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ABSTRACT
Nowadays, Cyber-Physical Systems (CPS) represent one of the
main core elements of the Industry 4.0. It is common practice to
run simulations on a model of the CPS, by adopting specific tools
and approaches. Since the purpose of such models is to represent
real systems, it is appropriate to assume that several components
may be affected by noises and disturbances (N&D), and that these
latter may have a different impact on the system depending on
the considered configuration and the simulation scenarios. The
analysis of signals belonging to a CPS system permits the under-
standing of the relationships that discipline the behavior of the
whole system in presence of N&D. Depending on the context and
the considered scenarios, the simulations in presence of N&Dmight
generate very different numerical results compared to the simu-
lations that do not include them. However, the simulations with
additional N&D are non-trivial to be computed and analyzed, es-
pecially when the considered CPS have also high variability and
configurability. The adopted approach investigates the validation
of possible cross-configurations, in order that the solution includes
sets of suitable configurations for both the CPS parameters and
N&D wrt scenarios.

CCS CONCEPTS
• Software and its engineering→ Software verification and val-
idation; • Computing methodologies → Modeling and sim-
ulation; • Computer systems organization → Embedded and
cyber-physical systems.
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1 INTRODUCTION AND MOTIVATION
Multiple modern software systems have to manage a variety of
contexts, including new customer requirements and changing en-
vironmental conditions. It is costly and inefficient to develop of a
new variant of a system entirely from scratch all the times that
there is a previously-unseen context. To obtain a better adaptability,
compliance and economies of scale, engineers normally inject vari-
ation points in the system, which can then be adapted to the precise
context newly met. As a result these systems are named Variability-
Intensive Systems (VIS). VIS are referred to a large class of systems
that can be derived into multiple variants including software prod-
uct lines ([37]) and configurable systems ([49][45]). The concept
of variability is related to each fashion in which the variants are
not equal, including, for example, a different value for a variable.
In software product lines, such variation points are typically called
features, and in configurable systems they are named configuration
parameters. Taking into account desired scenarios, engineers have
to build, deploy and run suitable variants of their VIS, in order to
ensure the satisfaction of the desired requirements. To obtain this,
they begin the development of a configuration process in which
the configuration parameters (i.e. the variation points) of the VIS
are set to specific values to get the opportune variant ([49][18]. In
multiple embedded systems (i.e. real-world cases), the presence of
variability affects the system behaviour in various ways, and due
to this condition the assessment of variants w.r.t. intended require-
ments is not trivial. In addition to this the injection of variability
may lead to an intractable situation due to the exponential compu-
tation as consequence to the presence of many millions of variants
([8]). Furthermore since VIS may be related to multiple domain
the identification of suitable variant is even more complex as there
are multiple criteria and constraints to be taken into consideration.
Moreover the choice of the appropriate variant is even more chal-
lenging in case of uncertainties (e.g. noises, disturbances, etc.), as
the requirements of the system should be satisfied with the highest
probability in the majority of contexts ([48][41]) but the behavior
of the system is more unpredictable in these conditions. In VIS the
variability can be related to the design-time and the run-time. In the
first one the requirements have been a-priori defined by engineers,
thus the aim is to discover which variants of their VIS are more
likely to satisfy the requirements in the best fashion and then which
ones should be built/deployed. In the second one, the system (i.e.
a specific variant of the VIS) is already running but is regularly
faced to unpredictable changes in its environment. To monitor that
the requirements are still satisfied in spite of the changing environ-
mental conditions, engineers have to reconfigure the system, i.e.
switching the latter from a variant to another one by altering the
value of its configuration parameters during its execution. This is
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why the development of an approach that can handle these two
kind of variability is not trivial. The preliminary work presented
in this paper is focused on the analysis of Cyber-Physical Systems
(CPS) [29, 43] and their behavior in presence of variability related
to parameter configurations and uncertainties (N&D). The goal of
the research is to help engineers to explore all the possible and ap-
propriate design alternatives wrt the scenario, the mission and the
budget. CPS are related to various domains including aerospace [67],
automotive [40], avionic [50], healthcare [28], transportation [21],
industrial production [36, 63], environmental [35], etc. In this work,
we take into account existing Nasa aerospace systems 1, which are
extremely critical and are intensively subject to environmental per-
turbations. Due to their critical missions it is fundamental that CPS
act correctly and do not behave unexpectedly. This is the reason
why the design, construction and verification of these systems are
important steps throughout which quality should be ensured. These
steps, however, are challenging due to the difficulty to represent
and emulate the various and complex system-world interactions
[12, 24, 56]. The quality is an also an essential element to be proved
since it is related to the satisfaction of several safety industrial
standards. Given a mission and a scenario the satisfaction of safety
standard (i.e. the quality) is the core element to the development of
a system that could exists in reality. CPS engineers typically rely on
simulations and related platforms, such as MathWorks’ Simulink,
to prepare and assess candidates designs for their system. Simulink
is a de-facto industry standard [57] well known by engineers, and it
is an environment based on block diagrams which permits the mod-
eling and simulations of dynamical systems. The tool developed
to perform preliminary analysis and experiments is easy-reusable
and extendable. It is also entirely developed adopting the notori-
ous MathWorks software products (i.e. MATLAB and Simulink),
so there is no need for engineers to gain expertise with additional
frameworks.

2 RESEARCH QUESTIONS
Given a set of simulation scenarios, the purpose of the research is
to identify the best configuration for the mission of each specific
considered scenario, the desired assurance level, as well as the
budget which should be minimized. In order to pursue such an aim,
the following research questions have been investigated:RQ1) Can
we discover alternatives of real-world designs that behave
correctly? RQ2): Do these design alternatives remain valid
in the presence of noises and disturbances? RQ3): Do the
design alternatives have the same trends of behaviour as the
original system? Additional research questions that are currently
under investigations are: RQ4) Given a set of scenarios, can
we identify the optimal configuration wrt the budget and
the desired assurance level? RQ5) Is it feasible to develop an
approach to reduce the computational time related to the
simulations? RQ6) Is the approach suitable also for systems
with run-time variability?

1The two considered Nasa models are available at: www.tiny.cc/559tuz and
www.tiny.cc/659tuz

3 RESEARCH METHODOLOGY AND
APPROACH

The main goal is to discover variations of existing designs that
exhibit a suitable behaviour. To achieve this, we have implemented
an approach which exploits the variability to discover possible de-
sign alternatives and configurations. The idea is to identify the best
configuration for a specific scenario and the budget. Then the aim
is to verify if the selected configurations are still valid also in the
presence of uncertainties such as random N&D, in other words if
still it satisfies the selected assurance level and the budget or if
other kind of configuration should be adopted for such a purpose.
To achieve this, we have followed and implemented the analysis
procedure which consists in the following steps: 1) selection of
the Simulink model and parameters, 2) simulation of the original
models, 3) selection of new parameters range, 4) simulations with
new parameters ranges, 5) steps 3) and 4) are repeated if simula-
tion errors are not present, otherwise the flow continues (i.e. limits
on range parameters are found), 6) selection of new parameters
ranges with N&D, 7) simulations, 8) steps 5) and 6) are repeated if
simulation errors are not present, otherwise the flow continues (i.e.
limits on range parameters w.r.t. N&D are found), 9) simulation cam-
paigns, 10) results and evaluation 2. In details, when the Simulink
models are imported, a nominal simulation (i.e. a standard one with
original settings and configuration without N&D) is performed in
order to have a reference for next simulations (i.e. the ones with
N&D as well as different configurations). Then suitable ranges of
model’s parameter are identified altering the original values by ±5%.
This process is repeated until some simulation errors are triggered
as this would indicate that the maximum possible ranges (wrt to
various physical constraints of the model and the scenario) have
been identified. We consider correct all the simulations that end
without errors and our approach ensures that only valid ranges are
considered since the ones that lead to errors are discharged. This
process is repeated when N&D are injected in the model. Noises
are modeled as white ones (i.e. noises with a zero mean). When
noises are enabled, they act on sensors, and their effect is present
during the entire simulation. We implement their injection through
a random seed. We limit the noise injected into each element by a
specific percentage that is model dependent. Disturbances are mod-
eled as random values (w.r.t. tailored ranges) added to the signal
of the variables. During the simulation, disturbances can occur in
multiple randommoments and time ranges. The precise time ranges
and the amplitude of the disturbances are randomly determined.
In order to control these effects, we specify a maximum range of
disturbance that is model dependent. This is why an additional
tailoring phase is required, in fact the parameters ranges identified
in the previous phase are reduced due to the presence of N&D.

4 PRELIMINARY RESULTS
For both the models the computed results are interesting as, all
the configurations overall keep the general trend of the original
Simulink model. The differences that are present between the nom-
inal versions and the ones with configurations are due to random
values related to the variables, noises and disturbances (these latter

2The visual representation of the approach as well as supplementary material, such as
examples of disturbances, are available at: www.tiny.cc/ai5tu
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appear in a random amount of times during simulations and have
even random amplitudes). All of these random values are computed
w.r.t. the tailored ranges, but in multiple configurations there can
be many variables which can assume values close to the limit of
the range. This same condition can be present also for N&D and
all of these can affect the final results. To answer to RQ1) our
investigations have revealed that it is possible to discover alterna-
tives of real-world designs that still behave correctly. Expecially
for one of the two Nasa models under investigations the range of
configurations for some variables are even the double of the other
model. This indicates that one of the two models is more sensi-
tive to the presence of configurations and N&D. Having identified
the set of valid configurations, we next proceed with the analysis
for these configurations with the injection of N&D. This process
requires the variables to be afflicted by N&D and the setting of
a maximum noise and a maximum disturbance to be injected in
the studied models adopting two different extents. This difference
exists because we empirically determined that the one of the two
Simulink models is more sensitive to N&D than the other one. This
also corroborates our previous finding that this latter’s parameters
have a larger range of configurations than the other model, i.e.
the first has a larger range of possible valid configurations. This
answers the RQ2) as the second tailoring phase ensures that the
remaining ranges are appropriate also taking into account the pres-
ence of N&D. Concerning the RQ3) the Wilcoxon signed ranked
paired [47] and the Vargha Delanay [62] tests are computed. Given
a couple of configurations, the first test is adopted to check if the
difference between variables’s values is statistically relevant. In
such test, if the outcome is zero, Vargha Delanay test is not elab-
orated as it would imply that we fail to reject the null hypothesis
(i.e. there is not statistical relevance), otherwise Vargha Delanay
test is performed. For such tests there are evaluated the values of
the nominal simulation with the ones having configurations with
N&D. The goal of Vargha Delanay test is to measure the scientific
significance. Through our statistical investigation we discovered
that a part of the configurations is different and that this depends
mainly on the configuration of parameters than on the presence
of N&D. This is mainly related to the one of the model, the more
tolerant one wrt configurations and N&D, but considering that such
model have ranges that for some variables are even the double of
the ones elaborated for the other model, the presence of a part of
configuration that is not equivalent to the original one is not an
unexpected result. In addition to this in general depending on the
key performance indicator (KPI) that are considered relevant for
a specific mission, this do not necessarily imply a negative result,
as this was verified only for some variables. The procedure is use-
ful to discover which variables are more sensitive to the choice of
configurations as well as to the presence of N&D. Such variables
in fact can be considered relevant only in some specific kind of
missions. Some threats to the validity to the current work include
the fact that we considered valid simulations depending on the
outcome of Simulink simulations, namely on the presence of errors
(e.g. if physical constraints are violated etc.) so we cannot state
if these design alternatives could be applied in reality (e.g. due to
constraints related to ISO standards, etc.) for this specific scenario.
The purpose of this preliminary work was to show the existence
of a wide variability space, and it will be part of future work to

validate the experiments considering various safety standards, as
well as additional missions, scenarios and run-time variability.

5 WORK PLAN
We plan to answer research questions RQ1), RQ2), RQ3) and RQ6)
by performing experiments using various specific safety indus-
trial standards, additional missions and scenarios, by testing the
validity of BEEHIVE for handling variability at design-time and
run-time. The final goal in fact consists in developing an approach
that can cope with these two types of variability. Future exten-
sions of this work should address the adoption of further models,
in particular, tailoring different ranges concerning configurations,
additional, as well as the application of additional domains other
than aerospace. Engineers use white noise as a noise that alters
an input so that an output is a function of the input and the noise
[32], but also additional kind of noises and disturbances will be
part of future developments as well as multiple way to inject them
in Simulink models. Future studies will consider experimenting
on other methodologies to model configurability in CPS and to
compare them to the approach adopted in this work. In order to an-
swer to RQ4) the preliminary experiments have shown that given
a budget and a level of assurance it is possible to find the optimal
configuration wrt all of these. Concerning RQ5), currently it is un-
der development an approach based on simulation snapshots. The
plan consists in establishing similarity threshold that checks the
values of variables belonging to different configurations, if these
values are equal or less than the established threshold, the simula-
tion is stopped. Since simulations are extremely time consuming,
the idea is to avoid to run entirely all the simulations related to
configurations that are too similar and at the same time to explore
all the configuration space. For the following months this will be the
adopted working plan: Sep.-Oct. : enhancement and automatization
of the snapshot approach Nov.-Dec. : experiments and comparison
with other approaches. Jan.-Feb. : experiments on additional models
(e.g. if possible there will be adopted industrial models belonging to
other domains or multi-domains, etc.). Mar-Apr. : extension of the
approach to cope with run-time systems. May-Jun. : experiments
on run-time systems and comparison with other approaches for
such kind of systems.

6 RELATEDWORK
6.1 Variability modeling with Simulink
All of the following works make use of Simulink for variability
modeling, but they mainly address the system configurability and
do not consider any N&D. Alalfi et al. [1] have empirically derived
five variability operators for Simulink models. Leitner et al. [34]
have enhanced the variability by adopting layers of abstractions
and an extra binding time for Simulink models. According to the
survey elaborated by Berger et al. [7] as many as 38% of respondents
have used a home-grown domain-specific tool, including Simulink,
to perform activities related to the variability modeling in indus-
trial practice. Basit and Dajsuren [6] proposed a clone management
framework to handle variability in Simulink models, by consid-
ering both the variability and the functionality. Schlie et al. [52]
proposed an holistic approach for the reeingineering of an entire
Simulink model portfolio into a single variability model. Schulze et
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al. [55] described the problem of intermixing of various function
variants with the variability switching logic adopting a Simulink
model. Puhlmann et al. [44] have developed an approach to repre-
sent variation points, process variants and variability mechanisms
in Simulink. Schlie et al. [51] adopted a technical feature model
that reflects the realization of artifacts and their variability in the
context of Simulink models. Wille et al. [64] used a novel generated
delta language to encode the variability between the variants in
delta modules. The approach was validated with Simulink mod-
els. Schlie et al. [53] proposed an automatic procedure aiming to
detect and cluster variation points in Simulink models. Jongeling
et al. [30] developed an approach on the co-evolution of Simulink
models in a model-based product line. Ali et al. [2] developed a
research plan to build a Simulink-based framework for reasoning
about hazards in the automotive domain taking into account the
variability that arises from different sources. Wippenbeck et al.
[65] developed a toolbox which can enable efficient execution and
analysis of Simulink power system model parameter and structure
variations. Arrieta et al. [4] proposed a methodology for mutating
configurable Simulink models where their variability is expressed
as feature models. Schlie et al. [54] enhanced their previous variabil-
ity mining method in Simulink using a user adjustable similarity
metric as well as a novel comparison procedure called matching
window technique. Kolassa et al. [31] compared and evaluated vari-
ability modeling concepts in the automotive domain using Simulink.
Several other works [23, 25, 66] applied the SPL method to the
aerospace domain, as well as to all the other domains, but none of
those focused on the tolerance of N&D in CPS that is addressed
in our work. Finally, Haber et al. [27] applied the method of delta
modeling [14] to the Simulink environment in order to obtain a
modular and flexible variability modeling approach suitable for
Simulink models; however, the aim of our work is not to adapt con-
cepts from SPL such as the delta modeling to Simulink, but directly
use Simulink for the modeling of CPS variability. Regarding the
use of Simulink as a tool, authors such as Bressan et al. [13], who
developed a tool for specifying variability in safety-critical systems
and which can produce the correct system configuration models,
report that Simulink-based variability management approaches do
not support safety annotations. Their approach focuses on the re-
duction of the gap between domain variability abstractions and
functional safety annotations attached to system models. However,
our work does not require the use of safety annotations. Deatcu et al.
[20] analyzed the differences between variant manager interfaces
(based on Simulink) and the Python-based extended system-entity-
structure/model-based infrastructure on modeling and simulating
variability systems. They suggest to use the latter as it is easier to
use for beginners; however, our work is targeting experienced sci-
entists or professionals who should not have any issues in using the
Simulink environment. Other approaches, such as those reported
by Steiner and Masiero [59], use Simulink only to a limited extent.
The variability is handled by additional tools such as pure::variants
[9][10][11] and Hephaestus [19] [39] [61].

Other related works are those regarding the application of soft-
ware product line (SPL) methods [46] to CPS. These are extensively
applied in software engineering but not in the aerospace domain
where similar approaches are scarce [25]. The SPL engineering
paradigm promotes systematic reuse and a-priori identification

of variation points in order to make the development of software
variants more effective. Our work does not try to adapt SPL to CPS
models in the aerospace field but uses Simulink, a common tool
already used in both SPL and the aerospace domain, to model and
analyze the effect of variability using a cross-configurations ap-
proach. To the best of our knowledge, there are not other methods
oriented to the configuration of both CPS elements and perturba-
tions, because all the surveyed approaches focus only on the first
one.

6.2 State-of-the art on Behavioural Verification
of VIS

Model checking [33] is one of the most famous techniques to anal-
yse system behaviour wrt requirements. Usually, it takes as inputs a
state machine (i.e. an executable model of the system) to be verified
and a logic formula that embeds the requirements that the system is
expected to satisfy, and it outputs false and counterexamples if the
executions of the model did not satisfy the logic formula, true other-
wise. The model-checking problem for VIS is more complex than for
single systems since each variant must be verified wrt the formula
[16]. A possible solution consists in adopting a single-system model
checking to all the variants in a separate way. These procedures
are called product-based in the software-product-line jargon [60],
but due to their monitor of each variant individually they may lead
to the exponential blow-up induced by variability. To avoid this
complexity, family-based [60] model-checking approaches were
developed [16][5]. Their goal is based on the decrement of the veri-
fication effort by taking into consideration the commonalities that
are present in multiple variants. The analysis is executed on each
variant at the same time, using approaches such as late splitting
and early joining to check only once a (part of) execution common
to multiple variants. In this way they reduce the exponential blow-
up, despite it can still be present [15][17]. Feature-based model
checking[42] [22] relies on the same goal of avoiding unnecessary
computations. These approaches consider that variation points are
compositional and decrease the analysis of one variant to the indi-
vidual analysis of its variation points. This consideration is valid
only for VIS that are structured in particular fashions and do not
generalize. Family-based and feature-based approaches were taken
into account to analyse the behaviour of stochastic VIS [48][41],
but they are not scalable or they have strict assumptions on how
variation points can affect the system, and this is valid only in
few particular cases. Sample-based methods are the trade-off be-
tween the product-based and feature-based ones [60] [3]. They
analyse variants separately but they consider also a degraded form
of compositionality across features, such that the results for the
sampled variants can facilitate the inference of the characteristics
of the non-sampled ones. Such goal is reached since the behaviour
of variants that are not known is already considered by the ones
that are known or via extrapolation based on prediction models
[38][26][58].
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