Debug host

(a) (b)

Figure 5: (a) Schematic diagram of the evaluation setup.

(b) Evaluation platform. The red board is an MSP432P401

launchpad and the green board is our custom control board.

In this section, we analyze the origins and distribution of the error

in Invisible Bits.

5.1.1 Primary error source. Failure to direct cells’ power-on states,

natural recovery, and standard device operation are potential er-

ror sources in Invisible Bits. The error magnitude in Invisible Bits

relies on the degree to which SRAM power-on states change in

response to stress-induced analog-domain degradation. Symmetric

and asymmetric SRAM cells respond to stress differently. Stress

tends to quickly impact the power-on state of symmetric cells be-

cause they are not strongly biased towards any logic state. These

cells have inverters with similar analog-domain properties, and it

is easier to increase relative differences between them by exposing

the cell to stress. On the other hand, variance in the manufacturing

process makes some cells extremely biased towards a logic state,

limiting our ability to direct the power-on state in the opposite

direction. The manufacturing mismatch between the inverters can

be so large that stress-induced degradation fails to overcome such

bias and leaves the power-on state unchanged after encoding; this

is the main error source.

We elaborate on this with an example using Figure 2a. Let us

assume that |𝑣𝑡ℎ2
| > |𝑣𝑡ℎ4

|. If all other parameters (e.g., aspect ratio,

doping density, etc.) are the same for M2 and M4, the cell powers

up with 1 because M4 wins the hardware race condition. Suppose

the cell is stressed with this logic state (node A = 1) for a long time.

In that case, we expect the cell to eventually flip in a future power-

on state. This implies that there is a flip in the threshold voltage

inequality (i.e., |𝑣𝑡ℎ2
| < |𝑣𝑡ℎ4

|) or at least the gap is reduced to a

reasonable range so that across trials, the majority power-on state

is 0. Although most cells respond to such stress, a few cells keep

their power-on state unchanged even after exposure to stress for

a long period. As a result, we cannot direct power-on states of all

the cells to our desired direction because of extreme manufacturing

biases (e.g., |𝑣𝑡ℎ2
| >> |𝑣𝑡ℎ4

|), which fundamentally sets the error

floor of Invisible Bits.

Stress conditions and duration decide the magnitude of error in

Invisible Bits. In Figure 6, we plot the mean errors of five devices

along with maximum and minimum. We keep the stress condition

the same for each of the devices to study the effect of stress time on

the error magnitudes. As shown in the figure, the error rate follows

a logarithmic relation with time; therefore, achieving lower error

requires exponentially longer time.
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Table 1: A list of tested devices.

Devices CPU core
On-chip
SRAM size

On-chip
Flash size

Access to
power-on state

Accelerated
aging

Manufacturer

MSP430G2553 [20] MSP430 single cycle 0.5KB 16KB ✓ ✓ Texas Instruments
MSP432P401 [21] ARM Cortex-M4 64KB 256KB ✓ ✓ Texas Instruments
EFM32WG990F256 [42] ARM Cortex-M4 32KB 256KB ✓ ✓ Silicon Labs
ATSAML11E16A [32] ARM Cortex-M23 16KB 64KB ✓ ✓ Microchip
M263KIAAE [10] ARM Cortex-M23 96KB 512KB ✓ ✓ Nuvoton
M2351SFSIAAP [8] ARM Cortex-M23 96KB 512KB ✓ ✓ Nuvoton
M252KG6AE [9] ARM Cortex-M23 32KB 256KB ✓ ✓ Nuvoton
M251SD2AE [9] ARM Cortex-M23 12KB 64KB ✓ ✓ Nuvoton
R7FS1JA783A01CFM [13] ARM Cortex-M23 32KB 256KB ✓ ✓ Renesas Electronics
STM32L562 [46] ARM Cortex-M33 40KB 256KB ✓ ✓ STMicroelectronics
LPC55S69JBD100 [34] Dual-core ARM Cortex-M33 320KB 640KB ✓ ✓ NXP Semiconductors
BCM2837 (RPi3) [36] Quad-core ARM Cortex-A53 L1:256KB, L2:512KB 0KB ✓ ✓ Broadcom
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Figure 6: Influence of stress time on error.

5.1.2 Spatial distribution. The distribution of errors decides what

type of error correction is needed in the system to get the desired

accuracy. We calculateMoran’s I to study the spatial distribution of

errors, which allows us to determine whether the error is randomly

distributed or bursty. A Moran’s I statistic close to zero indicates

that error is spatially random and a value further away from 0

indicates non-random patterns, closer to 1.0 indicates a positive

correlation, and closer to −1.0 indicates a negative correlation.

To quantify the spatial distribution of errors, we write all-1s to

one SRAM and all-0s to another SRAM, then expose them to accel-

erated aging. Table 2 lists the spatial autocorrelation of unstressed

and stressed SRAMs. For the stressed condition, the autocorrelation

is of errors, since we write a single value to all of SRAM. The results

of this analysis say that the location of errors is nearly randomly

distributed as the autocorrelation approaches the expected value of

−1/(𝑁 − 1), where N is the number of error locations.

Table 2: Spatial autocorrelation of power-on states of two

SRAMs before and after stress. We stress each SRAM with

one logic value (0/1); therefore, the post-stress power-on

state reflects spatially-correlated errors in encoding.

Stress condition SRAM Spatial autocorrelation p-value

Unstressed
1 0.011 0.00
2 0.009 0.00

Stressed
1 (Stress logic = 1) 0.005 0.00
2 (Stress logic = 0) 0.004 0.00
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Figure 7: Normalized errors in Invisible Bits when stress-

induced degradation recovers naturally.

5.1.3 Effect of natural recovery. Aging-induced analog-domain

changes partially recover, which increases errors in the retrieved

payload. We study the effect of natural recovery when a device is

inactive during covert communication, assuming that the message

needs to stay in the analog domain for a long time.

Most of the transistors in a circuit retain their stress-induced

degradation of analog-domain properties [41]. Some transistors,

however, partially recover when stress is released [56], which even-

tually affects the extraction accuracy of Invisible Bits. To study

the effect of natural recovery on the error, we shelve an encoded

SRAM and sample the power-on state at 7-day intervals. The results,

shown in Figure 7, show that recovery follows a logarithmic rela-

tion with time [23], which gets reflected in Invisible Bits’s error rate.

We plot the change in error rate as well to show that the recovery

rate decays exponentially with time. The error increases ≈ 1.6x

times after one month, which still keeps the error within 10%.

5.1.4 Effect of normal operation. The threat model allows the reg-

ular operation of a device without restriction. To evaluate the effect

of regular device operation, we design software that continuously

writes values to SRAM. To ensure fairness and all possible soft-

ware, we write a pseudo-random sequence of words to SRAM. The

pseudo-random number generator uses a 32-bit linear feedback

shift register tailed by a linear congruential generator (from glibc,

𝑥𝑛+1 = 1103515245×𝑋𝑛 +12345𝑚𝑜𝑑 231) as seed generator to avoid

repetition of numbers in our long-running experiment. We shelve

an encoded device operating at nominal conditions (1.2V and room

temperature) for a week.
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(a) 1 copy (b) 3 copies (c) 5 copies (d) 7 copies

Figure 8: Visual example of how a repetition code removes

error from the decoded message.

We observe a ≈ 1.2x increase in the error after a week-long

recovery, which is less than what we observe in the natural recovery

experiment (≈ 1.4x). While this seems counter-intuitive, it makes

sense when you consider that half the time, the original stress value

is being reinforced. Additionally, there is no risk of significantly

stressing the opposing inverter because regular operation for a

short time period does not significantly impact age transistors (see

Figure 3d).

5.2 Reducing Error

Invisible Bits allows users to layer on an error-correcting code to

further reduce error beyond what is feasible with encoding and

recovery. There is a rich history of error-correcting codes, many

targeting specific error patterns. To provide guidance on the most

suitable ECC algorithms, we analyze the error rate and patterns

from earlier experiments.

Our analysis shows that the errors in Invisible Bits are largely

randomly located. Randomly distributed errors are the worst-case

for error correction. Depending on error rate, the conventional

approaches for dealing with randomly distributed errors are a repe-

tition code, for high error rates, and Hamming codes, for low error

rates.

Since our mean error is 10% (ğ5.1.3), we must start with a repeti-

tion code. A repetition code encodes several copies of the payload in

SRAM and uses majority voting to determine a representative pay-

load. Having randomly distributed errors allow us to estimate the

effect as repetition code Bernoulli trials. Assuming the probability

of success is p, n trials reduces the error according to Equation 1. For

example, 10% error becomes 2.8% when three copies are encoded.

𝐸𝑟𝑟𝑜𝑟 = 1 −

𝑛
∑

𝑖=
(𝑛+1)
2

(

𝑛

𝑖

)

× 𝑝𝑖 × (1 − 𝑝)𝑛−𝑖 (1)

The error performance of Invisible Bits increases logarithmically

as we increase the number of copies (see Figure 8). To quantify this

effect, Figure 9 shows how we explore the effect of stress time and

the number of copies as means for error reduction. We encode a

payload into an SRAM at three two-hour-long stress cycles. The

payload is replicated into many copies so that we can use additional

bits to decode a 1-bit message using majority voting. We see that

both stress time and increased copies reduce the error rate. The

immediate repercussion of using multiple copies is the reduction

in capacity. Increasing the number of copies provides diminishing

returns on error reduction at the cost of reduced capacity.

Once the error rate is low enough, more efficient error correction

codes are available. We illustrate this idea with experimental results
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Figure 9: Error reduction due to changing stress time and the

number of copies used in the repetition code.
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Figure 10: Application of Hamming(7,4) and repetition

codes showhowwe can improve error performance of ames-

sage hiding scheme that uses Invisible Bits.

where a Hamming code is added to the repetition code. Grouping

bits into bins to decide the correct codeword is, in fact, a version

of Hamming code. For instance, a 3-bit codeword of repeated 1-bit

information is essentially a Hamming(3,1) with 000 and 111 valid

codewords. In such error correction code, any codeword with Ham-

ming weight 1 or 0 gets corrected into logic 0, otherwise, it is a logic

1. To show how a repetition and Hamming code work together, we

add a Hamming(7,4) code on top of up to 17 copies of the payload.

At the decoding phase, we calculate errors in each copy of the re-

trieved payload without any error correction, which gives us 6.5%

mean error with 0.68% standard deviation. We apply this error in

Equation 1 to calculate theoretical errors when we use multiple bits

to decode the majority payload (the blue line in Figure 10). We ob-

serve that the repetition code closely follows theoretical predictions.

Only repetition code itself brings the error to an absolute zero with

13 copies. The dotted black line in Figure 10 shows a Hamming(7,4)

code combined with repetition code works. The combined codes

work more efficiently because the combination drastically reduces

the error within fewer copies, resulting in increased capacity.7

7Experiments suggest that the order of ECCs (repetition and hamming(7,4)) does not
significantly affect the overall error rate.
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Table 3: Comparison among on-chip information hiding

techniques.

Method Ubiquity Capacity Resilience Read stable

Zuck et al. [57]

Wang et al. [52]

Invisible Bits

5.3 Performance Comparison

In this section, we show how Invisible Bits performs compared to

Flash-based message hiding schemes. The noisiness of the Flash’s

analog characteristics is the source of plausible deniability. Occu-

pying the entire Flash to store confidential information reveals its

existence. Flash-based information hiding schemes suffer from low

capacity because they allow only a few hundred cells per page to

store hidden information. Besides, programming all the pages is

challenging because encoded information in one page interferes

with the neighboring pages’ analog characteristics. As a result, they

cannot select every page to encode information.

Additionally, Flash-based methods require grouping bits into

a large bin (128-bit or more) to achieve low error. Considering

these limiting factors, a Flash-based hiding scheme achieves 0.05%

capacity [52]. When considering that on-chip Flash memories are

usually is reserved for program data, capacity is reduced further.

For example, consider an MSP432P401 microcontroller that has

256KB of Flash. Assuming that the entire Flash is available, write-

time-based Flash hiding approaches can only transmit 131 bytes

of information [52]. The more recent voltage-based technique [57]

doubles this capacity by hiding information within the public data

(i.e., overlapping), but this assumes that the entire Flash is filled

with data.

On the contrary, since encoding the payload in SRAM’s analog

domain does not interfere with its digital operation, Invisible Bits

has access to the entire SRAMÐno matter how software uses it.

Combined with its low error rate, Invisible Bits more than makes up

for Flash’s 4:1 size advantage over SRAM. We provide a qualitative

comparison between the on-chip steganography techniques in Ta-

ble 3.8 We consider an encoded device with 6.5% (ğ5.1) and 5-copies

repetition code to bring down the error at the same level (<0.3%)

across all approaches. Using five copies allows Invisible Bits to hide

12.8KB of payload (20% × 64KB), which is 100x of the Flash write-

time-based method. Table 4 summarizes the errors when a hidden

message contains a single copy and the settings of acceleration

parameters for four devices.

Another advantage of Invisible Bits is that devices can be encoded

in parallel. Given the importance of capacity in a steganographic

covert channel, one can encode many devices and select the one

with the least error. From our experimental results in Figure 6,

a device with 2.7% error is possible. Such a device produces 33%

information capacity with only 3 copies at less than 0.01% error

rate. In such case, Invisible Bits hides 160x more information than

Flash-based on-chip approaches. Table 3 lists qualitative compari-

son between Invisible Bits and Flash-based methods.

Table 4: Summary of the results when we encode a message

in different devices.

Device SRAM usage 𝑉𝑎𝑐𝑐. 𝑇𝑎𝑐𝑐. Bit rate Encoding time

ATSAML11E16A Main memory 4.8V 85
◦𝐶 97.2% 16 hours

MSP432P401 Main memory 3.3V 85
◦𝐶 93.5% 10 hours

LPC55S69JBD100 Main memory 5.5V 85
◦𝐶 88.5% 24 hours

BCM2837 Cache 2.2V 85
◦𝐶 79.2% 120 hours
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Figure 11: Hiding information as plain-text, and ciphertext.

6 INVISIBLE BITS IN ACTION

Invisible Bits is a high capacity on-chip covert channel that hides

messages in the analog domain of SRAM. An immediate advantage

of decoupling the message from regular computing space is digital

plausible deniability. In this section, we expand our threat scenario

and consider that an adversary inspects SRAM’s power-on state

as a medium for information hiding. We show that using a stream

cipher eliminates such threat and provides robust defense against

analog-domain plausible deniability compromise. Then, we show

an example of a covert and resilient end-to-end message hiding

scheme using Invisible Bits.

Hiding information affects the symmetric distribution of an

SRAM power-on state (Figure 3a), revealing the existence of a hid-

den message. We hide a message in an SRAM with error correction

using both Hamming(7,4) and repetition code. In Figure 11, we plot

the post-encoded Hamming weight distributions of the power-on

states of the devices. The distributions of hamming weights re-

veal the non-ideal distribution of SRAM power-on state, therefore,

violates the analog-domain plausible deniability.

We attain analog-domain plausible deniability by using a stream

cipher because it destroys the message’s structural properties, while

being error neutral (i.e., 1-bit error in the plain-text affects the 1-

bit error in the ciphertext). We use AES-CTR to encrypt messages

before encoding into an SRAM because standard AES encrypts a

message and distributes the message bit uniformly. The counter

mode allows decryption even if the ciphertext is partially corrupted

due to error.

While the design remains the same as discussed in Section 4, we

illustrate the application of Invisible Bits in steganography using a

specific system shown in Figure 13. First, we apply a Hamming(7,4)

on a message 𝑑 and replicate the message and parity seven times

to make it a hamming(7,1) code (𝑥 = 𝐸𝐶𝐶 (𝑑)). Second, 𝑥 contains

8 = Excellent, = Very good, = Good, = Fair, and = Poor.
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Figure 12: Shannon’s entropy of SRAMs’ power-on state.

The normalized (by the number of symbols) entropy of an

SRAM’s power-on state is 0.0312, and the entropy becomes

0.0195 and 0.0312 in SRAMs that hide message as plain-text

and encrypted text, respectively.
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Figure 13: An end-to-end steganography system using Invis-

ible Bits.

the data and parity bits, and AES converts these bits into a payload

(𝑦 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑥)). Third, we store the payload into the SRAM of an

MSP432P401 microcontroller. Fourth, SRAM undergoes the encod-

ing process for 10 hours (ğ5), which changes the analog properties

of transistors and, hence, influences the SRAM’s power-on state.

The Payload extraction process follows the steps described in

Section 4. The process begins with extracting the encoded SRAM’s

power-on states and using a shared key to decrypt the payload

(𝑥 ′ = 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 (𝑦′)). Finally, ECC retrieves the message (𝑑 ′), which

completes the steganographic message transfer.

We analyze the post-encode power-on state’s properties to show

that it is indistinguishable from an SRAM with no hidden message.

First, we run a hypothesis test on the post-encoded power-on

distributions. We apply Welch’s t-test on the sample of two classes

of devices, with the null hypothesis being the chips have no hidden

messages (i.e., identical mean Hamming weight). We use a p-value

heuristic to determine the significance of the t-statistic. Our test’s

p-value is 0.071 (one-tailed); therefore, we cannot reject the null

hypothesis. From this, we conclude that an adversary cannot statis-

tically differentiate a chip with a hidden message from a chip with

no hidden message (See Figure 11).

Second, we study the spatial autocorrelation to investigatewhether

an encoded device shows any difference compared to a device with-

out any hidden message. In Table 5, we list spatial autocorrelation,

the power-on biases for three classes of chips. We observe that

Table 5: Spatial autocorrelation and mean power-on bias of

SRAM embedded within an MSP432. Layering encryption

on top of Invisible Bits makes devices with no hidden mes-

sage indistinguishable from devices with messages encoded.

Without encryption, devices with messages encoded have

biases in their power-on state (e.g., more 1s than 0s) and

spatially-correlated values. p-values are << 0.05 for all the

measurements.

Condition Spatial autocorrelation Mean power-on bias

Hidden message (no encryption) 0.502 0.537
Hidden message (no encryption) 0.409 0.535

No hidden message 0.001 0.500
No hidden message 0.004 0.501
No hidden message 0.002 0.501
No hidden message 0.007 0.502
No hidden message 0.009 0.500

Hidden message (encrypted) 0.001 0.500
Hidden message (encrypted) 0.008 0.501
Hidden message (encrypted) 0.002 0.499
Hidden message (encrypted) 0.001 0.499

chips without any encryption show spatial non-random patterns.

On the other hand, the chips with encrypted hidden messages have

similar Moran’s I statistic and mean power-on bias.

Third, we apply Shannon’s entropy, a widely usedmetric to quan-

tify uncertainty in information [26], in both pre- and post-encoded

SRAM’s power-on states. The entropy of a bit varies between 0 and

1; 0 being no uncertainty and 1 being fully random (e.g., fair coin

flip). We divide the power-on state of an SRAM into byte granularity

(symbol) and count the frequency of each 28 symbols (similar to ear-

lier work [17]). Analyzing 64K (size of the SRAM is 64KB) symbols

from an SRAM’s power-on state, we form a distribution and calcu-

late the Shannon’s entropy using
∑𝑛
𝑖=0 −𝑃 (𝑥𝑖 ) × 𝑙𝑜𝑔2 (𝑃 (𝑥𝑖 )). Here,

𝑃 (𝑥𝑖 ) is the probability of 𝑖𝑡ℎ possible value out of 𝑛 symbols. We

plot the distribution of entropy in Figure 12 calculated for SRAMs

with no hidden message, hidden message as plain-text, and en-

crypted hidden message. The entropy distribution of an SRAM that

hides a message as plain-text deviates from the regular SRAM’s

power-on state entropy, whereas an encrypted hidden message

closely resembles it.

Upon analyzing different statistical properties, we conclude that

chips that encode encrypted messages are indistinguishable from

‘clean’ chips. Once the process is completed, the device containing

SRAM becomes a covert and resilient information carrier with an

ability to withstand both analog and digital domain steganalysis.

7 DISCUSSION

7.1 Multiple-Snapshot Adversary

We assess a potential plausible deniability compromise by consid-

ering a stricter threat model where an adversary takes multiple

power-on measurements (i.e., snapshots) at different times to deter-

mine temporal discrepancies in the device’s power-on state.

Our recovery experiments show that some cells return to their

original power-on values, and this recovery trend is greatest in the

early post-encoded period (see Figure 7). We study the effect of

capturing power-on states at different times in the recovery phase

with the greatest power-on state change to assess whether it re-

veals the existence of an encoded message. The analysis starts with
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Figure 14: Distribution of Hamming weights captured at dif-

ferent phases and times of a covert communication.

capturing the power-on states of a pre-encoded and post-encoded

device. Then, we compare these measurements to the power-on

states captured after one hour, one day, and one week of encod-

ing. We calculate the spatial autocorrelation <0.01 with p-value

<< 0.05 for all of the measurements. This suggests that the spatial

pattern of errors remains indistinguishable from an unencoded de-

vice during encoding and during recovery. The second statistic that

would potentially reveal an encoded message is the distribution of

Hamming weights for the SRAM when adjacent cells are grouped

into fixed-size blocks. Figure 14 shows the distribution of Ham-

ming weights for the measurements, where m1 and m2 indicate two

back-to-back measurements of the same device. We expect some

difference, even from subsequent measurements, as the cells with

similar inverter turn-on voltages in an SRAM introduce noise in the

measurement of power-on states (ğ2). Following a similar analysis

discussed in Section 6, we conclude that the difference in the snap-

shots captured at multiple points in time is indistinguishable from

measurement errors. Thus, a multiple-snapshot adversary gains no

special advantage in Invisible Bits.

7.2 Aging Complex Systems

High voltage plays a major role in accelerated aging (ğ2), and apply-

ing such voltage in a complex device requires special consideration

on its power supply system. When a device is simpler such as

MSP430, we directly apply voltage to its 𝑉𝑑𝑑 line. Complex devices

(e.g., Raspberry Pi), however, regulate voltage before feeding it to

the core (and SRAM). These circuits prevent elevating the supply

voltage directly from the 𝑉𝑑𝑑 line. Our observation is that most

devices use switching regulators at run-time to save energy because

these regulators are inherently efficient in switching voltage levels.

By design, these regulators need large passive components such as

inductors. Since these passive components have a large footprint,

the most practical design decision is to place them in the PCB and

use a pin to connect it with the internal supply line. We exploit

this pin to reach the core supply line directly and elevate the core

voltage.

7.3 Device Selection & Capacity Considerations

The required capacity and the least tolerable error in the recon-

structed message guide the device selection for Invisible Bits. While
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Figure 15: Error and capacity trade off. We encode a single

copy message in each device and simulate Bernoulli trials

for different payload copies and Hamming(7,4) error correc-

tion code.

these two requirements are somewhat inversely proportional, the

baseline error rate is determined largely by the SRAM’s technology

node. The manufacturing technology node determines the maxi-

mum allowable stress level, which eventually determines the mini-

mum noise in the hidden message. SRAM manufactured at smaller

technology nodes are more susceptible to aging as the electric field

density in these devices is higher as compared to larger devices [24].

Thus, newer devices that can endure higher voltage and tempera-

ture for longer time provide the lowest error rate, which makes the

most of the available SRAM cells. That being said, desired capacity

is the driver behind device selection.

Finding average capacity in each device class requires testing a

large sample of devices with full system implementation, including

appropriate ECC selection for a message. We provide a theoretical

analysis to illustrate the capacity and error trade off using Table 4

and augmenting it with ECC (i.e., repetition codes and Hamming

(7,4)) to calculate errors at different capacity-levels. Figure 15 shows

how error rate affect the capacity across device classes.

Regardless of their locations, Flash memories tend to be larger

memory devices compared to SRAMs. When we compare on-chip

SRAM with off-chip Flash memories, the size difference is orders

of magnitude larger. While density of hidden information remains

higher for SRAM-based steganography, Flash-based methods hide

more information when off-chip memories are considered because

inherently Flash-based storagemedia, such as SSDs, are much larger

than on-chip SRAMs. Being external enables Flash to have high

capacity, but it also makes it trivially separable from any system

that it is attached to.

7.4 Adversarial Aging to Inject Noise

In this section, we discuss a scenario where an adversary attempts

to erase or inject noise in the hidden message in a device’s analog

domain by exposing the device to aging. It is possible to inject

noise in the hidden message as aging-induced degradation has both

reversible (NBTI) and irreversible (HCI) components. While it por-

trays an unlikely scenario where authorities (e.g., border security)

expose a large sample of devices to invasive aging for a prohibi-

tively long time, we explore this possibility with an experiment to
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understand the impact of such adversarial aging. In this experiment,

we expose an encoded MSP432 to aging with a power-on state for 1

hour. This increases the message reconstruction error 1.12×. When

aged again for 1.5 hours with the power-on state, the error comes to

its pre-adversarial aging state (error 0.98×). Cells with symmetric

inverters are more susceptible to aging compared to asymmetric

cells, and aging for short times injects noise by changing the power-

on state of the symmetric cells. The receiving party can reduce the

impact of noise by aging it in a similar way.

This scenario above considers an adversary who overcomes the

following barriers to inject noise on a device that may contain a

hidden message in SRAM. First, aging a device involves physical

tampering: an adversary needs to open up a device, decouple its

power supply system, and externally elevate the voltage of the core

(ğ7.2). Second, since Invisible Bits encodes information in the analog

domain by exploiting physical changes in transistors, reversing the

aging-induced degradation is prohibitively time-intensive. Third, the

next challenge is to improve the effectiveness of adversarial aging,

i.e., maximizing the injected noise. As discussed in Section 2, aging

pushes the power-on state of a cell to the complement of the stored

logic state, and therefore aging an encoded SRAM with a power-on

state injects the maximum number of noise bits. Setting a device

in this state (i.e., SRAM with its power-on state) requires firmware

tampering because as soon as a device boots, the system software

clobbers the power-on state of its SRAMs.

8 RELATED WORK

The closest related work to this paper is Flash program time-based

message hiding method [52]. This method deliberately stresses a

group of cells to encode information in them. The program time

of cells is distributed over a long-tailed spectrum, and so changing

a few cells’ program time becomes indistinguishable from non-

encoded cells. A group of 128-bit cells encodes 1-bit information,

and addresses of the cells that are grouped are encrypted using

a symmetric key cipher. Zuck et al. [57] uses the voltage level of

a flash memory cell as the medium for hiding information. The

technique uses two passes to encode a logic state. The first pass

stores encrypted cover data, and the second pass selects a few cells

from the same public bits, preferably logic 1, to encode hidden

data. To encode 0, a non-programmed bit, cells currently holding

public data are incrementally charged beyond their preset voltage

level. As long as the cover data is not erased or re-programmed,

the hidden data remains stored, meaningÐunlike Invisible BitsÐthe

encoded data is fragile. An active adversary can promptly stop

covert communication by copying the encrypted cover data and

re-programming it again without modification. In such a case, data

is lost. Another limitation of this approach is that it is not plausibly

deniable at the digital level as the encrypted cover data signals

that the device carries some secret message, even if the actual

message is in the analog domain. On top of these limitations, both

methods suffer from low capacity when compared to the Invisible

Bits, because they have to deal with relatively large operational

noise margins, where the tightly-packed nature of SRAM cells filters

operational noise as common-mode noise.

Srinivasan et al. exploit Flash transport layer (FTL) and over-

provisioning of solid-state drives to hide information in the physical

layer of a mass storage [45]. DEFY introduces multiple security lev-

els in the data handling of FTL [35]. The existence of higher security

level data is not visible to the lower security level. Therefore, a vic-

tim can release the lower security level data to deny higher security

level data. These methods suffer a general problem, unintentional

overwriting, that stems from the coexistence of public and private

information [7, 43, 44]. Even worse, Jia et al. [22] shows that adver-

saries can detect hidden messages in the lower-level security and

copy the data and rewrite it back.

9 CONCLUSION

This paper uncovers an on-chip steganographic medium based on

SRAM’s analog-domain properties, namely the relative threshold

voltage of the cross-coupled inverters that compose every SRAM

cell. To exploit this new covert channel, we design and implement

Invisible Bits, a steganographic system that uses accelerated, di-

rected transistor aging to encode information into SRAM’s analog-

domain properties and reveals these changes at the digital level by

capturing SRAM’s power-on state. Our evaluation, using modern

computing devices, shows that Invisible Bits increases capacity to

over 90%, a 100x improvement over existing on-chip steganographic

techniquesÐwhile retaining both digital- and analog-domain plau-

sible deniability. In addition to improved capacity, our evaluation

also shows that Invisible Bits improves resilience as it maintains the

vast majority of the encoded data after being shelved for a month

and even after being used continuously for over a week. Lastly, we

use the results of our evaluation to guide future users on the most

appropriate error-correcting codes and ciphers to layer on top of

Invisible Bits.
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