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Research on recommender systems algorithms, like other areas of applied machine learning, is largely dominated by efforts to improve

the state-of-the-art, typically in terms of accuracy measures. Several recent research works however indicate that the reported improve-

ments over the years sometimes “don’t add up”, and that methods that were published several years ago often outperform the latest

modelswhenevaluated independently.Different factors contribute to this phenomenon, including that some researchersprobablyoften

only fine-tune their ownmodels but not the baselines.

In thispaper,wereport theoutcomesofan in-depth, systematic, andreproducible comparisonof tencollaborativefilteringalgorithms—

covering both traditional and neural models—on several common performance measures on three datasets which are frequently used

for evaluation in the recent literature. Our results show that there is no consistent winner across datasets and metrics for the examined

top-n recommendation task. Moreover, we find that for none of the accuracy measurements any of the considered neural models led to

the best performance. Regarding the performance rankingof algorithms across themeasurements,we found that linearmodels, nearest-

neighbor methods, and traditional matrix factorization consistently perform well for the evaluated modest-sized, but commonly-used

datasets. Our work shall therefore serve as a guideline for researchers regarding existing baselines to consider in future performance

comparisons.Moreover, by providing a set of fine-tuned baselinemodels for different datasets, we hope that ourwork helps to establish

a common understanding of the state-of-the-art for top-n recommendation tasks.

CCS Concepts: • Information systems→Recommender systems.

Additional KeyWords and Phrases: Recommender Systems, Performance Comparison, Reproducibility

1 INTRODUCTION

Recommender systemsarenowadayswidelyused inonline applications,where theyhelpusersfind relevant information

in situations of information overload. Given the high practical relevance of such systems, research in this field is flour-

ishing, particularly in the underlying machine learning (ML) algorithms used to create personalized item suggestions.

Correspondingly, the predominant methodology is offline experimentation where the prediction or ranking accuracy

of different ML models is compared. The common goal in such research works is to advance the state-of-the-art, and

evidence is then provided by reporting improvements over existing models that were obtained in those experiments.

Unfortunately, a number of recent research works published in the area of recommender systems and other related

areas of applied ML research, e.g., information retrieval, indicate that some of these improvements that have been re-

ported over the years “don’t add up” [4]. Ferrari Dacrema et al. [12], for example, benchmark a variety of recent top-n
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recommendationmodels against earlier and often simplermodels. Through their studies, they found thatmuch of the re-

ported progress only seems to be “virtual”, as the latestmodels are almost always outperformed by existingmethods (see

also Rendle et al. [29] for a related analysis). Various reasons may contribute to this surprising phenomenon, including

the choice of (tooweak) baselines [19, 22] or the lack of a proper tuning of the baselines. Moreover, in such independent

evaluations, i.e., that are not done by authors of the compared methods, it often turns out that there is no clear winner

across datasets and accuracy measures. Thus, it remains unclear what represents the actual state-of-the-art in this field,

given that the ranking of algorithms seems to depend on the particular experimental configuration in terms of baselines,

accuracy measures, or datasets.

With this work, our goal is to provide insights regarding what represents the state-of-the-art for top-n recommen-

dation tasks, at least for those experimental settings that are common in the recent literature. Like in Ferrari Dacrema

et al. [12], we consider a broad range of collaborative filtering algorithms, which includes both older methods based

on nearest-neighbors, different matrix factorization approaches, linear models, as well as more recent techniques based

on deep learning. Differently from earlier comparisons like Ferrari Dacrema et al. [12], however, we benchmark all al-

gorithms under identical experimental conditions, i.e., with the same datasets and using the same evaluation protocol,

after systematically tuning the hyperparameters of all models to reach their best performance.1

The outcomes of our experiments show that in none of the considered cases one of the two recent neuralmethodswas

the best-performing algorithm. Moreover, the ranking of the algorithms, as expected from the literature, varies across

datasets and evaluation measures. With some surprise, we found that linear models, nearest neighbors, and traditional

matrix factorization and are dominating the leaderboard across datasets and performancemetrics. One insight from our

research therefore is that these top-ranking non-neural methods from our analysis should be considered as baselines in

future research on recommendation algorithms.

It is worth noticing that the datasets used in our experiments were chosen based on the predominant practice in the

current academic literature. In our view, these datasets are however relatively small and different results might be ob-

tained for larger datasets. Such an analysis is however not the focus of our present work, which aims to provide insights

on the state-of-the-art in commonly used evaluation setups. Nonetheless, with this work we provide a set of fine-tuned

models for these common datasets, thereby reducing the effort for other researchers to tune these baselines in their own

experiments. In the future, we plan to publish fine-tuned models also for larger datasets, thereby continuously growing

our understanding of the state-of-the-art in this area.

The paper is organized as follows. Next, in Section 2, we describe the details of our methodology and the datasets,

algorithms, and metrics that we used in our experiments. Section 3 discusses the outcomes of our experiments, both in

terms of accuracy and beyond-accuracy metrics. Section 4 finally discusses and summarizes the insights of our research

and provides an outlook on future works.

2 METHODOLOGY

The goal of our study was to evaluate different algorithms under very common experimental settings in the current

literature in terms of datasets, evaluation metrics, and protocols. The choice of experimental settings reported in this

paper were guided by the following considerations. First, we took inspiration from the work by Sun et al. [36], who

systematically evaluated various algorithms under a large set of experimental configurations. Second, to select specific

1We share all code and data used to run the experiments publicly to ensure reproducibility of our findings, see our GitHub repository.
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experimental configurations for the purpose of our study, we scanned the current literature for the rather common set-

tings. This also led to the inclusion of a number of recent models as well as simpler methods that have proven effective

in recent works, where some of them had not been considered in Sun et al..

Notably, our present work generally differs from Sun et al. in terms of the main goal. In Sun et al., one main purpose

was to assess the impact of various aspects of the experimental procedure, e.g., negative sampling, split-ratio, or dataset

preprocessing, on accuracy. In contrast, ourworkmainly focuses on providing a performance comparison of algorithms

of different families for very common experimental configurations. Thus, we hope that our work helps establish an

agreed-upon and continuously updated benchmark setting that can be used for researchers to test their new models

against existing ones in a predefined setting.2

2.1 Datasets and Preprocessing

We report the results we obtained for three datasets that are frequently used in the recent literature: MovieLens-1M,

Amazon Digital Music, and Epinions.

• MovieLens-1M (ML1M): The MovieLens datasets have been widely used in the recommender systems literature

for many years [13] and different versions are available online3. TheML1M dataset used in our studies was col-

lected between the years 2000 and 2003 on the MovieLens website and contains ratings for movies on a 1-5 scale.

A particularity of the dataset is that it is rather dense, and for each user at least 20 ratings are available.

• Amazon Digital Music (AMZm): This dataset is part of a larger public collection of datasets4 that was created ini-

tially in the context of image-based recommendation [25]. The Digital Music dataset contains reviews crawled

from the Amazonwebsite as well as item ratings on a 1-5 scale.

• Epinions: This dataset was crawled in 2003 from the now defunct consumer review site epinions.com5 . A pecu-

liar characteristic of the Epinions website was that users were paid according to how much a review was found

useful. For this reason, Epinions has been widely adopted for research on trust in recommender systems. The

Epinions collection consists of two datasets: one contains item ratings (1-5 stars), while the other one collects

(unary) trust statements among users. We point out that, in our study, instead of setting a custom (and in some

ways arbitrary) threshold to binarize the rating dataset, we use the second dataset and consider the “trustable”

users as the objective of the recommendation task.

It is noteworthy that, for the purpose of our research, all three datasets are publicly available and they were selected

also in order to cover a diverse set of application domains of recommender systems. Other datasets, e.g., from theNetflix

Prize, were also popular for some time, but they are nowadays only rarely used, e.g., Liang et al. [21], and they are no

longer officially accessible. Moreover, differently from the Netflix Prize competition, rating prediction is also no longer

considered the most important task in recommendation. Instead, the common goal nowadays is to compute item rank-

ings. In addition, recommending based on implicit feedback signals is dominating the landscape, given the typical lack of

explicit rating information in many applications. Therefore, datasets that originally contain item ratings are commonly

converted into unary (like) signals. We follow this practice also in our evaluation and convert the rating datasets of

2We note that some of the choices regarding the experimental settings could have beenmade differently as well, e.g., with respect to cutoff thresholds. We
however do not expect largely different results when changing some of these minor experiment parameters.
3https://grouplens.org/datasets/movielens/
4https://jmcauley.ucsd.edu/data/amazon/
5http://www.trustlet.org/epinions.html
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MovieLens and Amazon Digital Music to unary datasets by considering every rating above 3 as a positive signal.6 For

the Epinions dataset, such a conversion is not needed as the data is already given in unary form.

Real-world datasets are oftenvery sparse. Therefore, another commonpre-processing step in the literature is to create

a more dense version of the datasets to ensure that there is a minimum number of interactions per user and item in the

dataset, e.g., to allow for effective personalization. We created different p-cores for each dataset due to their diverging

characteristics. In a p-core dataset,we ensure that there are at least ? interactions for each item and at least ? interactions

for each user. For our experiments, the creation of these ?-core datasets was done in an iterative procedure, where the

described constraints are applied until no more changes to the dataset can be observed. Different values for ? were used

for the given datasets, depending on their size and density. For Movielens 1M and Amazon Digital Music we used the

most commonvalueof? (?=10 forML1M,?=5 forAMZm, see Sunet al. [36]),while for Epinionswechoose a?-core value

to reach a comparable density of the final matrix with respect to the other two datasets. Specifically, in this latter case,

only a 2-core subset was computed due to the dataset’s high sparsity. The resulting dataset characteristics are shown in

Table 1. We observe that removing negative ratings and creating p-cores led to a considerable reduction of the dataset

size forML1M, and that it results in an even more drastic reduction for theAMZm dataset.

Table 1. Dataset characteristics before and a�er pre-processing

Dataset p-core #interactions #users #items #interactions #users #items

before pre-processing after pre-processing

Movielens 1M 10-core 1,000,209 6,040 3,706 571,531 5,949 2,810

Amazon Digital Music 5-core 1,584,082 840,372 456,992 145,523 14,354 10,027

Epinions 2-core 300,548 8,514 8,510† 300,475 8,485 8,463†

†: The Epinions dataset focuses on “trustable” user recommendation. Note that not all users are trustable candidates according to the historical
transactions, which is why the number of users as recommendable items is lower than the number of users.

Interestingly, today’s commonly used datasets are often not only almost twenty years old, but also rather small, com-

pared, for example, to theNetflix Prize datasetwith its 100million ratings.We assume that the computational complexity

of somemodernmodels prevents authors to explore their proposals on larger datasets. Among the larger public datasets,

the 20M version of the MovieLens datasets is sometimes used in the literature [21]. The 1M version is however used for

evaluations more frequently [36], and this is the main reason why we consider it in this study. Moreover, we observed

that systematically tuning the hyperparameters for all datasets andmodels can be computationally challenging for some

models already for the datasets of modest size described in Table 1.

2.2 Algorithms

Given the goals described above, we considered algorithms from different families in our analysis. All non-neural meth-

ods, except Bayesian Personalized Ranking (BPRMF) [28], were also considered as baselines in the recent analysis of

recommendation algorithms presented in Ferrari Dacrema et al. [12]. Specifically, we considered the following tech-

niques in our evaluation:

• Non-personalized baseline: Popularity-based recommendation (MostPop).

• Neighborhood-based and simple graph-based models: UserKNN [32], ItemKNN [33], RP3V [27].

6Alternative approaches exist in the literature for this conversion, e.g., considering every rating as positive in case it is higher than the user’s average.
Often, we also see that all ratings are converted to positive signals. This is however questionable as (i) a low rating, e.g., one star, is not a positive signal
and (ii) it changes the problem into predicting who will rate what.
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• Linear models: SLIM [26], EASE' [34].

• Matrix factorization models: BPRMF [28], MF2020 [29], iALS [15].

• Neural models: NeuMF [14], MultiVAE [21].

Table 2 provides more details for the compared algorithms and explains why we considered them for our study.

2.3 Evaluation Se�ings andMetrics

In this section, we provide details about the applied evaluation protocol, the evaluationmetrics, and the hyperparameter

tuning process.

Evaluation Protocol. We used a common repeated 80-20 hold-out splitting procedure in our experiments [29]. Corre-

spondingly, each dataset is randomly split to sample chunks containing around 20% of the data. In each evaluation round,

20% of the data are used for testing and the remaining 80% are for training. Each experiment is repeated five times. Later

in Section 3, we report the mean of the observed values of the cross-validation runs.

We note that in the recent literature often only the results of one single training-test split are reported. While this

data-splitting is typically done randomly in previous studies, we argue that cross-validation usually leads to more reli-

able results.

Metrics. We collect a rich variety of accuracy metrics as well as a number of “beyond-accuracy” measures that are

commonly used in the literature to assess additional quality aspects of recommendation lists.

• In terms of accuracy metrics, we measure Normalized Discounted Cumulative Gain (nDCG), Mean Reciprocal

Rank (MRR), Precision, Recall, Mean Average Precision (MAP), and F1 at common list lengths of 10, and 20. For

F1, note that we compute it on a per-user basis and not simply as a harmonic mean of the averages of Precision

and Recall across users.8 Thus, we have both metrics that take the position of the correct items into account and

metrics that are agnostic of this aspect. Note here that we do not collect “sampled” metrics in our evaluation.

In a sampled metrics approach, one test item is ranked within an often small list of “negative samples”. Such a

procedure, while widely used, was recently found to be unreliable [18]. Note that historically the majority of the

literature considered errormetrics (RMSE,MAE) for evaluationpurposes.However, “such classical error criteria do

not really measure top-N performance” [9]. Consequently, several ranking metrics have been proposed in the last

two decades and were adopted to evaluate top-n recommendation tasks. The present work shows the evaluation

results for the most commonly used ranking metrics.

• Considering beyond-accuracymetrics, wemeasured a broader range ofmetrics regarding popularity bias, novelty,

fairness, and item coverage and concentration. The details of the considered metrics are provided in Table 3. We

note that also the novelty and fairness metrics used here are based on popularity distributions of items. Specifi-

cally, for the PRSP and the PREOmetrics, we consider the 20%most popular items as the “short head” and the rest

as long-tail items.

• Running times:Modernmachine learning models can be computationally expensive. Therefore, wemeasured the

computation times required for each algorithm for training and testing.

7https://sifter.org/simon/journal/20061211.html
8With this user-wise calculation of F1, the overall average of F1 values is not bounded to lie between the overall averages of Precision and Recall; see the
online material for additional explanations (https://github.com/sisinflab/Top-N-Recommendation-Algorithms-A-Quest-for-the-State-of-the-Art)
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Table 2. Overview of compared algorithms

Family Algorithm Description

Non-personalized

Baselines

MostPop Recommends the most popular items to each user, where popularity is

defined by the number of observed interactions in the training data.

Random Creates random recommendations for users. Mainly useful to provide

a reference point for beyond-accuracy measures (see Section 2.3).

Neighbors and Graphs

UserKNN A user-based nearest neighbor scheme proposed by Resnick et al. [32]

in 1994 in an early paper on the GroupLens system. In general, we

include early nearest-neighbor techniques here because (i) they let us

gauge the progress on small datasets over time and (ii) they proved

surprisingly effective in recent research [12].

ItemKNN Item-based nearest-neighbor algorithms were discussed in 2001 [33]

and later successfully applied in industry around 2003 [24].

RP3V This method (RP3V) is a simple graph-based method [27] from 2017,

which is conceptually similar to the ItemKNNmethod and can, despite

its simplicity, lead to good performance [12].

Linear Models
SLIM This regression-basedmethodwasproposed for top-n recommendation

tasks in 2011 [26]. Like in a recent analysis [12], we use the ElasticNet

version of the method [20], as it often leads to competitive results.

EASE' Another linear model, proposed in 2019 [34], which works like a

shallow autoencoder. We include this method because it often leads to

good results despite its simplicity.

Matrix Factorization

MF2020 Matrix factorization methods were initially explored using Singular

Value Decomposition in 1998 [6]. Later, in particular during and after

the Netflix Prize, various machine learning approaches were proposed

to learn latent factors7.A recent analysis shows that thesemethods from

the late 2000s are still competitive. In our study, we use a very recent

MFmodel from Rendle et al. [29] proposed in 2020, dubbedMF2020.

iALS This method from 2008 uses an Alternating Least Squares approach

and is particularly designed to learn factormodels for implicit feedback

datasets [15]. The method is widely used as a non-neural baseline in

the literature.

BPRMF This method from 2009 was also designed for implicit feedback and

introduces a novel optimization criterion.We use the MF variant in our

experiments, which is also frequently used as a non-neural baseline in

the literature [28].

Neural Models
NeuMF NeuMF was proposed in 2017 [14] and is an early and influential

deep learning model used for recommendation. It generalizes matrix

factorization and replaces the inner product with a neural architecture.

The method is widely used as a neural baseline in the recent literature.

MultiVAE This model was designed for implicit feedback data, published in

2018, and is based on variational autoencoders [21]. According to

the analysis in Ferrari Dacrema et al. [12], this method outperformed

existing non-neural baselines in an independent evaluation.

Hyperparameter tuning. Weperformed extensive hyperparameter tuning for all algorithms in our comparison,which

is essential to understandwhat represents the state-of-the-art. Previous research [8] has identified that the lack of proper

6
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Table 3. Overview of beyond-accuracy metrics

Aspect Metric Description

Coverage

and Concentration

IC Item Coverage (IC) measures how many items ever appear in the top-n

recommendations of users.

Gini A measure of statistical dispersion, used to express the inequality of

a distribution. A higher Gini index value (Gini ∈ [0, ... ,1]) indicates a

stronger concentration of the recommendations, e.g., on popular items

[16]. To ease the interpretationof the results and associate higher values

with better results in terms of non-concentrated recommendations, in

Tables 9, 10, and 11 we report the value (1−Gini).

Novelty
EFD Expected Free Discovery: A novelty measure proposed in [38] based on

the inverse collection frequency. Like EPC, this measure expresses the

ability of an algorithm to recommend relevant long-tail items.

EPC Expected Popularity Complement: This metric expresses the expected

“number of seen items not previously seen” [38].

Fairness

PREO The Popularity-based Ranking-based Equal Opportunity (REO) recom-

mendation metric for assessing bias (fairness) was proposed in [39].

Lower values mean less biased recommendations.

PRSP Popularity-based Ranking-based Statistical Parity [39], to assess

potential bias and thus fairness of the recommendations. Again, lower

values mean less biased recommendations.

Popularity Bias
APLT AveragePopularityofLong-Tail Items:Measures theaveragepopularity

of long tail items in the top-n recommendations of users [1].

ARP Average Rating-based Popularity: This metric computes the popu-

larity of the items in a recommendation list based on the number of

interactions of each item in the training data [16].

ACLT Average Coverage of Long-Tail Items: Measures how many items from

the long tail are covered in the top-n recommendations of users [1].

tuning of baseline algorithmsmay easily lead to a certain stagnation in the field, where new models are carefully tuned,

whereas only limited effort sometimes goes into tuning existing baseline models.

For hyperparameter tuning, we relied on the HyperOpt library9 and used Tree of Parzen Estimators (TPE) as an al-

gorithm to find the best hyperparameters [5]. We determined suitable hyperparameter ranges for each algorithm from

the literature, using, e.g., ranges that were earlier used in Ferrari Dacrema et al. [12] and other works. Depending on the

number and ranges of the hyperparameters of each algorithms, we explored between 20 and 50 hyperparameter com-

binations for each model. Hyperparameter tuning was conducted on a validation set for each dataset, and nDCG@10

was used as an optimization target. As suggested by Anelli et al. [3], the nDCGmetric represents a reasonable choice for

hyperparameter tuning. All hyperparameter ranges and the optimal values for each dataset and algorithm are reported

in the provided online material for reproducibility.

3 RESULTS

3.1 Accuracy Results

The results of the accuracy measurements for commonly used cutoff thresholds of 10 and 20 are shown in Table 4

(MovieLens-1M), Table 5 (Amazon Digital Music), and Table 6 (Epinions). The results for the cutoff threshold of 50

9http://hyperopt.github.io/hyperopt/
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are provided in the online material. We mark the best-performing method for each metric in bold font; the second-best

result is underlined. The following main observations can be made.

• Top-performingmethods:ConsideringnDCGasourmainperformancemeasure—most othermetrics are correlated

except for Recall in some situations—we find that the top three positions across all metrics and cutoff lengths are

taken by five algorithms: EASE' , MF2020, SLIM, RP3V , and, a bit surprisingly, UserKNN. Differences across the

datasets exist, but the ranking at least at top places is quite consistent across the datasets. For ML1M, EASE' ,

MF2020, and SLIM are the best methods, whereas RP3V , EASE' , and SLIM are best for AMZm. These methods

also work well in Epinions. For the Epinions dataset, however, UserKNN works even slightly better than EASE' .

Generally, the performance of the five top-performing methods is quite consistent, with EASE' always taking a

top rank. TheMF2020 technique, in contrast, mainly seems towork particularlywell for the dense ML1Mdataset.

We note here that UserKNN for the given datasets was always favorable over ItemKNN. It is noticeable that this

evidence differs from someprior literature. In 2004 [10], it was suggested that item-based algorithms provide com-

parable or better quality recommendations than traditional user-neighborhood-based recommender systems. In

2011, researchers reported [26] that in their experiments item-based schemes outperform user-based ones. Sim-

ilar observations were made in 2011 by Ekstrand et al. [11] for rating prediction tasks. In 2016, Christakopoulou

and Karypis [7] generally assumed that the item-based methods had been shown to outperform the user-based

schemes for the top-n recommendation task. In the analysis from 2021 [12], however, a general dominance of

ItemKNN over UserKNN was not reported. There were cases where ItemKNN was better, but in the majority of

the reported experiments UserKNN was favorable, which suggests that the ranking of the methods may depend

on dataset characteristics and specifics of the evaluation protocol.

Table 4. Accuracy Results for MovieLens-1M. The tables are sorted by nDCG in descending order. The notation @N indicates that
the metrics are computed considering recommendation lists of N elements.

Algorithm
Top@10

nDCG MAP MRR Pre Rec F1

EASE' 0.336 0.335 0.583 0.274 0.194 0.190
SLIM 0.335 0.337 0.580 0.275 0.189 0.188
MF2020 0.329 0.327 0.563 0.272 0.190 0.192
UserKNN 0.315 0.314 0.554 0.256 0.183 0.179
RP3V 0.315 0.313 0.556 0.256 0.184 0.179
iALS 0.306 0.304 0.542 0.252 0.179 0.176
MultiVAE 0.294 0.284 0.514 0.243 0.183 0.175
ItemKNN 0.292 0.293 0.518 0.242 0.163 0.163
NeuMF 0.277 0.275 0.494 0.232 0.157 0.158
BPRMF 0.275 0.271 0.502 0.226 0.166 0.161
MostPop 0.159 0.159 0.317 0.137 0.084 0.086
Random 0.008 0.007 0.020 0.007 0.004 0.004

Algorithm
Top@20

nDCG MAP MRR Pre Rec F1

EASE' 0.335 0.287 0.587 0.216 0.289 0.206
SLIM 0.332 0.288 0.584 0.216 0.283 0.204
MF2020 0.329 0.283 0.568 0.216 0.286 0.207
RP3V 0.315 0.269 0.561 0.203 0.277 0.195
UserKNN 0.314 0.268 0.559 0.201 0.273 0.192
iALS 0.309 0.263 0.547 0.202 0.272 0.194
MultiVAE 0.304 0.250 0.519 0.199 0.281 0.195
ItemKNN 0.289 0.252 0.523 0.192 0.247 0.180
BPRMF 0.280 0.235 0.508 0.181 0.253 0.176
NeuMF 0.280 0.240 0.500 0.188 0.245 0.195
MostPop 0.161 0.141 0.326 0.114 0.137 0.103
Random 0.009 0.007 0.024 0.007 0.007 0.006

• Performance of neural methods: The two neural methods considered here, NeuMF and MultiVAE, only led to

medium performance on these datasets. While MultiVAE performed very well in an earlier comparison with

traditionalmethods [12],wemay assume that themodest size of the datasetsmight limit the power of thismethod

in our experiment to a certain extent, see also the report on the use of deep learning methods at Netflix [35] or the

discussions in Jannach et al. [17].

• Fine-tuning opportunities:The iALS and BPRMFmethods often led tomedium tomodest performance in this com-

parison. Recent work indicates that further enhancing and fine-tuning methods like iALS for specific datasets

may lead to additional performance improvements [31]. Note, however, that the goal of our work was to assess

theperformanceof different algorithmsunder equal opportunities, i.e., byusing a systematic but generic hyperpa-

rameter optimization procedure. Fine-tuning individual algorithms, e.g., by exploring rather uncommon ranges

8
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Table 5. Accuracy Results for AmazonDigital Music. The tables are sorted by nDCG in descending order.

Algorithm
Top@10

nDCG MAP MRR Pre Rec F1

RP3V 0.085 0.040 0.115 0.023 0.104 0.036

EASE' 0.083 0.038 0.108 0.023 0.106 0.035
SLIM 0.081 0.037 0.106 0.022 0.104 0.035
UserKNN 0.081 0.037 0.105 0.022 0.104 0.035
iALS 0.073 0.032 0.093 0.021 0.099 0.033
ItemKNN 0.071 0.033 0.095 0.018 0.085 0.029
MF2020 0.057 0.024 0.067 0.017 0.083 0.028
NeuMF 0.056 0.024 0.068 0.015 0.074 0.025
MultiVAE 0.054 0.023 0.062 0.016 0.077 0.025
BPRMF 0.020 0.008 0.023 0.007 0.031 0.010
MostPop 0.012 0.005 0.016 0.004 0.016 0.006
Random 0.000 0.000 0.000 0.000 0.001 0.000

Algorithm
Top@20

nDCG MAP MRR Pre Rec F1

RP3V 0.094 0.029 0.118 0.015 0.132 0.026

EASE' 0.092 0.028 0.111 0.015 0.136 0.026
SLIM 0.090 0.027 0.109 0.014 0.134 0.025
UserKNN 0.090 0.027 0.108 0.014 0.133 0.025
iALS 0.084 0.025 0.096 0.014 0.132 0.025
ItemKNN 0.078 0.023 0.098 0.012 0.108 0.021
MF2020 0.067 0.019 0.071 0.012 0.116 0.022
NeuMF 0.063 0.018 0.071 0.010 0.096 0.019
MultiVAE 0.062 0.017 0.066 0.011 0.105 0.019
BPRMF 0.025 0.007 0.025 0.005 0.047 0.009
MostPop 0.014 0.004 0.017 0.003 0.025 0.005
Random 0.001 0.000 0.001 0.000 0.001 0.000

Table 6. Accuracy Results for Epinions. The tables are sorted by nDCG in descending order.

Algorithm
Top@10

nDCG MAP MRR Pre Rec F1

UserKNN 0.164 0.131 0.266 0.157 0.102 0.100

EASE' 0.164 0.132 0.268 0.154 0.104 0.100
RP3V 0.163 0.129 0.260 0.159 0.102 0.100
SLIM 0.156 0.126 0.254 0.148 0.101 0.096
MultiVAE 0.149 0.116 0.240 0.148 0.094 0.094
ItemKNN 0.138 0.111 0.224 0.133 0.090 0.087
MF2020 0.125 0.104 0.219 0.114 0.084 0.079
NeuMF 0.118 0.098 0.206 0.108 0.080 0.075
BPRMF 0.113 0.093 0.200 0.106 0.076 0.071
iALS 0.110 0.091 0.192 0.101 0.074 0.084
MostPop 0.045 0.037 0.093 0.036 0.029 0.025
Random 0.001 0.001 0.003 0.001 0.001 0.001

Algorithm
Top@20

nDCG MAP MRR Pre Rec F1

UserKNN 0.178 0.108 0.272 0.076 0.219 0.093

EASE' 0.177 0.110 0.274 0.078 0.216 0.094
RP3V 0.176 0.107 0.266 0.075 0.218 0.092
Slim 0.170 0.106 0.260 0.076 0.210 0.091
MultiVAE 0.165 0.099 0.247 0.072 0.212 0.089
ItemKNN 0.151 0.094 0.230 0.068 0.190 0.084
MF2020 0.138 0.088 0.225 0.065 0.170 0.079
NeuMF 0.131 0.084 0.212 0.063 0.162 0.075
BPRMF 0.126 0.079 0.207 0.060 0.160 0.072
iALS 0.121 0.077 0.198 0.057 0.149 0.079
MostPop 0.052 0.032 0.100 0.025 0.061 0.029
Random 0.002 0.001 0.003 0.001 0.002 0.001

for the size of the latent factors, is of course possible, but not the focus of our work, which is about establishing a

set of baselines (state-of-the-art) to consider in futureworks. Similar considerations apply for the neuralmethods,

which may also be further tuned for individual datasets.

We note that the differences between the top-performingmethods are sometimes small, often between one and a few

percent. In papers that propose new models, we would therefore commonly expect statistical significance tests. For the

evaluations reported inour study,weomit such tests aswehavenopriorhypotheses regardingwhichmodelwould “win”.

Instead, the goal of our work is to provide guidance for researchers about which methods they might want to consider

as baselines for comparison.We note that in many published papers no exact details are provided about how the signifi-

cance tests are applied and prerequisites were validated. Also, in case of per-user comparisons of means, significance at

common U-levels may be easy to achieve due to the large sample sizes [23].

Comparing our algorithm ranking with earlier works [12, 36], we find both commonalities and differences. A general

commonality of these studies is that more traditional methods, including linear models, matrix factorization, or nearest

neighbors frequently take the top positions of the rankings. For example, the innovative combination of Factorization

Machines with BPR loss worked particularly well in [36]. Also SLIM and MF were in top positions for some datasets.

Differently from our findings, NeuMF more often worked very well for some of the datasets examined in Sun et al. [36].

A competitive performance of NeuMF was also observed in Ferrari Dacrema et al. [12], where it was, however, usually

slightly outperformed by various non-neural methods. These differences may be attributed to different causes, includ-

ing specifics of data-preprocessing and the evaluation procedures10. Differently from many earlier works, we apply

10In the original paper proposing NeuMF, the authors for example used a leave-one-out procedure where only the last item of each user was retained in
the test set [14].
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cross-validation and compute p-cores iteratively instead of only filtering “cold” users and items once.Moreover, for some

algorithms we explore a larger number of hyperparameter optimization trials than was done in some earlier works.

Finally, toobtainanoverall pictureofouraccuracyresults,weappliedaBordacount rankedvoting schemetoaggregate

theoutcomesofourexperiments.To thatpurpose,weconsidereachobservedrankingforeachdataset andmetricasavote.

When applying the original Borda count scheme, each candidate (i.e., algorithm) receives more points when it is placed

higher in the ranking. In our lists of 12 candidates, the first candidate receives 11 points and the last-ranked candidate 0

points. Applying this scheme across all accuracy measures at list length 10 leads to the ranking shown in Table 7a.11

Table 7. Algorithm ranking based on Borda count at cutoff length 10.

Rank Algorithm Count

1 EASE' 185

2 RP3V 169

3 SLIM 160

4 UserKNN 154

5 MF2020 115

6 ItemKNN 99

7 MultiVAE 92

8 iALS 90

9 NeuMF 61

10 BPRMF 45

11 MostPop 18

12 Random 0

(a) Overall

Rank Algorithm Count

1 EASE' 31

2 UserKNN 27

3 RP3beta 27

4 SLIM 27

5 MF2020 19

6 ItemKNN 16

7 MultiVAE 15

8 iALS 13

9 NeuMF 12

10 BPRMF 7

11 MostPop 3

12 Random 0

(b) nDCG

Rank Algorithm Count

1 EASE' 31

2 RP3V 29

3 SLIM 26

4 UserKNN 25

5 MF2020 20

6 MultiVAE 17

7 ItemKNN 15

8 iALS 14

9 NeuMF 9

10 BPRMF 9

11 MostPop 3

12 Random 0

(c) Recall

Weemphasize that such a rank-based aggregation should be interpretedwith great care as itmight, for example, favor

methods thatwork particularlywell on a set of correlatedmetrics. In agreement with the analysis presented byValcarce

et al. [37], we observed high correlation between ranking metrics and for the same metric using different cutoffs. For

example, in that work, when computing the correlation between cutoffs ranging from 5 to 100, the lowest one was 0.9,

which still represents a very strong correlation. Because of this, we only considered one threshold for themeasurement

shown in Table 7a. Another known limitation of the Borda count scheme is that the ranking might change if a candidate

is removed from the lists. Despite these limitations, we believe that the Borda countmay represent a helpful summariza-

tion approach for the experiments in this paper.More fine-grained applications of the Borda count are possible aswell to

account for such correlations. In Table 7b and Table 7c, we report the Borda count rankings when considering only one

specificmeasure, nDCG@10 and Recall@10, respectively. We select Recall as an example here, because all othermetrics

are usually more correlated with nDCG than Recall. The analysis in Table 7c actually shows that RP3V and SLIM work

particularly well for Recall and are ranked higher than UserKNN for this metric.

3.2 Beyond-Accuracy Results

Table 9 shows the beyond-accuracy metrics results for the MovieLens dataset for the top-10 and top-20 recommenda-

tions12. The rows in the table are again sorted by accuracy (nDCG). We highlight the best values for each metric, not

11The maximum possible value for a method in Table 7a is 198, as we rank 12 algorithms according to 6 metrics for 3 datasets; 198=(12-1) × 1 × 3. For
Table 7b and Table 7c, the maximum is correspondingly 33. Although Tables 4 to 6 report rounded values for the sake of clarity, rankings are assessed
considering exact metric values.
12Detailed results for other datasets and cutoff thresholds can be found in the online material.
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considering the Random and MostPop baselines, which only serve as reference points. Recommending random items

will, for example, lead to high item coverage, but not to many relevant item suggestions.

In our analysiswe found that someof our beyond-accuracy can be highly correlated,which is to some extent expected

asmany of them are based on item popularity characteristics, as discussed above. Table 8 shows the outcomes of an anal-

ysis of metric correlations. In this table, we report in how many cases (datasets) a metric is correlated with another one

with a Pearson product-moment correlation coefficient (PPMCC) higher than 0.9 or lower than -0.9.We can observe that

both the ACLT and the PRSP metrics are consistently correlated with the APLT metric. For the sake of conciseness, we

therefore only report the APLT metric here and omit ACLT and PRSP from the tables. All detailed results also for these

metrics can be found in the online material.

Table 8. Summary of Metric Correlations. A ✓ in a cell indicates a correlation of more than 0.9 (or beyond -0.9 vice versa) for one of
the datasets. Two or three ✓ symbols mean that such a high correlation was also found for the second or the third dataset.

PPMCC Gini EFD EPC PREO PRSP ACLT APLT ARP
IC ✓ – – ✓ – – – ✓

Gini – – ✓ ✓✓ ✓ ✓ –
EFD ✓ – ✓ ✓ ✓ –
EPC ✓ – ✓ ✓ –
PREO ✓ ✓ ✓ –
PRSP ✓✓✓ ✓✓✓ –
ACLT ✓✓✓ –
APLT –

Table 9. Beyond Accuracy Results forMovieLens-1M. The tables are sorted by nDCG in descending order. The notation@N indicates
that the metrics are computed considering recommendation lists of N elements. To ease the interpretation of the results and to
associate higher values withmore diversified recommendation lists, we report the value of 1−�8=8 .

Algorithm
Top@10

IC Gini EFD EPC PREO APLT ARP

EASE' 838.0 0.068 2.690 0.583 0.978 0.003 1,062.727
SLIM 654.2 0.052 2.672 0.244 0.995 0.001 1,121.384
MF2020 920.2 0.077 2.672 0.244 0.968 0.005 1,042.373
UserKNN 1075.2 0.067 2.489 0.227 0.971 0.010 1,085.550
RP3V 854.4 0.048 2.461 0.223 0.959 0.011 1,181.638
iALS 712.2 0.080 2.516 0.232 0.997 0.000 935.914
MultiVAE 1625.2 0.136 2.422 0.221 0.828 0.042 871.869
ItemKNN 1054.8 0.066 2.346 0.214 0.952 0.011 1,090.926
NeuMF 1367.2 0.111 2.292 0.209 0.910 0.028 938.861
BPRMF 1137.8 0.091 2.226 0.203 0.928 0.010 1,047.232
MostPop 56.2 0.005 1.187 0.103 1.000 0.000 1,746.694
Random 2810.0 0.876 0.074 0.006 0.039 0.696 151.045

Algorithm
Top@20

IC Gini EFD EPC PREO APLT ARP

EASE' 1093.0 0.091 2.264 0.207 0.963 0.006 949.860
SLIM 854.0 0.069 2.239 0.205 0.986 0.003 1,017.374
MF2020 1128.8 0.095 2.257 0.207 0.946 0.009 969.260
RP3V 1207.2 0.073 2.085 0.190 0.937 0.018 1,024.408
UserKNN 1465.8 0.092 2.090 0.191 0.947 0.017 970.255
iALS 901.000 0.105 2.138 0.197 0.983 0.002 838.660
MultiVAE 1924.8 0.156 2.082 0.190 0.792 0.052 821.849
ItemKNN 1346.0 0.082 1.977 0.181 0.939 0.015 1,006.978
BPRMF 1386.2 0.111 1.893 0.173 0.890 0.017 968.784
NeuMF 1679.4 0.135 1.965 0.179 0.867 0.038 868.452
MostPop 92.0 0.010 1.039 0.092 1.000 0.000 1,570.672
Random 2810.0 0.911 0.075 0.007 0.037 0.693 151.352

Generally, we observe that the ranking of the algorithms is not entirely consistent across the datasets. Here, we sum-

marize a number of patterns that we observed, having in mind that beyond-accuracy measures are only of secondary

interest in this study.

• ForARP, which reports the average item popularity in the top-n lists, we find that BPRMF often has the strongest

tendency to recommend popular items on all datasets. MF2020 and EASE' are also often at the higher end re-

garding the popularity bias. The ranking of the algorithms however varies across datasets. On theML1M dataset,

the differences between algorithms are also generally smaller than for other datasets. On the other end of the

spectrum, we observe that the neural methods NeuMF and MultiVAE sometimes succeed to include less popular
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Table 10. Beyond Accuracy Results for AmazonDigital Music. The tables are sorted by nDCG in descending order.

Algorithm
Top@10

IC Gini EFD EPC PREO APLT ARP

RP3V 9959.0 0.542 0.409 0.033 0.308 0.299 23.759

EASE' 7789.0 0.178 0.368 0.031 0.537 0.054 56.155
SLIM 8215.4 0.197 0.361 0.030 0.552 0.067 49.287
UserKNN 7703.8 0.181 0.363 0.030 0.552 0.056 51.910
iALS 4516.2 0.136 0.325 0.027 0.766 0.009 41.936
ItemKNN 9686.2 0.478 0.345 0.027 0.097 0.550 9.884
MF2020 4722.8 0.099 0.242 0.021 0.687 0.009 59.949
NeuMF 7365.2 0.228 0.245 0.020 0.455 0.058 30.236
MultiVAE 6043.0 0.189 0.235 0.020 0.578 0.045 40.475
BPRMF 3050.0 0.024 0.078 0.007 0.784 0.001 130.810
MostPop 15.6 0.001 0.039 0.004 1.000 0.000 182.800
Random 10025.8 0.852 0.002 0.000 0.229 0.460 9.840

Algorithm
Top@20

IC Gini EFD EPC PREO APLT ARP

RP3V 10016.0 0.609 0.293 0.024 0.318 0.299 22.353

EASE' 9441.0 0.233 0.267 0.022 0.542 0.071 47.987
SLIM 9659.4 0.253 0.263 0.022 0.548 0.086 43.337
UserKNN 9294.2 0.237 0.264 0.022 0.543 0.073 45.834
iALS 5941.6 0.177 0.243 0.020 0.700 0.015 37.520
ItemKNN 9976.2 0.528 0.247 0.019 0.121 0.546 9.870
MF2020 6389.4 0.135 0.187 0.016 0.661 0.014 51.479
NeuMF 8533.2 0.266 0.180 0.015 0.468 0.075 27.416
MultiVAE 9161.4 0.329 0.178 0.015 0.519 0.094 33.590
BPRMF 4283.0 0.034 0.064 0.006 0.787 0.002 108.296
MostPop 29.2 0.002 0.033 0.004 1.000 0.000 148.838
Random 10025.8 0.895 0.002 0.000 0.158 0.460 9.838

Table 11. Beyond Accuracy Results for Epinions. The tables are sorted by nDCG in descending order.

Algorithm
Top@10

IC Gini EFD EPC PREO APLT ARP

UserKNN 3402.2 0.073 1.198 0.112 0.398 0.080 315.724
EASER 2765.0 0.055 1.197 0.114 0.501 0.046 341.486
RP3V 6009.0 0.197 1.237 0.112 0.198 0.275 226.165
SLIM 3361.0 0.081 1.197 0.110 0.452 0.061 246.216
MultiVAE 3386.8 0.089 1.105 0.102 0.364 0.105 293.641
ItemKNN 5832.8 0.160 1.084 0.097 0.171 0.267 214.681
MF2020 1235.2 0.028 0.921 0.090 0.786 0.008 368.003
NeuMF 3595.0 0.084 0.905 0.085 0.495 0.096 322.865
BPRMF 1322.8 0.018 0.824 0.081 0.651 0.012 475.629
iALS 1613.4 0.064 0.891 0.081 0.707 0.010 214.989
MostPop 41.6 0.001 0.273 0.030 1.000 0.000 719.301
Random 8443.0 0.823 0.011 0.001 0.142 0.738 27.565

Algorithm
Top@20

IC Gini EFD EPC PREO APLT ARP

UserKNN 4594.6 0.095 0.962 0.090 0.442 0.083 275.265
EASER 3705.0 0.071 0.965 0.091 0.522 0.047 297.062
RP3V 7010.8 0.232 0.983 0.089 0.262 0.268 198.240
SLIM 4401.2 0.098 0.965 0.089 0.493 0.063 228.155
MultiVAE 4249.6 0.112 0.900 0.083 0.426 0.112 255.457
ItemKNN 7100.2 0.188 0.875 0.079 0.272 0.262 199.488
MF2020 1631.2 0.040 0.766 0.074 0.776 0.009 320.867
NeuMF 4647.0 0.108 0.756 0.071 0.542 0.105 276.817
BPRMF 1793.6 0.026 0.693 0.067 0.640 0.012 409.832
iALS 2052.0 0.078 0.730 0.066 0.654 0.016 202.718
MostPop 72.0 0.002 0.244 0.027 1.000 0.000 629.745
Random 8443.6 0.875 0.011 0.001 0.079 0.738 27.654

items in the recommendation lists. RP3V and ItemKNN are similarly successful on the Epinions and AMZm in

this respect. The APLT metric, which considers the popularity and coverage of long-tail items are negatively

correlated with theARPmetric, i.e., the more popular items are recommended, the fewer from the long tail.

• The novelty metrics EPC and EFD, like all remaining beyond-accuracy metrics considered here, are generally

negatively correlated with the ARPmetric as well. An interesting pattern here is that models that perform well

on the nDCG are also mostly highly ranked in terms of the novelty metrics.

• Looking at the fairness metric PREO, which is also based on item popularity and where lower values are better,

the picture is not so clear. The neural MultiVAE method, for example, seems to rather consistently produce rel-

atively fair recommendations according to this metric. ItemKNN leads to very good results on the Epinions and

Amazon dataset, and to average performance on theML1M dataset. For this latter dataset, the spread of values is

however not too high.

• Finally, consideringtheGini index,MultiVAEgenerally leads to lowerconcentration levelsonML1M, and ItemKNN

andRP3V have lower concentration effects for theEpinions andAMZm datasets. Looking at ItemCoverage, both

nearest-neighbormethods and theneural approaches are typically better than thematrix factorization techniques

iALS andBPRMF. The patterns are however not consistent across datasets. EASE' , for example, leads to relatively

high item coverage onAMZm, but not on the other datasets.
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Overall, not many consistent patterns regarding beyond-accuracy measures across all three datasets can be observed.

One example of such a pattern is a certain popularity bias of the BPRMF method, which was previously observed [16].

Some patterns, like good item coverage for ItemKNN, are only found for the AMZm and Epinions datasets, which sug-

gests that thewidely usedML1M dataset may be to some extent unique and it stands to question how representative this

dense dataset is for other typical application scenarios, e.g., for e-commerce settings.

3.3 TimeMeasurements

We carried out all experiments on a computing cluster of our organization. The used cluster is based on IBM Power9

processors and has 980 nodes. Each node is equipped with 32 cores and 4 NVIDIA Volta GPUs. One cluster node with

200GB of RAM with 4 logical CPUs was reserved for each experiment. In addition, one NVIDIA Volta GPU with 16GB

of RAM has been allocated for the experiments with the neural models NeuMF and MultiVAE. Table 12 shows the time

measurements obtained for the three datasets, using the optimal parameters (e.g., number of latent factors) that were

determined through hyperparameter tuning. The numbers reported in the table refer to the time needed (in seconds) to

train the model once, and to create and evaluate the recommendation lists for all users in the test set.

Table 12. Training and evaluation time

Algorithm time (sec.)

MF2020 1.53×104

NeuMF 7.97×103

BPRMF 3.97×103

iALS 331.93
UserKNN 87.29
EASE' 85.93
SLIM 73.19
MultiVAE 67.03
RP3V 47.06
ItemKNN 42.74
Random 27.49
MostPop 24.63

(a) MovieLens-1M

Algorithm time (sec.)

NeuMF 3.57×104

iALS 2.90×104

MF2020 2.65×104

MultiVAE 1.37×104

EASE' 1.85×103

BPRMF 1.51×103

SLIM 403.29
RP3V 270.78
ItemKNN 257.96
UserKNN 247.68
Random 50.86
MostPop 45.58

(b) AmazonDigital Music

Algorithm time (sec.)

iALS 3.27×104

MF2020 1.97×104

NeuMF 3.46×103

BPRMF 2.26×103

EASE' 1.12×103

SLIM 344.69
MultiVAE 215.43
RP3V 148.24
UserKNN 144.05
ItemKNN 139.42
Random 47.99
MostPop 44.24

(c) Epinions

The results show that there is a substantial spread between the algorithms. While there are some models that com-

plete training and testing within one minute, training the MF2020 method on the ML1M dataset, where it performed

well, took several days. We note here that more efficient implementations of matrix factorization techniques have been

proposed [30]. Also the NeuMFmodel needed substantial time to complete the computations. In contrast, theMultiVAE

model, which was also originally evaluated on larger datasets in Liang et al. [21] was among the fastest models. The

neighborhood-based models and RP3V were also implemented for high efficiency. For the other datasets, Epinions and

Amazon, the results are similar with NeuMF and the matrix factorization models often taking substantial computation

time. For this latter class of models, the efficiency also largely depends on the optimal number of latent factors.

Generally, combining the timing results with accuracy results from above, we see no clear indication for the given

datasets that computationally more complex models are favorable in terms of prediction accuracy.

4 SUMMARY, DISCUSSION&OUTLOOK

In recent years, several researchers have identified major challenges with respect to reproducibility and progress in rec-

ommender systems research. Various factors contribute to these phenomena, in particular (a) that a larger fraction of
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published research is not reproducible because authors do not share the required artifacts and (b) that the experiments

in published research mainly aim to highlight the superiority of a new model. In the context of this latter aspect, this

practically often means that only the new method is carefully fine-tuned but not the compared baseline methods. Fur-

thermore, the choice of the baselines is sometimes limited to very recent models, thus probablymissing strong baselines

that were published earlier.

With this work, our goal is to address these open issues in different ways. First, we conducted a large number of repro-

ducible experiments ondifferent datasets and involving a varietyof algorithms fromdifferent families inorder to provide

an independent evaluation of existing techniques along different quality and performance measures. The outcomes of

these experiments shall help guide researchers in the choice of baseline algorithms to consider in their own research. In

particular we found that one should consider algorithms of different types in any evaluation, as there appears to be no

single method that is better than all others in all experimental configurations. Second, we ran these experiments with

the help of a recent general evaluation framework for recommender systems [2], thus allowing other researchers to

benchmark their new models within a defined environment and against already well-tuned baselines.

In termsof theoutcomesof theexperiments, our reproducibility studyconfirmedearlierfindings that the latestmodels

are not often the best performing ones, in particular for the modest-sized datasets that we considered in our evaluation.

In our ongoing and futurework, we plan to fine-tune ourmodels also on larger datasets and to share these tunedmodels

publicly. Thereby,wehope to reduce the often huge computational effort that other researcherswould otherwise need to

fine-tune all baselinemodelswhenever theypropose anewmodel.Over time, this collectionof fine-tunedmodels for var-

iousdatasetsmayrepresent a step towardsa sharedunderstandingofwhat represents the “state-of-the-art” inalgorithms

research. For these larger datasets, we also expect a more consistent and strong performance of deep learning models.

Besides accuracymetrics, our experiments included a number of beyond-accuracymetrics relating to popularity bias,

novelty, fairness, and item coverage. Our results confirm earlier findings that there can be substantial differences be-

tween algorithms, e.g., in terms of their tendency to recommend popular items. Such algorithm tendencies can be of

high relevance in practical application settings, e.g., when the goal is to support item discovery through the recommen-

dations. An important observation in our research is that common metrics for novelty and fairness are tightly coupled

and correlated with general popularity biases13. Future research might therefore strive to find alternative metrics that

more often go beyond popularity as indicators for novelty, diversity, fairness, or serendipity.

In addition to this, a careful analysis on the effect of the optimization goals for hyperparameter tuning is missing in

the literature. The results presented herein consideredmethods optimized for one specific accuracy-orientedmetric, i.e.,

nDCG. Butwhatwould happen if othermetrics are used for this optimization? It is true that there are strong correlations

between somemetrics, as discussed before, but it is also well-known that accuracy and beyond-accuracy measurements

are typically inversely related, hence, the question of what “state-of-the-art” means in terms of these other metrics re-

mains open and should be addressed in the future.

Finally, another aspect regarding the splitting strategy has to be taken into consideration. Here, we adopted a random

hold-out splitting strategy with repeated experiments that became popular in recent literature. Together with k-folds

cross-validation, they are representative of the evaluation protocols adopted in recent works. Nevertheless, random-

based splitting strategies undoubtedly favor somemethods since information regarding the future general users’ behav-

ior is exploited in the training phase. More realistic time-aware splitting strategies should be investigated to study how

much they impact the overall ranking of recommendation systems.

13In theory, the Gini index is not necessarily tied to popularity biases, but with the typical long-tail distributions it usually captures a concentration of
items in the “short head”.
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APPENDIX

A INTER-METRIC CORRELATIONS - BEYONDACCURACYMETRICS

In this section we report the correlations between each pair of beyond-accuracy metrics. For each dataset, the tables

indicate the Pearson product-moment correlation coefficient, unveiling strong direct and inverse correlations. Please

note we do not report same analysis for accuracy metrics here, since the topic of correlation among those metrics has

been extensively studied in prior literature. Please refer to Valcarce et al. [37], and Anelli et al. [3] for further details.

B F1 SCORES - ADDITIONALNUMERICAL EXAMPLES

The F1 score represents the harmonic mean of Precision and Recall. In the recommendation domain, when evaluating

lists of k items (top-k evaluation), it is usually defined as follows:

�1 (2>A4 =
1

|* |

∑

D∈*

2∗
%D@:∗'D@:

%D@:+'D@:
(1)

where* is the set of theusers in thepopulation, andwhere%D@: and'D@: are thePrecision andRecall values for a user

u’s top-k recommendations, respectively. In an alternative formulation, the F1 Score could be computed after obtaining

the average Precision and Recall values across all users:
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Table 13. Detailed Metric Correlations. The tables show how much each beyond-accuracy metric (computed on recommendation
lists of ten items for each user) correlates with each other. Specifically, the table shows the Pearson product-moment correlation
coefficient for each dataset.

Movielens EFD Gini IC PopREO PopRSP ACLT APLT ARP
EPC 1.00 -0.73 -0.36 0.75 0.79 -0.79 -0.79 0.20
EFD -0.74 -0.37 0.77 0.81 -0.80 -0.80 0.23
Gini 0.86 -0.99 -0.99 0.99 0.99 -0.81
IC -0.86 -0.79 0.80 0.80 -0.95
PopREO 0.99 -0.99 -0.99 0.78
PopRSP -1.00 -1.00 0.74
ACLT 1.00 -0.74
APLT -0.74

Amazon EFD Gini IC PopREO PopRSP ACLT APLT ARP

EPC 1.00 -0.10 0.45 -0.26 0.09 -0.04 -0.04 -0.46
EFD -0.05 0.49 -0.32 0.03 0.02 0.02 -0.50
Gini 0.78 -0.85 -0.96 0.88 0.88 -0.69
IC -0.93 -0.74 0.70 0.70 -0.88
PopREO 0.87 -0.87 -0.87 0.84
PopRSP -0.97 -0.97 0.60
ACLT 1.00 -0.58
APLT -0.58

Epinions EFD Gini IC PopREO PopRSP ACLT APLT ARP

EPC 0.83 -0.05 -0.11 -0.94 -0.84 0.91 0.91 -0.81
EFD -0.54 -0.59 -0.62 -1.00 0.97 0.97 -0.67
Gini 1.00 -0.25 0.55 -0.43 -0.43 -0.18
IC -0.19 0.60 -0.49 -0.49 -0.12
PopREO 0.63 -0.74 -0.74 0.81
PopRSP -0.99 -0.99 0.64
ACLT 1.00 -0.69
APLT -0.69

%@: =
1

|* |

∑

D∈*

%D@: (2)

'@: =
1

|* |

∑

D∈*

'D@: (3)

�1 (2>A4 =2∗
%@:∗'@:

%@:+'@:
(4)

These alternative formulationsmay lead to different results, aswehighlight in the following examples. Let us consider

a population of five users for whomwe have computed the Precision and Recall values for a recommendation system A

(see Table 14a).

It is worth noticing that the F1 formulation from Equation 1, denoted as Per-User F1, returns an F1 score that is lower

than the overall averaged values of Precision and Recall. This can happen due to the product of individual Precision and

Recall values. If one of the two is small, it affects the result and impacts the F1 score. Conversely, this behavior is not

likely to occur when the F1 is computed on already averaged Precision and Recall values (Average-based F1).

Furthermore, suppose that we evaluate the performance of two recommender systems, A and B (Table 14b). The two

systems lead to the same average Precision value, and B leads to a higher Recall value thanA. Itmaynowbe surprising to

see that A has a higher per-user F1 score than B. As a consequence of the previously discussed phenomenon, it is indeed

possible. That is, although the Precision value of system B is equal to system A, some individual Precision values lead

to poor individual F1 results that affect the overall value of the metric. Some examples of such cases can be found in the

accuracy results of the paper.
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Table 14. Accuracy results for the toy recommendation systems. P@k, R@k, and F@k stands for individual Precision, Recall, and
F1 Score with a list of : recommendations, respectively. Average reports the overall Precision and Recall values. Per-user F1 and
average-based F1 indicates the F1 scores computed using Equation 1 and Equation 4, respectively.

Population %D@: 'D@: �D@:

DB4A0 0.2 0.3 0.240

DB4A1 0.5 0.6 0.545

DB4A2 0.3 0.4 0.343

DB4A3 0.6 0.3 0.400

DB4A4 0.2 0.3 0.240

%@: '@: �@:

Average 0.36 0.38

Per-user F1 0.354

Average-based F1 0.370

(a) Toy recommendation system A.

Population %D@: 'D@: �D@:

DB4A0 0.2 0.4 0.267

DB4A1 0.5 0.2 0.286

DB4A2 0.4 0.4 0.400

DB4A3 0.2 0.6 0.300

DB4A4 0.5 0.4 0.444

%@: '@: �@:

Average 0.36 0.40

Per-user F1 0.339

Average-based F1 0.379

(b) Toy recommendation system B.

C HYPERPARAMETERS RANGE
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Table 15. Hyperparameter values for our baselines.

Algorithm Hyperparameter Range Type Distribution

UserKNN,

ItemKNN

topK 5 - 1000 Integer uniform

similarity
cosine, jaccard, dice,

pearson, euclidean
Categorical

RP3V

topK 5 - 1000 Integer uniform

alpha 0 - 2 Real uniform

beta 0 - 2 Real uniform

normalization True, False Categorical

SLIM

topK 5 -1000 Integer uniform

l1 ratio 0.00001 - 1 Real log-uniform

alpha 0.01 - 1 Real uniform

EASE' l2 norm 1 - 10000000 Real log-uniform

MF2020

num factors 8, 16, 32, 64, 128, 256 Integer

epochs 30 - 100 Integer uniform

learning rate 0.00001 - 1 Real log-uniform

reg 0.00001 - 0.1 Real log-uniform

negative sample 4,6,8 Integer

iALS

num factors 1 - 200 Integer uniform

scaling linear, log Categorical

alpha 0.001 - 50 Real uniform

epsilon 0.001 - 10 Real uniform

reg 0.001 - 0.01 Real uniform

BPRMF

num factors 8, 16, 32, 64, 128, 256 Integer

learning rate 0.00001 - 1 Real log-uniform

batch size 128, 256, 512 Integer

reg user 0.00001 - 0.1 Real log-uniform

reg positive item 0.00001 - 0.1 Real log-uniform

reg negative item 0.00001 - 0.1 Real log-uniform

NeuMF

num factors 8, 16, 32, 64, 128, 256 Integer

epochs 30 - 100 Integer uniform

learning rate 0.00001 - 1 Real log-uniform

batch size 128, 256, 512 Integer

negative sample 4,6,8 Integer

MultiVAE

epochs 100 - 300 Integer uniform

learning rate 0.00001 - 1 Real log-uniform

batch_size 64, 128, 256 Integer

intermediate dim 400 - 800 Integer uniform

latent dim 100-400 Integer uniform

reg 0.00001 - 1 Real log-uniform
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Table 16. Hyperparameter values for our baselines on all datasets.

Algorithm Hyperparameter MovieLens Amazon Epinions

UserKNN
topK 117 226 139

similarity correlation cosine cosine

ItemNN
topK 95 798 137

similarity cosine cosine cosine

RP3V

topK 158 803 144

alpha 1.4350197 0.4973207 0.8719344

beta 0.3265517 0.2836938 0.2483698

normalization true false true

SLIM

topK 518 663 663

l1 ratio 0.0000420 0.0000108 0.0000108

alpha 0.2978543 0.0486771 0.0486771

EASE' l2 norm 238.5621338 238.5621338 238.5621338

MF2020

num factors 128 64 16

epochs 72 92 97

learning rate 0.1295965 0.1295965 0.0154435

reg 0.0087583 0.0125009 0.0223642

negative sample 4 8 4

iALS

num factors 51 200 178

epochs 27 70 145

scaling log log log

alpha 6.3818930 9.1219718 2.8537184

epsilon 5.6496278 0.4921936 2.3098481

reg 0.0494734 0.4921936 0.0411491

BPRMF

num factors 256 64 256

epochs 73 86 63

learning rate 0.0378936 0.1265624 0.1004075

batch size 256 256 256

reg user 0.0157839 0.0058673 0.0002613

reg positive item 0.0005651 0.0052985 0.0034511

reg negative item 0.0012779 0.0009577 0.0328127

NeuMF

num factors 16 128 32

epochs 93 100 39

learning rate 0.0000366 0.0001365 0.0000465

batch size 256 64 256

negative sample 6 6 8

MultiVAE

epochs 100 205 200

learning rate 0.0001545 0.0000723 0.0001003

batch_size 128 128 128

intermediate dim 674 721 674

latent dim 175 279 175

reg 0.0000105 0.1153400 0.0020018
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