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ABSTRACT

Memory disaggregation has attracted great attention recently be-

cause of its benefits in efficient memory utilization and ease of

management. So far, memory disaggregation research has all taken

one of two approaches: building/emulating memory nodes using

regular servers or building them using raw memory devices with

no processing power. The former incurs higher monetary cost and

faces tail latency and scalability limitations, while the latter intro-

duces performance, security, and management problems.

Server-based memory nodes and memory nodes with no pro-

cessing power are two extreme approaches. We seek a sweet spot in

the middle by proposing a hardware-based memory disaggregation

solution that has the right amount of processing power at memory

nodes. Furthermore, we take a clean-slate approach by starting

from the requirements of memory disaggregation and designing a

memory-disaggregation-native system.

We built Clio, a disaggregated memory system that virtualizes,

protects, and manages disaggregated memory at hardware-based

memory nodes. The Clio hardware includes a new virtual mem-

ory system, a customized network system, and a framework for

computation offloading. In building Clio, we not only co-design

OS functionalities, hardware architecture, and the network system,

but also co-design compute nodes and memory nodes. Our FPGA

prototype of Clio demonstrates that each memory node can achieve

100Gbps throughput and an end-to-end latency of 2.5 𝜇𝑠 at median

and 3.2 𝜇𝑠 at the 99th percentile. Clio also scales much better and

has orders of magnitude lower tail latency than RDMA. It has 1.1×

to 3.4× energy saving compared to CPU-based and SmartNIC-based

disaggregated memory systems and is 2.7× faster than software-

based SmartNIC solutions.
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1 INTRODUCTION

Modern datacenter applications like graph computing, data ana-

lytics, and deep learning have an increasing demand for access to

large amounts of memory [5]. Unfortunately, servers are facing

memory capacity walls because of pin, space, and power limita-

tions [30, 33, 81]. Going forward, it is imperative for datacenters

to seek solutions that can go beyond what a (local) machine can

offer, i.e., using remote memory. At the same time, datacenters are

seeing the needs frommanagement and resource utilization perspec-

tives to disaggregate resources [13, 73, 78]Ðseparating hardware

resources into different network-attached pools that can be scaled

and managed independently. These real needs have pushed the idea

of memory disaggregation (MemDisagg for short): organizing com-

putation and memory resources as two separate network-attached

pools, one with compute nodes (CNs) and one with memory nodes

(MNs).

So far, MemDisagg researches have all taken one of two ap-

proaches: building/emulating MNs using regular servers [5, 26,

53, 63, 64] or using raw memory devices with no processing

power [29, 45, 46, 75]. The fundamental issues of server-based

approaches such as RDMA-based systems are the monetary and

energy cost of a host server and the inherent performance and

scalability limitations caused by the way NICs interact with the

host server’s virtual memory system. Raw-device-based solutions

have low costs. However, they introduce performance, security,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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and management problems because when MNs have no process-

ing power, all the data and control planes have to be handled at

CNs [75].

Server-based MNs and MNs with no processing power are two

extreme approaches of building MNs. We seek a sweet spot in the

middle by proposing a hardware-based MemDisagg solution that

has the right amount of processing power at MNs. Furthermore,

we take a clean-slate approach by starting from the requirements

of MemDisagg and designing a MemDisagg-native system.

We built Clio1, a hardware-based disaggregated memory sys-

tem. Clio includes a CN-side user-space library called CLib and a

new hardware-based MN device called CBoard. Multiple applica-

tion processes running on different CNs can allocate memory from

the same CBoard, with each process having its own remote virtual

memory address space. Furthermore, one remote virtual memory

address space can span multiple CBoards. Applications can per-

form byte-granularity remote memory read/write and use Clio’s

synchronization primitives for synchronizing concurrent accesses

to shared remote memory .

A key research question in designing Clio is how to use lim-

ited hardware resources to achieve 100Gbps, microsecond-level

average and tail latency for TBs of memory and thousands

of concurrent clients? These goals are important and unique for

MemDisagg. A good MemDisagg solution should reduce the total

CapEx and OpEx costs compared to traditional non-disaggregated

systems and thus cannot afford to use large amounts of hardware

resources at MNs. Meanwhile, remote memory accesses should

have high throughput and low average and tail latency, because

even after caching data at CN-local memory, there can still be fairly

frequent accesses to MNs and the overall application performance

can be impacted if they are slow [22]. Finally, unlike traditional

single-server memory, a disaggregated MN should allow many CNs

to store large amounts of data so that we only need a few of them

to reduce costs and connection points in a cluster. How to achieve

each of the above cost, performance, and scalability goals individ-

ually is relatively well understood. However, achieving all these

seemingly conflicting goals simultaneously is hard and previously

unexplored.

Our main idea is to eliminate state from the MN hardware.

Here, we overload the term łstate eliminationž with two meanings:

1) the MN can treat each of its incoming requests in isolation even

if requests that the client issues can sometimes be inter-dependent,

and 2) the MN hardware does not store metadata or deals with

it. Without remembering previous requests or storing metadata,

an MN would only need a tiny amount of on-chip memory that

does not grow with more clients, thereby saving monetary and en-

ergy cost and achieving great scalability. Moreover, without state,

the hardware pipeline can be made smooth and performance deter-

ministic. A smooth pipeline means that the pipeline does not stall,

which is only possible if requests do not need to wait for each other.

It can then take one incoming data unit from the network every

fixed number of cycles (1 cycle in our implementation), achieving

constantly high throughput. A performance-deterministic pipeline

means that the hardware processing does not need to wait for any

slower metadata operations and thus has bounded tail latency.

1Clio is the daughter of Mnemosyne, the Greek goddess of memory.

Effective as it is, can we really eliminate state from MN hard-

ware? First, as with any memory systems, users of a disaggregate

memory system expect it to deliver certain reliability and consis-

tency guarantees (e.g., a successful write should have all its data

written to remote memory, a read should not see the intermedi-

ate state of a write, etc.). Implementing these guarantees requires

proper ordering among requests and involves state even on a single

server. The network separation of disaggregated memory would

only make matters more complicated. Second, quite a few memory

operations involve metadata, and they too need to be supported

by disaggregated memory. Finally, many memory and network

functionalities are traditionally associated with a client process and

involve per-process/client metadata (e.g., one page table per pro-

cess, one connection per client, etc.). Overcoming these challenges

require the re-design of traditional memory and network systems.

Our first approach is to separate the metadata/control plane

and the data plane, with the former running as software on a low-

power ARM-based SoC at MN and the latter in hardware at MN.

Metadata operations like memory allocation usually need more

memory but are rarer (thus not as performance critical) compared

to data operations. A low-power SoC’s computation speed and its

local DRAM are sufficient for metadata operations. On the other

hand, data operations (i.e., all memory accesses) should be fast and

are best handled purely in hardware. Even though the separation

of data and control plane is a common technique that has been

applied in many areas [25, 39, 61], a separation of memory system

control and data planes has not been explored before and is not

easy, as we will show in this paper.

Our second approach is to re-design the memory and networking

data plane so that most state can be managed only at the CN side.

Our observation here is that the MN only responds to memory re-

quests but never initiates any. This CN-request-MN-respond model

allows us to use a custom, connection-less reliable transport proto-

col that implements almost all transport-layer services and state

at CNs, allowing MNs to be free from traditional transport-layer

processing. Specifically, our transport protocol manages request

IDs, transport logic, retransmission buffer, congestion, and incast

control all at CNs. It provides reliability by ordering and retrying

an entire memory request at the CN side. As a result, the MN does

not need to worry about per-request state or inter-request ordering

and only needs a tiny amount of hardware resources which do not

grow with the number of clients.

With the above two approaches, the hardware can be largely

simplified and thus cheaper, faster, and more scalable. However,

we found that complete state elimination at MNs is neither

feasible nor ideal. To ensure correctness, the MN has to maintain

some state (e.g., to deal with non-idempotent operations). To ensure

good data-plane performance, not every operation that involves

state should be moved to the low-power SoC or to CNs. Thus, our

approach is to eliminate as much state as we can without affecting

performance or correctness and to carefully design the remaining

state so that it causes small and bounded space and performance

overhead.

For example, we perform paging-based virtual-to-physical mem-

ory address mapping and access permission checking at the MN

hardware pipeline, as these operations are needed for every data

access. Page table is a kind of state that could potentially cause
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performance and scalability issues but has to be accessed in the

data path. We propose a new overflow-free, hash-based page ta-

ble design where 1) all page table lookups have bounded and low

latency (at most one DRAM access time in our implementation),

and 2) the total size of all page table entries does not grow with

the number of client processes. As a result, even though we cannot

eliminate page table from the MN hardware, we can still meet our

cost, performance, or scalability requirements.

Another data-plane operation that involves metadata is page

fault handling, which is a relatively common operation because

we allocate physical memory on demand. Today’s page fault han-

dling process is slow and involves metadata for physical memory

allocation. We propose a new mechanism to handle page faults

in hardware and finish all the handling within bounded hardware

cycles. We make page fault handling performance deterministic by

moving physical memory allocation operations to software running

at the SoC. We further move these allocation operations off the

performance-critical path by pre-generating free physical pages to

a fix-sized buffer that the hardware pipeline can pull when handling

page faults.

We prototyped CBoard with a small set of Xilinx ZCU106 MPSoC

FPGA boards [82] and built three applications using Clio: a FaaS-

style image compression utility, a radix-tree index, and a key-value

store. We compared Clio with native RDMA, two RDMA-based dis-

aggregated/remote memory systems [36, 75], a software emulation

of hardware-based disaggregated memory [64], and a software-

based SmartNIC [48]. Clio scales much better and has orders of

magnitude lower tail latency than RDMA, while achieving similar

throughput and median latency as RDMA (even with the slower

FPGA frequency in our prototype). Clio has 1.1× to 3.4× energy

saving compared to CPU-based and SmartNIC-based disaggregated

memory systems and is 2.7× faster than SmartNIC solutions. Clio

is publicly available at https://github.com/WukLab/Clio.

2 GOALS AND RELATED WORKS

Resource disaggregation separates different types of resources into

different pools, each of which can be independently managed and

scaled. Applications can allocate resources from any node in a

resource pool, resulting in tight resource packing. Because of these

benefits, many datacenters have adopted the idea of disaggregation,

often at the storage layer [4, 6, 7, 13, 19, 72, 78]. With the success

of disaggregated storage, researchers in academia and industry

have also sought ways to disaggregate memory (and persistent

memory) [5, 11, 26, 32, 45, 46, 54, 58, 63ś65, 75, 79]. Different from

storage disaggregation, MemDisagg needs to achieve at least an

order of magnitude higher performance and it should offer a byte-

addressable interface. Thus, MemDisagg poses new challenges and

requires new designs. This section discusses the requirements of

MemDisagg and why existing solutions cannot fully meet them.

2.1 MemDisagg Design Goals

In general, MemDisagg has the following features, some of which

are hard requirements while others are desired goals.

R1: Hosting large amounts of memory with high utilization.

To keep the number of memory devices and total cost of a cluster

low, each MN should host hundreds GBs to a few TBs of memory

that is expected to be close to fully utilized. To most efficiently use

the disaggregated memory, we should allow applications to create

and access disjoint memory regions of arbitrary sizes at MN.

R2: Supporting a huge number of concurrent clients.To ensure

tight and efficient resource packing, we should allow many (e.g.,

thousands of) client processes running on tens of CNs to access and

share an MN. This scenario is especially important for new data-

center trends like serverless computing and microservices where

applications run as large amounts of small units.

R3: Low-latency and high-throughput. We envision future sys-

tems to have a new memory hierarchy, where disaggregated mem-

ory is larger and slower than local memory but still faster than

storage. Since MemDisagg is network-based, a reasonable perfor-

mance target of it is to match the state-of-the-art network speed,

i.e., 100 Gbps throughput (for bigger requests) and sub-2 𝜇𝑠 median

end-to-end latency (for smaller requests).

R4: Low tail latency.Maintaining a low tail latency is important in

meeting service-level objectives (SLOs) in data centers. Long tails

like RDMA’s 16.8𝑚𝑠 remote memory access can be detrimental

to applications that are short running (e.g., serverless computing

workloads) or have large fan-outs or big DAGs (because they need

to wait for the slowest step to finish) [16].

R5: Protected memory accesses. As an MN can be shared by

multi-tenant applications running at CNs, we should properly iso-

late memory spaces used by them. Moreover, to prevent buggy or

malicious clients from reading/writing arbitrary memory at MNs,

we should not allow the direct access of MNs’ physical memory

from the network and MNs should check the access permission.

R6: Low cost. A major goal and benefit of resource disaggregation

is cost reduction. A good MemDisagg system should have low

overall CapEx and OpEx costs. Such a system thus should not 1)

use expensive hardware to build MNs, 2) consume huge energy at

MNs, and 3) add more costs at CNs than the costs saved at MNs.

R7: Flexible. With the fast development of datacenter applica-

tions, hardware, and network, a sustainable MemDisagg solution

should be flexible and extendable, for example, to support high-level

APIs like pointer chasing [3, 63], to offload some application logic

to memory devices [63, 66], or to incorporate different network

transports [9, 28, 51] and congestion control algorithms [40, 44, 68].

2.2 Server-Based Disaggregated Memory

MemDisagg research so far has mainly taken a server-based ap-

proach by using regular servers as MNs [5, 18, 26, 53, 63, 64, 79],

usually on top of RDMA. The common limitation of these systems

is their reliance on a host server and the resulting CPU energy costs,

both of which violate R6.

RDMA is what most server-based MemDisagg solutions are based

on, with some using RDMA for swapping memory between CNs

and MNs [5, 26, 79] and some using RDMA for explicitly accessing

MNs [18, 53, 63]. Although RDMA has low average latency and

high throughput, it has a set of scalability and tail-latency problems.

A process (𝑃𝑀 ) running at an MN needs to allocate memory in

its virtual memory address space and register the allocated mem-

ory (called a memory region, or MR) with the RDMA NIC (RNIC).

The host OS and MMU set up and manage the page table that

maps 𝑃𝑀 ’s virtual addresses (VAs) to physical memory addresses
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(PAs). To avoid always accessing host memory for address mapping,

RNICs cache page table entries (PTEs), but when more PTEs are

accessed than what this cache can hold, RDMA performance de-

grades significantly (Figure 5 and [18, 76]). Similarly, RNICs cache

MR metadata and incur degraded performance when the cache is

full. Thus, RDMA has serious performance issues with either large

memory (PTEs) or many disjoint memory regions (MRs), violating

R1. Moreover, RDMA uses a slow way to support on-demand allo-

cation: the RNIC interrupts the host OS for handling page faults.

From our experiments, a faulting RDMA access is 14100× slower

than a no-fault access (violating R4).

To mitigate the above performance and scalability issues, most

RDMA-based systems today [18, 76] preallocate a big MR with

huge pages and pin it in physical memory. This results in inefficient

memory space utilization and violates R1. Even with this approach,

there can still be a scalability issue (R2), as RDMA needs to create

at least one MR for each protection domain (i.e., each client).

In addition to problems caused by RDMA’s memory system de-

sign, reliable RDMA, the mode used by most MemDisagg solutions,

suffers from a connection queue pair (QP) scalability issue, also vi-

olating R2. Finally, today’s RNICs violate R7 because of their rigid

one-sided RDMA interface and the close-sourced, hardware-based

transport implementation. Solutions like 1RMA [68] and IRN [50]

mitigate the above issues by either onloading part of the transport

back to software or proposing a new hardware design.

LegoOS [64], our own previous work, is a distributed operating

system designed for resource disaggregation. Its MN includes a

virtual memory system that maps VAs of application processes

running at CNs to MN PAs. Clio’s MN performs the same type of

address translation. However, LegoOS emulates MN devices using

regular servers and we built its virtual memory system in software,

which has a stark difference from a hardware-based virtual mem-

ory system. For example, LegoOS uses a thread pool that handles

incoming memory requests by looking up a hash table for address

translation and permission checking. This software approach is the

major performance bottleneck in LegoOS (ğ7), violating R3. More-

over, LegoOS uses RDMA for its network communication hence

inheriting its limitations.

2.3 Physical Disaggregated Memory

One way to build MemDisagg without a host server is to treat it as

raw, physical memory, a model we call PDM. The PDM model has

been adopted by a set of coherent interconnect proposals [15, 24],

HPE’s Memory-Driven Computing project [20, 29, 31, 77]. A recent

disaggregated hashing system [86] and our own recent work on

disaggregated key-value systems [75] also adopt the PDM model

and emulate remote memory with regular servers. To prevent appli-

cations from accessing raw physical memory, these solutions add

an indirection layer at CNs in hardware [15, 24] or software [75, 86]

to map client process VAs or keys to MN PAs.

There are several common problems with all the PDM solutions.

First, because MNs in PDM are raw memory, CNs need multiple

network round trips to access an MN for complex operations like

pointer chasing and concurrent operations that need synchroniza-

tion [75], violating R3 and R7. Second, PDM requires the client

side to manage disaggregated memory. For example, CNs need to

1 /* Alloc one remote page. Define a remote lock */

2 #define PAGE_SIZE (1<<22)

3 void *remote_addr = ralloc(PAGE_SIZE );

4 ras_lock lock;

5

6 /* Acquire lock to enter critical section.

7 Do two AYSNC writes then poll completion. */

8 void thread1(void *) {

9 rlock(lock);

10 e[0]= rwrite(remote_addr , local_wbuf1 ,len , ASYNC );

11 e[1]= rwrite(remote_addr+len , local_wbuf2 ,len , ASYNC );

12 runlock(lock);

13 rpoll(e, 2);

14 }

15

16 /* Synchronously read from remote */

17 void thread2(void *) {

18 rlock(lock);

19 rread(remote_addr , local_rbuf , len , SYNC);

20 runlock(lock);

21 }

Figure 1: Example of Using Clio.

coordinate with each other or use a global server [75] to perform

tasks like memory allocation. Non-MN-side processing is much

harder, performs worse compared to memory-side management

(violating R3), and could even result in higher overall costs because

of the high computation added at CNs (violating R6). Third, expos-

ing physical memory makes it hard to provide security guarantees

(R5), as MNs have to authenticate that every access is to a legit

physical memory address belonging to the application. Finally, all

existing PDM solutions require physical memory pinning at MNs,

causing memory wastes and violating R1.

In addition to the above problems, none of the coherent intercon-

nects or HPE’s Memory-Driven Computing have been fully built.

When they do, they will require new hardware at all endpoints

and new switches. Moreover, the interconnects automatically make

caches at different endpoints coherent, which could cause perfor-

mance overhead that is not always necessary (violating R3).

Besides the above PDMworks, there are also proposals to include

some processing power in between the disaggregated memory layer

and the computation layer. soNUMA [55] is a hardware-based solu-

tion that scales out NUMA nodes by extending each NUMA node

with a hardware unit that services remote memory accesses. Un-

like Clio which physically separates MNs from CNs across generic

data-center networks, soNUMA still bundles memory and CPU

cores, and it is a single-server solution. Thus, soNUMA works only

on a limited scale (violating R2) and is not flexible (violating R7).

MIND [42], a concurrent work with Clio, proposes to use a pro-

grammable switch for managing coherence directories and memory

address mappings between compute nodes and memory nodes. Un-

like Clio which adds processing power to every MN, MIND’s single

programmable switch has limited hardware resources and could be

the bottleneck for both performance and scalability.

3 CLIO OVERVIEW

Clio co-designs software with hardware, CNs with MNs, and net-

work stack with virtual memory system, so that at the MN, the

entire data path is handled in hardware with high throughput, low

(tail) latency, and minimal hardware resources. This section gives

an overview of Clio’s interface and architecture (Figure 2).

420



Clio: A Hardware-Software Co-Designed Disaggregated Memory System ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

3.1 Clio Interface

Similar to recent MemDisagg proposals [8, 63], our current imple-

mentation adopts a non-transparent interface where applications

(running at CNs) allocate and access disaggregated memory via

explicit API calls. Doing so gives users opportunities to perform

application-specific performance optimizations. By design, Clio’s

APIs can also be called by a runtime like the AIFM runtime [63] or

by the kernel/hardware at CN like LegoOS’ pComponent [64] to

support a transparent interface and allow the use of unmodified

user applications. We leave such extension to future work.

Apart from the regular (local) virtual memory address space,

each process has a separate Remote virtual memory Address Space

(RAS for short). Each application process has a unique global PID

across all CNs which is assigned by Clio when the application

starts. Overall, programming in RAS is similar to traditional multi-

threaded programming except that memory read and write are

explicit and that processes running on different CNs can share

memory in the same RAS. Figure 1 illustrates the usage of Clio with

a simple example.

An application process can perform a set of virtual memory

operations in its RAS, including ralloc, rfree, rread, rwrite,

and a set of atomic and synchronization primitives (e.g., rlock,

runlock, rfence). ralloc works like malloc and returns a VA in

RAS. rread and rwrite can then be issued to any allocated VAs.

As with the traditional virtual memory interface, allocation and

access in RAS are in byte granularity. We offer synchronous and

asynchronous options for ralloc, rfree, rread, and rwrite.

Intra-thread request ordering. Within a thread, synchronous

APIs follow strict ordering. An application thread that calls a syn-

chronous API blocks until it gets the result. Asynchronous APIs

are non-blocking. A calling thread proceeds after calling an asyn-

chronous API and later calls rpoll to get the result. Asynchronous

APIs follow a release order. Specifically, asynchronous APIs may

be executed out of order as long as 1) all asynchronous operations

before a rrelease complete before the rrelease returns, and 2)

rrelease operations are strictly ordered. On top of this release

order, we guarantee that there is no concurrent asynchronous op-

erations with dependencies (Write-After-Read, Read-After-Write,

Write-After-Write) and target the same page. The resulting memory

consistency level is the same as architecture like ARMv8 [10]. In

addition, we also ensure consistency between metadata and data

operations, by ensuring that potentially conflicting operations ex-

ecute synchronously in the program order. For example, if there

is an ongoing rfree request to a VA, no read or write to it can

start until the rfree finishes. Finally, failed or unresponsive re-

quests are transparently retried, and they follow the same ordering

guarantees.

Thread synchronization and data coherence. Threads and pro-

cesses can share data even when they are not on the same CN.

Similar to traditional concurrent programming, Clio threads can

use synchronization primitives to build critical sections (e.g., with

rlock) and other semantics (e.g., flushing all requests with rfence).

An application can choose to cache data read from rread at the

CN (e.g., by maintaining local_rbuf in the code example). Differ-

ent processes sharing data in a RAS can have their own cached

copies at different CNs. Similar to [64], Clio does not make these
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Figure 2: Clio Architecture.

cached copies coherent automatically and lets applications choose

their own coherence protocols. We made this deliberate decision be-

cause automatic cache coherence on every read/write would incur

high performance overhead with commodity Ethernet infrastruc-

ture and application semantics could reduce this overhead.

3.2 Clio Architecture

In Clio (Figure 2), CNs are regular servers each equipped with a

regular Ethernet NIC and connected to a top-of-rack (ToR) switch.

MNs are our customized devices directly connected to a ToR switch.

Applications run at CNs on top of our user-space library called

CLib. It is in charge of request ordering, request retry, congestion,

and incast control.

By design, an MN in Clio is a CBoard consisting of an ASIC

which runs the hardware logic for all data accesses (we call it the

fast path and prototyped it with FPGA), an ARM processor which

runs software for handling metadata and control operations (i.e.,

the slow path), and an FPGA which hosts application computation

offloading (i.e., the extend path). An incoming request arrives at

the ASIC and travels through standard Ethernet physical and MAC

layers and a Match-and-Action-Table (MAT) that decides which of

the three paths the request should go to based on the request type. If

the request is a data access (fast path), it stays in the ASIC and goes

through a hardware-based virtual memory system that performs

three tasks in the same pipeline: address translation, permission

checking, and page fault handling (if any). Afterward, the actual

memory access is performed through the memory controller, and

the response is formed and sent out through the network stack.

Metadata operations such as memory allocation are sent to the slow

path. Finally, customized requests with offloaded computation are

handled in the extend path.

4 CLIO DESIGN

This section presents the design challenges of building a hardware-

based MemDisagg system and our solutions.

4.1 Design Challenges and Principles

Building a hardware-based MemDisagg platform is a previously

unexplored area and introduces new challenges mainly because of

restrictions of hardware and the unique requirements of MemDis-

agg.

Challenge 1: The hardware should avoid maintaining or pro-

cessing complex data structures, because unlike software, hard-

ware has limited resources such as on-chip memory and logic cells.
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For example, Linux and many other software systems use trees (e.g.,

the vma tree) for allocation. Maintaining and searching a big tree

data structure in hardware, however, would require huge on-chip

memory and many logic cells to perform the look up operation (or

alternatively use fewer resources but suffer from performance loss).

Challenge 2: Data buffers and metadata that the hardware

uses should be minimal and have bounded sizes, so that they

can be statically planned and fit into the on-chip memory. Unfortu-

nately, traditional software approaches involve various data buffers

and metadata that are large and grow with increasing scale. For ex-

ample, today’s reliable network transports maintain per-connection

sequence numbers and buffer unacknowledged packets for packet

ordering and retransmission, and they grow with the number of

connections. Although swapping between on-chip and off-chip

memory is possible, doing so would increase both tail latency and

hardware logic complexity, especially under large scale.

Challenge 3: The hardware pipeline should be deterministic

and smooth, i.e., it uses a bounded, known number of cycles to

process a data unit, and for each cycle, the pipeline can take in one

new data unit (from the network). The former would ensure low tail

latency, while the latter would guarantee a throughput that could

match network line rate. Another subtle benefit of a deterministic

pipeline is that we can know the maximum time a data unit stays at

MN, which could help bound the size of certain buffers (e.g., ğ4.5).

However, many traditional hardware solutions are not designed

to be deterministic or smooth, and we cannot directly adapt their

approaches. For example, traditional CPU pipelines could have

stalls because of data hazards and have non-deterministic latency

to handle memory instructions.

To confront these challenges, we took a clean-slate approach by

designing Clio’s virtual memory system and network system with

the following principles that all aim to eliminate state in hardware

or bound their performance and space overhead.

Principle 1: Avoid state whenever possible. Not all state in

server-based solutions is necessary if we could redesign the hard-

ware. For example, we get rid of RDMA’s MR indirection and its

metadata altogether by directly mapping application process’ RAS

VAs to PAs (instead of to MRs then to PAs).

Principle 2: Moving non-critical operations and state to soft-

ware and making the hardware fast path deterministic. If

an operation is non-critical and it involves complex processing

logic and/or metadata, our idea is to move it to the software slow

path running in an ARM processor. For example, VA allocation

(ralloc) is expected to be a rare operation because applications

know the disaggregated nature and would typically have only a

few large allocations during the execution. Handling ralloc, how-

ever, would involve dealing with complex allocation trees. We thus

handle ralloc and rfree in the software slow path. Furthermore,

in order to make the fast path performance deterministic, we de-

couple all slow-path tasks from the performance-critical path by

asynchronously performing them in the background.

Principle 3: Shifting functionalities and state to CNs.While

hardware resources are scarce at MNs, CNs have sufficient memory

and processing power, and it is faster to develop functionalities in

CN software. A viable solution is to shift state and functionalities

from MNs to CNs. The key question here is how much and what to

shift. Our strategy is to shift functionalities to CNs only if doing

so 1) could largely reduce hardware resource consumption at MNs,

2) does not slow down common-case foreground data operations,

3) does not sacrifice security guarantees, and 4) adds bounded

memory space and CPU cycle overheads to CNs. As a tradeoff, the

shift may result in certain uncommon operations (e.g., handling a

failed request) being slower.

Principle 4: Making off-chip data structures efficient and

scalable. Principles 1 to 3 allow us to reduce MN hardware to only

the most essential functionalities and state. We store the remaining

state in off-chip memory and cache a fixed amount of them in on-

chip memory. Different from most caching solutions, our focus is

to make the access to off-chip data structure fast and scalable, i.e.,

all cache misses have bounded latency regardless of the number

of client processes accessing an MN or the amount of physical

memory the MN hosts.

Principle 5: Making the hardware fast path smooth by treat-

ing each data unit independently at MN. If data units have

dependencies (e.g., must be executed in a certain order), then the

fast path cannot always execute a data unit when receiving it. To

handle one data unit per cycle and reach network line rate, we make

each data unit independent by including all the information needed

to process a unit in it and by allowing MNs to execute data units in

any order that they arrive. To deliver our consistency guarantees,

we opt for enforcing request ordering at CNs before sending them

out.

The rest of this section presents how we follow these principles

to design Clio’s three main functionalities: memory address transla-

tion and protection, page fault handling, and networking. We also

briefly discuss our offloading support.

4.2 Scalable, Fast Address Translation

Similar to traditional virtual memory systems, we use fix-size pages

as address allocation and translation unit, while data accesses are in

the granularity of byte. Despite the similarity in the goal of address

translation, the radix-tree-style, per-address space page table design

used by all current architectures [69] does not fit MemDisagg for

two reasons. First, each request from the network could be from a

different client process. If each process has its own page table, MN

would need to cache and look up many page table roots, causing

additional overhead. Second, amulti-level page table design requires

multiple DRAM accesses when there is a translation lookaside

buffer (TLB) miss [83]. TLB misses will be much more common in

a MemDisagg environment, since with more applications sharing

an MN, the total working set size is much bigger than that in a

single-server setting, while the TLB size in an MN will be similar

or even smaller than a single server’s TLB (for cost concerns). To

make matters worse, each DRAM access is more costly for systems

like RDMA NIC which has to cross the PCIe bus to access the page

table in main memory [52, 74].

Flat, single page table design (Principle 4).We propose a new

overflow-free hash-based page table design that sets the total page

table size according to the physical memory size and bounds address

translation to at most one DRAM access. Specifically, we store all

page table entries (PTEs) from all processes in a single hash table

whose size is proportional to the physical memory size of an MN.

The location of this page table is fixed in the off-chip DRAM and
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is known by the fast path address translation unit, thus avoiding

any lookups. As we anticipate applications to allocate big chunks

of VAs in their RAS, we use huge pages and support a configurable

set of page sizes. With the default 4MB page size, the hash table

consumes only 0.4% of the physical memory.

The hash value of a VA and its PID is used as the index to deter-

mine which hash bucket the corresponding PTE goes to. Each hash

bucket has a fixed number of (𝐾) slots. To access the page table,

we always fetch the entire bucket including all 𝐾 slots in a single

DRAM access.

Awell-known problemwith hash-based page table design is hash

collisions that could overflow a bucket. Existing hash-based page

table designs rely on collision chaining [12] or open addressing [83]

to handle overflows, both require multiple DRAM accesses or even

costly software intervention. In order to bound address translation

to at most one DRAM access, we use a novel technique to avoid

hash overflows at VA allocation time.

VA allocation (Principle 2). The slow path software handles

ralloc requests and allocates VA. The software allocator maintains

a per-process VA allocation tree that records allocated VA ranges

and permissions, similar to the Linux vma tree [38]. To allocate size

𝑘 of VAs, it first finds an available address range of size 𝑘 in the

tree. It then calculates the hash values of the virtual pages in this

address range and checks if inserting them to the page table would

cause any hash overflow. If so, it does another search for available

VAs. These steps repeat until it finds a valid VA range that does not

cause hash overflow.

Our design trades potential retry overhead at allocation time

(at the slow path) for better run-time performance and simpler

hardware design (at the fast path). This overhead is manageable

because 1) each retry takes only a few microseconds with our

implementation (ğ5), 2) we employ huge pages, which means fewer

pages need to be allocated, 3) we choose a hash function that has

very low collision rate [80], and 4) we set the page table to have

extra slots (2× by default) which absorbs most overflows. We find

no conflicts when memory is below half utilized and has only up

to 60 retries when memory is close to full (Figure 13).

TLB. Clio implements a TLB in a fix-sized on-chip memory area

and looks it up using content-addressable-memory in the fast path.

On a TLB miss, the fast path fetches the PTE from off-chip memory

and inserts it to the TLB by replacing an existing TLB entry with

the LRU policy. When updating a PTE, the fast path also updates the

TLB, in a way that ensures the consistency of inflight operations.

Limitation. A downside of our overflow-free VA allocation design

is that it cannot guarantee that a specific VA can be inserted into

the page table. This is not a problem for regular VA allocation but

could be problematic for allocations that require a fixed VA (e.g.,

mmap(MAP_FIXED)). Currently, Clio finds a new VA range if the user-

specified range cannot be inserted into the page table. Applications

that must map at fixed VAs (e.g., libraries) will need to use CN-local

memory.

4.3 Low-Tail-Latency Page Fault Handling

A key reason to disaggregate memory is to consolidate memory

usages on less DRAM so that memory utilization is higher and the

total monetary cost is lower (R1). Thus, remote memory space

is desired to run close to full capacity, and we allow memory

over-commitment at an MN, necessitating page fault handling.

Meanwhile, applications like JVM-based ones allocate a large heap

memory space at the startup time and then slowly use it to al-

locate smaller objects [27]. Similarly, many existing far-memory

systems [18, 63, 75] allocate a big chunk of remote memory and

then use different parts of it for smaller objects to avoid frequently

triggering the slow remote allocation operation. In these cases,

it is desirable for a MemDisagg system to delay the allocation of

physical memory to when the memory is actually used (i.e., on-

demand allocation) or to łreshapež memory [67] during runtime,

necessitating page fault handling.

Page faults are traditionally signaled by the hardware and han-

dled by the OS. This is a slow process because of the costly inter-

rupt and kernel-trapping flow. For example, a remote page fault

via RDMA costs 16.8𝑚𝑠 from our experiments using Mellanox

ConnectX-4. To avoid page faults, most RDMA-based systems pre-

allocate big chunks of physical memory and pin them physically.

However, doing so results in memory wastes and makes it hard for

an MN to pack more applications, violating R1 and R2.

We propose to handle page faults in hardware and with bounded

latencyÐa constant three cycles to be more specific with our imple-

mentation of CBoard. Handling initial-access faults in hardware

is challenging, as initial accesses require PA allocation, which is a

slow operation that involves manipulating complex data structures.

Thus, we handle PA allocation in the slow path (Challenge 1).

However, if the fast-path page fault handler has to wait for the slow

path to generate a PA for each page fault, it will slow down the

data plane.

To solve this problem, we propose an asynchronous design to

shift PA allocation off the performance-critical path (Principle

2). Specifically, we maintain a set of free physical page numbers in

an async buffer, which the ARM continuously fulfills by finding

free physical page addresses and reserving them without actually

using the pages. During a page fault, the page fault handler sim-

ply fetches a pre-allocated physical page address. Note that even

though a single PA allocation operation has a non-trivial delay, the

throughput of generating PAs and filling the async buffer is higher

than network line rate. Thus, the fast path can always find free PAs

in the async buffer in time. After getting a PA from the async buffer

and establishing a valid PTE, the page fault handler performs three
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tasks in parallel: writing the PTE to the off-chip page table, inserting

the PTE to the TLB, and continuing the original faulting request.

This parallel design hides the performance overhead of the first

two tasks, allowing foreground requests to proceed immediately.

A recent work [41] also handles page faults in hardware. Its

focus is on the complex interaction with kernel and storage devices,

and it is a simulation-only work. Clio uses a different design for

handling page faults in hardware with the goal of low tail latency,

and we built it in FPGA.

Putting the virtual memory system together.We illustrate how

CBoard’s virtual memory system works using a simple example of

allocating some memory and writing to it. The first step (ralloc) is

handled by the slow path, which allocates a VA range by finding an

available set of slots in the hash page table. The slow path forwards

the new PTEs to the fast path, which inserts them to the page table.

At this point, the PTEs are invalid. This VA range is returned to

the client. When the client performs the first write, the request

goes to the fast path. There will be a TLB miss, followed by a fetch

of the PTE. Since the PTE is invalid, the page fault handler will

be triggered, which fetches a free PA from the async buffer and

establishes the valid PTE. It will then execute the write, update the

page table, and insert the PTE to TLB.

4.4 Asymmetric Network Tailored for
MemDisagg

With large amounts of research and development efforts, today’s

data-center network systems are highly optimized in their per-

formance. Our goal of Clio’s network system is unique and fits

MemDisagg’s requirementsÐminimizing the network stack’s hard-

ware resource consumption at MNs and achieving great scalability

while maintaining similar performance as today’s fast network.

Traditional software-based reliable transports like Linux TCP in-

curs high performance overhead. Today’s hardware-based reliable

transports like RDMA are fast, but they require a fair amount of

on-chip memory to maintain state, e.g., per-connection sequence

numbers, congestion state [9], and bitmaps [47, 50], not meeting

our low-cost goal.

Our insight is that different from general-purpose network com-

munication where each endpoint can be both the sender (requester)

and the receiver (responder) that exchange general-purpose mes-

sages, MNs only respond to requests sent by CNs (except for mem-

ory migration from one MN to another MN (ğ4.7), in which case we

use another simple protocol to achieve the similar goal). Moreover,

these requests are all memory-related operations that have their

specific properties. With these insights, we design a new network

system with two main ideas. Our first idea is to maintain transport

logic, state, and data buffers only at CNs, essentially making MNs

łtransportlessž (Principle 3). Our second idea is to relax the reliabil-

ity of the transport and instead enforce ordering and loss recovery

at the memory request level, so that MNs’ hardware pipeline can

process data units as soon as they arrive (Principle 5).

With these ideas, we implemented a transport in CLib at CNs.

CLib bypasses the kernel to directly issue raw Ethernet requests to

an Ethernet NIC. CNs use regular, commodity Ethernet NICs and

regular Ethernet switches to connect to MNs. MNs include only

standard Ethernet physical, link, and network layers and a slim

layer for handling corner-case requests (ğ4.5). We now describe our

detailed design.

Removing connections with request-response semantics.

Connections (i.e., QPs) are a major scalability issue with RDMA.

Similar to recent works [51, 68], we make our network system

connection-less using request-response pairs. Applications running

at CNs directly initiate Clio APIs to anMNwithout any connections.

CLib assigns a unique request ID to each request. The MN attaches

the same request ID when sending the response back. CLib uses

responses as ACKs and matches a response with an outstanding

request using the request ID. Neither CNs nor MNs send ACKs.

Lifting reliability to the memory request level. Instead of

triggering a retransmission protocol for every lost/corrupted packet

at the transport layer, CLib retries the entire memory request if

any packet is lost or corrupted in the sending or the receiving

direction. On the receiving path, MN’s network stack only checks a

packet’s integrity at the link layer. If a packet is corrupted, the MN

immediately sends a NACK to the sender CN. CLib retries a memory

request if one of three situations happens: a NACK is received, the

response from MN is corrupted, or no response is received within a

TIMEOUT period. In addition to lifting retransmission from transport

to the request level, we also lift ordering to the memory request

level and allow out-of-order packet delivery (see details in ğ4.5).

CN-managed congestion and incast control.Our goal of control-

ling congestion in the network and handling incast that can happen

both at a CN and an MN is to minimize state at MN. To this end, we

build the entire congestion and incast control at the CN in the CLib.

To control congestion, CLib adopts a simple delay-based, reactive

policy that uses end-to-end RTT delay as the congestion signal, sim-

ilar to recent sender-managed, delay-based mechanisms [40, 49, 68].

Each CN maintains one congestion window, cwnd, per MN that

controls the maximum number of outstanding requests that can be

made to the MN from this CN. We adjust cwnd based on measured

delay using a standard Additive Increase Multiplicative Decrease

(AIMD) algorithm.

To handle incast to a CN, we exploit the fact that the CN knows

the sizes of expected responses for the requests that it sends out

and that responses are the major incoming traffic to it. Each CLib

maintains one incast window, iwnd, which controls the maximum

bytes of expected responses. CLib sends a request only when both

cwnd and iwnd have room.

Handling incast to an MN is more challenging, as we cannot

throttle incoming traffic at the MN side or would otherwise main-

tain state at MNs. To have CNs handle incast to MNs, we draw

inspiration from Swift [40] by allowing cwnd to fall below one

packet when long delay is observed at a CN. For example, a cwnd

of 0.1 means that the CN can only send a packet within 10 RTTs.

Essentially, this situation happens when the network between a

CN and an MN is really congested, and the only way is to slow the

sending speed.

4.5 Request Ordering and Data Consistency

As explained in ğ3.1, Clio supports both synchronous and asyn-

chronous remote memory APIs, with the former following a se-

quential, one-at-a-time order in a thread and the latter following
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a release order in a thread. Furthermore, Clio provides synchro-

nization primitives for inter-thread consistency. We now discuss

how Clio achieves these correctness guarantees by presenting our

mechanisms for handling intra-request intra-thread ordering, inter-

request intra-thread ordering, inter-thread consistency, and retries.

At the end, we will provide the rationales behind our design.

One difficulty in designing the request ordering and consistency

mechanisms is our relaxed network ordering guarantees, which

we adopt to minimize the hardware resource consumption for the

network layer at MNs (ğ4.4). On an asynchronous network, it is

generally hard to guarantee any type of request ordering when

there can be multiple outstanding requests (either multiple threads

accessing shared memory or a single thread issuing multiple asyn-

chronous APIs). It is even harder for Clio because we aim to make

MN stateless as much as possible. Our general approaches are 1)

using CNs to ensure that no two concurrently outstanding requests

are dependent on each other, and 2) using MNs to ensure that every

user request is only executed once even in the event of retries.

Allowing intra-request packet re-ordering (T1). A request or a

response in Clio can contain multiple link-layer packets. Enforcing

packet ordering above the link layer normally requires maintaining

state (e.g., packet sequence ID) at both the sender and the receiver.

To avoid maintaining such state at MNs, our approach is to deal

with packet reordering only at CNs in CLib (Principle 3). Specifi-

cally, CLib splits a request that is bigger than link-layer maximum

transmission unit (MTU) into several link-layer packets and at-

taches a Clio header to each packet, which includes sender-receiver

addresses, a request ID, and request type. This enables the MN to

treat each packet independently (Principle 5). It executes packets

as soon as they arrive, even if they are not in the sending order.

This out-of-order data placement semantic is in line with RDMA

specification [50]. Note that only write requests will be bigger than

MTU, and the order of data writing within a write request does

not affect correctness as long as proper inter-request ordering is

followed. When a CN receives multiple link-layer packets belong-

ing to the same request response, CLib reassembles them before

delivering them to the application.

Enforcing intra-thread inter-request ordering at CN (T2).

Since only one synchronous request can be outstanding in a thread,

there cannot be any inter-request reordering problem. On the other

hand, there can be multiple outstanding asynchronous requests.

Our provided consistency level disallows concurrent asynchronous

requests that are dependent on each other (WAW, RAW, or WAR).

In addition, all requests must complete before rrelease.

We enforce these ordering requirements at CNs in CLib instead

of at MNs (Principle 3) for two reasons. First, enforcing ordering at

MNs requires more on-chip memory and complex logic in hardware.

Second, even if we enforce ordering at MNs, network reordering

would still break end-to-end ordering guarantees.

Specifically, CLib keeps track of all inflight requests and matches

every new request’s virtual page number (VPN) to the inflight ones’.

If a WAR, RAW, or WAW dependency is detected, CLib blocks the

new request until the conflicting request finishes. When CLib sees

a rrelease operation, it waits until all inflight requests return or

time out. We currently track dependencies at the page granularity

mainly to reduce tracking complexity and metadata overhead. The

downside is that false dependencies could happen (e.g., two accesses

to the same page but different addresses). False dependencies could

be reduced by dynamically adapting the tracking granularity if

application access patterns are trackedÐwe leave this improvement

for future work.

Inter-thread/process consistency (T3). Multi-threaded or multi-

process concurrent programming on Clio could use the synchroniza-

tion primitives Clio provides to ensure data consistency (ğ3.1). We

implemented all synchronization primitives like rlock and rfence

at MN, because they need to work across threads and processes that

possibly reside on different CNs. Before a request enters either the

fast or the slow paths, MN checks if it is a synchronization primi-

tive. For primitives like rlock that internally is implemented using

atomic operations like TAS, MN blocks future atomic operations

until the current one completes. For rfence, MN blocks all future

requests until all inflight ones complete. Synchronization primitives

are one of the only two cases where MN needs to maintain state.

As these operations are infrequent and each of these operations

executes in bounded time, the hardware resources for maintaining

their state are minimal and bounded.

Handling retries (T4). CLib retries a request after a TIMEOUT

period without receiving any response. Potential consistency prob-

lems could happen as CBoard could execute a retried write after

the data is written by another write request thus undoing this other

request’s write. Such situations could happen when the original

request’s response is lost or delayed and/or when the network

reorders packets. We use two techniques to solve this problem.

First, CLib attaches a new request ID to each retry, essentially

making it a new request with its own matching response. Together

with CLib’s ordering enforcement, it ensures that there is only one

outstanding request (or a retry) at any time. Second, we maintain a

small buffer at MN to record the request IDs of recently executed

writes and atomic APIs and the results of the atomic APIs. A retry

attaches its own request ID and the ID of the failed request. If MN

finds a match of the latter in the buffer, it will not execute the

request. For atomic APIs, it sends the cached result as the response.

We set this buffer’s size to be 3×TIMEOUT×bandwidth, which is

30 KB in our setting. It is one of the only two types of state MN

maintains and does not affect the scalability of MN, since its size

is statically associated with the link bandwidth and the TIMEOUT

value. With this size, the MN can łrememberž an operation long

enough for two retries from the CN. Only when both retries and

the original request all fail, the MN will fail to properly handle a

future retry. This case is extremely rare [51], and we report the

error to the application, similar to [36, 68].

Why T1 to T4? We now briefly discuss the rationale behind why

we need all T1 to T4 to properly deliver our consistency guarantees.

First, assume that there is no packet loss or corruption (i.e., no

retry) but the network can reorder packets. In this case, using T1

and T2 alone is enough to guarantee the proper ordering of Clio

memory operations, since they guarantee that network reordering

will only affect either packets within the same request or requests

that are not dependent on each other. T3 guarantees the correct-

ness of synchronization primitives since the MN is the serialization

point and is where these primitives are executed. Now, consider

the case where there are retries. Because of the asynchronous net-

work, a timed-out request could just be slow and still reach the

MN, either before or after the execution of the retried request. If
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another request is executed in between the original and the retried

requests, inconsistency could happen (e.g., losing the data of this

other request if it is a write). The root cause of this problem is that

one request can be executed twice when it is retried. T4 solves this

problem by ensuring that the MN only executes a request once

even if it is retried.

4.6 Extension and Offloading Support

To avoid network round trips when working with complex data

structures and/or performing data-intensive operations, we extend

the core MN to support application computation offloading in the

extend path. Users can write and deploy application offloads both in

FPGA and in software (run in the ARM). To ease the development

of offloads, Clio offers the same virtual memory interface as the

one to applications running at CNs. Each offload has its own PID

and virtual memory address space, and they use the same virtual

memory APIs (ğ3.1) to access on-board memory. It could also share

data with processes running at CNs in the same way that two

CN processes share memory. Finally, an offload’s data and control

paths could be split to FPGA and ARM and use the same async-

buffer mechanism for communication between them. These unique

designs made developing computation offloads easier and closer to

traditional multi-threaded software programming.

4.7 Distributed MNs

Our discussion so far focused on a single MN (CBoard). To more

efficiently use remote memory space and to allow one application

to use more memory than what one CBoard can offer, we extend the

single-MN design to a distributed one with multiple MNs. Specifi-

cally, an application process’ RAS can span multiple MNs, and one

MN can hostmultiple RASs.We adopt LegoOS’ two-level distributed

virtual memory management approach to manage distributed MNs

in Clio. A global controller manages RASs in coarse granularity

(assigning 1GB virtual memory regions to different MNs). Each

MN then manages the assigned regions at fine granularity.

Themain difference between LegoOS and Clio’s distributedmem-

ory system is that in Clio, each MN can be over-committed (i.e.,

allocating more virtual memory than its physical memory size), and

when an MN is under memory pressure, it migrates data to another

MN that is less pressured (coordinated by the global controller). The

traditional way of providing memory over-commitment is through

memory swapping, which could be potentially implemented by

swapping memory between MNs. However, swapping would cause

performance impact on the data path and add complexity to the

hardware implementation. Instead of swapping, we proactively mi-

grate a rarely accessed memory region to another MN when an

MN is under memory pressure (its free physical memory space is

below a threshold). During migration, we pause all client requests

to the region being migrated. With our 10Gbps experimental board,

migrating a 1GB region takes 1.3 second. Migration happens rarely

and, unlike swapping, happens in the background. Thus, it has little

disturbance to foreground application performance.

5 CLIO IMPLEMENTATION

Apart from challenges discussed in ğ4, our implementation of Clio

also needs to overcome several practical challenges, for example,

how can different hardware components most efficiently work to-

gether in CBoard, how to minimize software overhead in CLib. This

section describes how we implemented CBoard and CLib, focusing

on the new techniques we designed to overcome these challenges.

Currently, Clio consists of 24.6K SLOC (excluding computation

offloads and third-party IPs). They include 5.6K SLOC in Spinal-

HDL [70] and 2K in C HLS for FPGA hardware, and 17K in C for

CLib and ARM software. We use vendor-supplied interconnect and

DDR IPs, and an open-source MAC and PHY network stack [21].

CBoard Prototyping. We prototyped CBoard with a low-cost

($2495 retail price) Xilinx MPSoC board [82] and build the hard-

ware fast path (which is anticipated to be built in ASIC) with FPGA.

All Clio’s FPGA modules run at 250MHz clock frequency and 512-

bit data width. They all achieve an Initiation Interval (II) of one (II

is the number of clock cycles between the start time of consecutive

loop iterations, and it decides the maximum achievable bandwidth).

Achieving II of one is not easy and requires careful pipeline design

in all the modules. With II one, our data path can achieve a maxi-

mum of 128Gbps throughput even with just the slower FPGA clock

frequency and would be higher with real ASIC implementation.

Our prototyping board consists of a small FPGA with 504K logic

cells (LUTs) and 4.75MB FPGA memory (BRAM), a quad-core ARM

Cortex-A53 processor, two 10Gbps SFP+ ports connected to the

FPGA, and 2GB of off-chip on-board memory. This board has sev-

eral differences from our anticipated real CBoard: its network port

bandwidth and on-board memory size are both much lower than

our target, and like all FPGA prototypes, its clock frequency is much

lower than real ASIC. Unfortunately, no board on the market offers

the combination of small FPGA/ARM (required for low cost) and

large memory and high-speed network ports.

Nonetheless, certain features of this board are likely to exist in

a real CBoard, and these features guide our implementation. Its

ARM processor and the FPGA connect through an interconnect

that has high bandwidth (90 GB/s) but high delay (40 𝜇𝑠). Although

better interconnects could be built, crossing ARM and FPGA would

inevitably incur non-trivial latency. With this board, the ARM’s

access to on-board DRAM is much slower than the FPGA’s access

because the ARM has to first physically cross the FPGA then to

the DRAM. A better design would connect the ARM directly to the

DRAM, but it will still be slower for the ARM to access on-board

DRAM than its local on-chip memory.

To mitigate the problem of slow accesses to on-board DRAM

from ARM, we maintain shadow copies of metadata at ARM’s local

DRAM. For example, we store a shadow version of the page table in

ARM’s local memory, so that the control path can read page table

content faster. When the control path needs to perform a virtual

memory space allocation, it reads the shadow page table to test if

an address would cause an overflow (ğ4.2). We keep the shadow

page table in sync with the real page table by updating both tables

when adding, removing, or updating the page table entries.

In addition to maintaining shadow metadata, we employ an

efficient polling mechanism for ARM/FPGA communication. We

dedicate one ARM core to busy poll an RX ring buffer between

ARM and FPGA, where the FPGA posts tasks for ARM. This polling

thread hands over tasks to other worker threads for task handling

and post responses to a TX ring buffer.
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CBoard’s network stack builds on top of standard, vendor-

supplied Ethernet physical and link-layer IPs, with just an additional

thin checksum-verify and ack-generation layer on top. This layer

uses much fewer resources compared to a normal RDMA-like stack

(ğ7.3). We use lossless Ethernet with Priority Flow Control (PFC)

for less packet loss and retransmission. Since PFC has issues like

head-of-line blocking [23, 44, 50, 85], we rely on our congestion

and incast control to avoid triggering PFC as much as possible.

Finally, to assist Clio users in building their applications, we

implemented a simple software simulator of CBoard which works

with CLib for developers to test their code without the need to run

an actual CBoard.

CLib Implementation. Even though we optimize the performance

of CBoard, the end-to-end application performance can still be

hugely impacted if the host software component (CLib) is not as

fast. Thus, our CLib implementation aims to provide low-latency

performance by adopting several ideas (e.g., data inlining, doorbell

batching) from recent low-latency I/O solutions [34ś37, 57, 76, 84].

We implemented CLib in the user space. It has three parts: a user-

facing request ordering layer that performs dependency check and

ordering of address-conflicting requests, a transport layer that per-

forms congestion/incast control and request-level retransmission,

and a low-level device driver layer that interacts with the NIC (sim-

ilar to DPDK [17] but simpler). CLib bypasses kernel and directly

issues raw Ethernet requests to the NIC with zero memory copy.

For synchronous APIs, we let the requesting thread poll the NIC for

receiving the response right after each request. For asynchronous

APIs, the application thread proceeds with other computations after

issuing the request and only busy polls when the program calls

rpoll.

6 BUILDING APPLICATIONS ON CLIO

We built five applications on top of Clio, one that uses the basic

Clio APIs, one that implements and uses a high-level, extended API,

and two that offload data processing tasks to MNs, and one that

splits computation across CNs and MNs.

Image compression. We build a simple image compression/de-

compression utility that runs purely at CN. Each client of the utility

(e.g., a Facebook user) has its own collection of photos, stored in

two arrays at MNs, one for compressed and one for original, both

allocated with ralloc. Because clients’ photos need to be protected

from each other, we use one process per client to run the utility. The

utility simply reads a photo from MN using rread, compresses/de-

compresses it, and writes it back to the other array using rwrite.

Note that we use compression and decompression as an example of

image processing. These operations could potentially be offloaded

to MNs. However, in reality, there can be many other types of im-

age processing that are more complex and are hard and costly to

implement in hardware, necessitating software processing at CNs.

We implemented this utility with 1K C code in 3 developer days.

Radix tree. To demonstrate how to build a data structure on Clio

using Clio’s extended API, we built a radix tree with linked lists

and pointers. Data-structure-level systems like AIFM [63] could

follow this example to make simple changes in their libraries to run

on Clio. We first built an extended pointer-chasing functionality

in FPGA at the MN which follows pointers in a linked list and

performs a value comparison at each traversed list node. It returns

either the node value when there is a match or null when the next

pointer becomes null. We then expose this functionality to CNs

as an extended API. The software running at CN allocates a big

contiguous remote memory space using ralloc and uses this space

to store radix tree nodes. Nodes in each layer are linked to a list.

To search a radix tree, the CN software goes through each layer of

the tree and calls the pointer chasing API until a match is found.

We implemented the radix tree with 300 C code at CN and 150

SpinalHDL code at CBoard in less than one developer day.

Key-value store.We built Clio-KV, a key-value store that supports

concurrent create/update/read/delete key-value entries with atomic

write and read committed consistency. Clio-KV runs at an MN as

a computation offloading module. Users can access it through a

key-value interface from multiple CNs. The Clio-KV module has its

own virtual memory address space and uses Clio virtual memory

APIs to access it. Clio-KV uses a chained hash table in its virtual

memory space for managing the metadata of key-value pairs, and

it stores the actual key values at separate locations in the space.

Each hash bucket has a chain of slots. Each slot contains the virtual

addresses of seven key-value pairs. It also stores a fingerprint for

each key-value pair.

To create a new key-value pair, Clio-KV allocates space for the

key-value data with an ralloc call and writes the data with an

rwrite. It then calculates the hash and the fingerprint of the key.

Afterward, it fetches the last hash slot in the corresponding hash

bucket using the hash value. If that slot is full, Clio-KV allocates

another slot using ralloc; otherwise, it just uses the fetched last

slot. It then inserts the virtual address and fingerprint of the data

into the last/new slot. Finally, it links the current last slot to the

new slot if a new one is created.

To perform a read, Clio-KV locates the hash bucket (with the

key’s hash value) and fetches one slot in the bucket chain at a time

using rread. It then compares the fingerprint of the key to the

seven entries in the slot. If there is no match, it fetches the next

slot in the bucket. Otherwise, with a matched entry, it reads the

key-value pair using the address stored in that entry with an rread.

It then compares the full key and returns the value if it is a match.

Otherwise, it keeps searching the bucket.

The above describes a single-MN Clio-KV system. Another CN-

side load balancer is used to partition key-value pairs into different

MNs. Since all CNs requests of the same partition go to the same

MN and Clio APIs within an MN are properly ordered, it is fairly

easy for Clio-KV to guarantee the atomic-write, read-committed

consistency level.

We implemented Clio-KV with 772 SpinalHDL code in 6 de-

veloper days. To evaluate Clio’s virtual memory API overhead at

CBoard, we also implemented a key-value store with the same

design as Clio-KV but with raw physical memory interface. This

physical-memory-based implementation takes more time to de-

velop and only yields 4%ś12% latency improvement and 1%ś5%

throughput improvement over Clio-KV.

Multi-version object store. We built a multi-version object store

(Clio-MV) which lets users on CNs create an object, append a new

version to an object, read a specific version or the latest version of

an object, and delete an object. Similar to Clio-KV, Clio-MV has its

own address space. In the address space, it uses an array to store
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versions of data for each object, a map to store the mapping from

object IDs to the per-object array addresses, and a list to store free

object IDs. When a new object is created, Clio-MV allocates a new

array (with ralloc) and writes the virtual memory address of the

array into the object ID map. Appending a new version to an object

simply increases the latest version number and uses that as an index

to the object array for writing the value. Reading a version simply

reads the corresponding element of the array.

Clio-MV allows concurrent accesses from CNs to an object and

guarantees sequential consistency for each object. Each Clio-MV

user request involves at least two internal Clio operations, some of

which include both metadata and data operations. This compound

request pattern makes it tricky to deal with synchronization prob-

lems, as Clio-MV needs to ensure that no internal Clio operation of

a later Clio-MV request could affect the correctness of an earlier

Clio-MV request. We implemented Clio-MV with 1680 lines of C

HLS code in 15 developer days.

Simple data analytics. Our final example is a simple DataFrame-

like data processing application (Clio-DF), which splits its computa-

tion between CN and MN. We implement select and aggregate

at MN as two offloads, as offloading them can reduce the amount of

data sent over the network. We keep other operations like shuffle

and histogram at CN. For the same user, all these modules share

the same address space regardless of whether they are at CN or MN.

Thanks to Clio’s support of computation offloading sharing the

same address space as computations running at host, Clio-DF’s im-

plementation is largely simplified and its performance is improved

by avoiding data serialization/deserialization.We implemented Clio-

DF with 202 lines of SpinalHDL code and 170 lines of C interface

code in 7 developer days.

7 EVALUATION

Our evaluation reveals the scalability, throughput, median and tail

latency, energy and resource consumption of Clio. We compare

Clio’s end-to-end performance with industry-grade NICs (ASIC)

and well-tuned RDMA-based software systems. All Clio’s results are

FPGA-based, which would be improved with ASIC implementation.

Environment. We evaluated Clio in our local cluster of four

CNs and four MNs (Xilinx ZCU106 boards), all connected to an

Nvidia 40Gbps VPI switch. Each CN is a Dell PowerEdge R740

server equipped with a Xeon Gold 5128 CPU and a 40Gbps Nvidia

ConnectX-3 NIC, with two of them also having an Nvidia BlueField

SmartNIC [48]. We also include results from CloudLab [14] with

the Nvidia ConnectX-5 NIC.

7.1 Basic Microbenchmark Performance

Scalability. We first compare the scalability of Clio and RDMA.

Figure 4 measures the latency of Clio and RDMA as the number of

client processes increases. For RDMA, each process uses its own

QP. Since Clio is connectionless, it scales perfectly with the number

of processes. RDMA scales poorly with its QP, and the problem

persists with newer generations of RNIC, which is also confirmed

by our previous works [56, 74].

Figure 5 evaluates the scalability with respect to PTEs and mem-

ory regions. For the memory region test, we register multiple MRs

using the same physical memory for RDMA. For Clio, we map a

large range of VAs (up to 4 TB) to a small physical memory space,

as our testbed only has 2GB physical memory. However, the num-

ber of PTEs and the amount of processing needed are the same

for CBoard as if it had a real 4 TB physical memory. Thus, this

workload stress tests CBoard’s scalability. RDMA’s performance

starts to degrade when there are more than 2
8 (local cluster) or 212

(CloudLab), and the scalability wrt MR is worse than wrt PTE. In

fact, RDMA fails to run beyond 2
18 MRs. In contrast, Clio scales

well and never fails (at least up to 4 TB memory). It has two levels

of latency that are both stable: a lower latency below 2
4 for TLB hit

and a higher latency above 24 for TLB miss (which always involves

one DRAM access). A CBoard could use a larger TLB if optimal

performance is desired.

These experiments confirm that Clio can handle thousands

of concurrent clients and TBs of memory.

Latency variation. Figure 6 plots the latency of reading/writing

16 B data when the operation results in a TLB hit, a TLB miss, a

first-access page fault, and MR miss (for RDMA only, when the
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MR metadata is not in RNIC). RDMA’s performance degrades sig-

nificantly with misses. Its page fault handling is extremely slow

(16.8𝑚𝑠). We confirm the same effect on CloudLab with the newer

ConnectX-5 NICs. Clio only incurs a small TLB miss cost and no

additional cost of page fault handling.

We also include a projection of Clio’s latency if it was to be imple-

mented using a real ASIC-based CBoard. Specifically, we collect the

latency breakdown of time spent on the network wire and at CN,

time spent on third-party FPGA IPs, number of cycles on FPGA, and

time on accessing on-board DRAM. We maintain the first two parts,

scale the FPGA part to ASIC’s frequency (2GHz), use DDR access

time collected on our server to replace the access time to on-board

DRAM (which goes through a slow board memory controller). This

estimation is conservative, as a real ASIC implementation of the

third-party IPs would make the total latency lower. Our estimated

read latency is better than RDMA, while write latency is worse. We

suspect the reason being Nvidia RNIC’s optimization of replying

a write before it is fully written to DRAM, which Clio could also

potentially adopt.

Figure 7 plots the request latency CDF of continuously running

read/write 16 B data while not triggering page faults. Even without

page faults, Clio has much less latency variation and a much shorter

tail than RDMA.

Read/write throughput.We measure Clio’s throughput by vary-

ing the number of concurrent client threads (Figure 8). Clio’s de-

fault asynchronous APIs quickly reach the line rate of our testbed

(9.4 Gbps maximum throughput). Its synchronous APIs could also

reach line rate fairly quickly.

Figure 9 measures the maximum throughput of Clio’s FPGA

implementation without the bottleneck of the board’s 10 Gbps port,

by generating traffic on board. Both read and write can reach more

than 110Gbps when request size is large. Read throughput is lower

than write when request size is smaller. We found the throughput

bottleneck to be the third-party non-pipelined DMA IP (which

could potentially be improved).

Comparison with other systems.We compare Clio with native

one-sided RDMA, Clover [75], HERD [36], and LegoOS [64]. We ran

HERD on both CPU and BlueField (HERD-BF). Clover is a passive

disaggregated persistent memory system which we adapted as a

passive disaggregated memory (PDM) system. HERD is an RDMA-

based system that supports a key-value interface with an RPC-like

architecture. LegoOS builds its virtual memory system in software

at MN.

Clio’s performance is similar to HERD and close to native RDMA.

Clover’s write is the worst because it uses at least 2 RTTs for

writes to deliver its consistency guarantees without any process-

ing power at MNs. HERD-BF’s latency is much higher than when

HERD runs on CPU due to the slow communication between Blue-

Field’s ConnectX-5 chip and ARM processor chip. LegoOS’s latency

is almost two times higher than Clio’s when request size is small.

In addition, from our experiment, LegoOS can only reach a peak

throughput of 77Gbps, while Clio can reach 110Gbps. LegoOS’

performance overhead comes from its software approach, demon-

strating the necessity of a hardware-based solution like Clio.

Allocation performance. Figure 12 shows Clio’s VA and PA alloca-

tion and RDMA’s MR registration performance. Clio’s PA allocation

takes less than 20 𝜇𝑠 , and the VA allocation is much faster than

RDMA MR registration, although both get slower with larger allo-

cation/registration size. Figure 13 shows the number of retries at

allocation time with three allocation sizes as the physical memory

fills up. There is no retry when memory is below half utilized. Even

when memory is close to full, there are at most 60 retries per alloca-

tion request, with roughly 0.5𝑚𝑠 per retry. This confirms that our

design of avoiding hash overflows at allocation time is practical.

Close look at CBoard components. To further understand Clio’s

performance, we profile different parts of Clio’s processing for read

and write of 4 B to 1 KB. CLib adds a very small overhead (250𝑛𝑠 in

total), thanks to our efficient threading model and network stack

implementation. Figure 14 shows the latency breakdown at CBoard.

Time to fetch data from DRAM (DDRAccess) and to transfer it

over the wire (WireDelay) are the main contributor to read latency,

especially with large read size. Both could be largely improved in a

real CBoard with better memory controller and higher frequency.

TLB miss (which takes one DRAM read) is the other main part of

the latencies.
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7.2 Application Performance

Image Compression. We run a workload where each client com-

presses and decompresses 1000 256*256-pixel images with increas-

ing number of concurrently running clients. Figure 16 shows the

total runtime per client. We compare Clio with RDMA, with both

performing computation at the CN side and the RDMA using one-

sided operations instead of Clio APIs to read/write images in remote

memory. Clio’s performance stays the same as the number of clients

increase. RDMA’s performance does not scale because it requires

each client to register a different MR to have protected memory

accesses. With more MRs, RDMA runs into the case where the

RNIC cannot hold all the MR metadata and many accesses would

involve a slow read to host main memory.

Radix Tree. Figure 17 shows the latency of searching a key in pre-

populated radix trees when varying the tree size. We again compare

with RDMA which uses one-sided read operations to perform the

tree traversal task. RDMA’s performance is worse than Clio, because

it requires multiple RTTs to traverse the tree, while Clio only needs

one RTT for each pointer chasing (each tree level). In addition,

RDMA also scales worse than Clio.

Key-value store. Figure 18 evaluates Clio-KV using the YCSB

benchmark [1] and compares it to Clover, HERD, and HERD-BF.

We run two CNs and 8 threads per CN. We use 100K key-value

entries and run 100K operations per test, with YCSB’s default key-

value size of 1 KB. The accesses to keys follow the Zipf distribution

(𝜃 = 0.99). We use three YCSB workloads with different get-set

ratios: 100% get (workload C), 5% set (B), and 50% set (A). Clio-KV

performs the best. HERD running on BlueField performs the worst,

mainly because BlueField’s slower crossing between its NIC chip

and ARM chip.

Figures 15 shows the throughput of Clio-KV when varying the

number of MNs. Similar to our Clio scalability results, Clio-KV

can reach a CN’s maximum throughput and can handle concurrent

get/set requests even under contention. These results are similar to

or better than previous FPGA-based and RDMA-based key-value

stores that are fine-tuned for just key-value workloads (Table 3 in

[43]), while we got our results without any performance tuning.

Multi-version data store.We evaluate Clio-MV by varying the

number of CNs that concurrently access data objects (of 16 B) on

an MN using workloads of 50% read (of different versions) and 50%

write under uniform and Zipf distribution of objects (Figure 19).

Clio-MV’s read and write have the same performance, and reading

any version has the same performance, since we use an array-based

version design.

Data analytics. We run a simple workload which first selects

rows in a table whose field-A matches a value (e.g., gender is female)

and then calculates avg of field-B (e.g., final score) of all the rows.

Finally, it calculates the histogram of the selected rows (e.g., score

distribution), which can be presented to the user together with the

avg value. Clio executes the first two steps at MN offloads and the

final step at CN, while RDMA always reads rows to CN and then

does each operation. Figure 20 plots the total run time as the select

ratio decreases (i.e., fewer rows selected). When the select ratio

is low, Clio transfers much less data than RDMA, resulting in its

better performance.

7.3 CapEx, Energy, and FPGA Utilization

We estimate the cost of server and CBoard using market prices

of different hardware units. When using 1 TB DRAM, a server-

based MN costs 1.1-1.5× and consumes 1.9-2.7× power compared

to CBoard. These numbers become 1.4-2.5× and 5.1-8.6× with Op-

taneDimm [60], which we expect to be the more likely remote

memory media in future systems.

We measure the total energy used for running YCSB workloads

by collecting the total CPU (or FPGA) cycles and the Watt of a CPU

core [2], ARM processor [59], and FPGA (measured). We omit the

energy used by DRAM and NICs in all the calculations. Clover, a

system that centers its design around low cost, has slightly higher

energy than Clio. Even though there is no processing at MNs for

Clover, its CNs use more cycles to process and manage memory.

HERD consumes 1.6× to 3×more energy than Clio, mainly because

of its CPU overhead at MNs. Surprisingly, HERD-BF consumes the

most energy, even though it is a low-power ARM-based SmartNIC.

This is because of its worse performance and longer total runtime.

Figure 22 compares the FPGA utilization among Clio, StRoM’s

RoCEv2 [66], and Tonic’s selective ack stack [9]. Both StRoM and

Tonic include only a network stack but they consume more re-

sources than Clio. Within Clio, the virtual memory (VirtMem) and

the network stack (NetStack) consume a small fraction of the to-

tal resources, with the rest being vendor IPs (PHY, MAC, DDR4,

and interconnect). Overall, our efficient hardware implementation

leaves most FPGA resources available for application offloads.

8 DISCUSSION AND CONCLUSION

We presented Clio, a new hardware-based disaggregated memory

platform. Our FPGA prototype demonstrates that Clio achieves

great performance, scalability, and cost-saving. This work not only

guides the future development of MemDisagg solutions but also

demonstrates how to implement a core OS subsystem in hardware

and co-design it with the network. We now present our concluding

thoughts with several open questions.
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Security and performance isolation. Clio’s protection domain

is a user process, which is the same as the traditional single-server

process-address-space-based protection. The difference is that Clio

performs permission checks at MNs: it restricts a process’ access

to only its (remote) memory address space and does this check

based on the global PID. Thus, the safety of Clio relies on PIDs

to be authentic (e.g., by letting a trusted CN OS or trusted CN

hardware attach process IDs to each Clio request). There have been

researches on attacking RDMA systems by forging requests [62]

and on adding security features to RDMA [68, 71]. How these and

other existing security works relate and could be extended in a

memory disaggregation setting is an open problem, and we leave

this for future work.

There are also designs in our current implementation that could

be improved to provide more protection against side-channel and

DoS attacks. For example, currently, the TLB is shared across ap-

plication processes, and there is no network bandwidth limit for

an individual connection. Adding more isolation to these compo-

nents would potentially increase the cost of CBoard or reduce its

performance. We leave exploring such tradeoffs to future work.

Failure handling. Although memory systems are usually assumed

to be volatile, there are still situations that require proper failure

handling (e.g., for high availability or to use memory for storing

data). As there can be many ways to build memory services on Clio

and many such services are already or would benefit from handling

failure on their own, we choose not to have any built-in failure

handling mechanism in Clio. Instead, Clio should offer primitives

like replicated writes for users to build their own services. We leave

adding such API extensions to Clio as future work.

CN-side stack. An interesting finding we have is that CN-side

systems could become a performance bottleneck after we made the

remote memory layer very fast. Surprisingly, most of our perfor-

mance tuning efforts are spent on the CN side (e.g., thread model,

network stack implementation). Nonetheless, software implementa-

tion is inevitably slower than customized hardware implementation.

Future works could potentially improve Clio’s CN side performance

by offloading the software stack to a customized hardware NIC.
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