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A Method Using Generative Adversarial Networks for
Robustness Optimization
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The evaluation of robustness is an important goal within simulation-based analysis, especially in production
and logistics systems. Robustness refers to setting controllable factors of a system in such a way that vari-
ance in the uncontrollable factors (noise) has minimal effect on a given output. In this paper, we present an
approach for optimizing robustness based on deep generative models, a special method of deep learning. We
propose a method consisting of two Generative Adversarial Networks (GANs) to generate optimized experi-
ment plans for the decision factors and the noise factors in a competitive, turn-based game. In a case study,
the proposed method is tested and compared to traditional methods for robustness analysis including Taguchi
method and Response Surface Method.
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1 INTRODUCTION

Discrete event simulation is an established methodology for investigating the dynamic behavior
of complex manufacturing and logistics systems. In this context, finding robust configurations is
often a critical issue. Robustness refers to setting the controllable factors (decision factors) of a
system in such a way that variance through uncontrollable noise on a given output is as low as
possible [41]. To measure the robustness of system configurations, the quality-loss-formulas ac-
cording to the commonly known Taguchi method can be used [46]. The Taguchi method provides
certain experiment designs, but other approaches are also available. One of the key strengths of the
Taguchi method is the ability to calculate and compare the robustness in a large and comprehensive
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way. This gives the opportunity to not only explore the robust system configurations, but also
allows for exploration of contributors against system robustness. Optimization algorithms on the
other hand aim straight forward for the most robust solution, while Taguchi’s loss function allows
to investigate custom made experiment plans.

Robustness analysis and optimization in general is an ongoing topic in simulation methodol-
ogy research [3, 12, 35]. Especially Data Farming (DF), which is a concept that comprises broad
scale simulation experimentation and the use of algorithmically enhanced analysis [11, 43], en-
ables the finding of robust solutions due to a deep dive into the systems behavior. However, a
main challenge is to have suitable experiment plans for decision and noise factors that offer a bal-
ance between good coverage of the input space and manageable runtime, while also maintaining
decent experiment design quality criteria to avoid analysis bias [12]. In this paper, we examine
how to use a machine learning method called Generative Adversarial Networks (GANs) to
create experiment plans and to further use this approach for robustness optimization. In a GAN,
two neural networks contest with each other in a zero-sum game framework. A generative net-
work generates candidates while a discriminative network evaluates them. This technique has
originally been used to generate images that look at least superficially authentic to human ob-
servers [16]. In fact, we propose a concept for robustness optimization that includes the use of two
GANs, that are interconnected in a competitive, turn-based contest. This is done by using GANs
for the generation of experiment plans. To measure the robustness of a decision configuration, the
loss is calculated against a distinct number of noise configurations. We therefore build the opti-
mization process so that the one GAN generates single decision configurations, while the other
GAN generates complete experiment plans with multiple configurations for the noise. Both GANs
then aim to subsequentially improve their generated configurations turn by turn. This means one
GAN aims to improve the robustness of system by optimizing the decision factors, while the other
GAN aims to worsen the robustness by generating noise factor configurations that are as disrupt-
ing as possible. For the calculation of the robustness, experiments (in terms of current decision
configuration vs. current noise configurations) are carried out after each turn using a simulation
model. The prerequisite for the robustness optimization process using two GANs is to evaluate
how to use a GAN for the generation of experiment plans. Therefore, as a follow-up to [2], we
provide an in-depth discussion of the generation of high quality experiment plans using GANs in
this paper. This includes a discussion of multiple approaches for the training of the GAN as well
as the determination of requirements and hyperparameter evaluation. Furthermore, we provide
a more detailed presentation of our concept for robustness optimization using GANs regarding
a more in-depth description of process, workflow, and details of technical implementation con-
cerning the interconnection of simulator, AI, and optimization-algorithm. We also extended the
case study by a comparison of robustness analysis using Response Surface Method (RSM). The
remainder of this paper is structured as follows. In Section 2 we introduce the related work on
robustness analysis as well as some required basics on the design of experiments in this con-
text. We also introduce the related work regarding Generative Adversarial Networks. Section 3
presents the concept for GAN-based robustness optimization. In Section 3.1, we give some pre-
liminary considerations on generating experiment designs using a GAN, followed by introduc-
tion of the actual process of robust optimization using two GANs in Section 3.2. In Section 4,
we present a case study for a proof of concept in which we compare our approach to traditional
methods for robustness evaluation, including the original Taguchi method and the Response Sur-
face Method. This is then concluded by summarizing remarks and a discussion of future work in
Section 5.
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Table 1. Loss Functions for Different Purposes [36]

Type of Quality Loss Function Formula
Nominal-the-best L̄ = k[σ 2 + (ȳ − τ )2]

Smaller-the-better L̄ = k
[∑

n

i=1 yi
2
]

Larger-the-better L̄ = k
[∑

n

i=1 (1/yi
2)
]
/n

2 RELATED WORK

2.1 Revisiting Taguchi’s Loss Function and Experiment Design Principles for
Robustness Analysis

Robustness refers to setting the controllable parameters of a system in such a way that variance
in uncontrollable noise has a minimal effect on a given output [41]. Variation through noise can
emerge from various sources. For example, fluctuations in customer demand can lead to variation
in the mixture of jobs that are dispatched in the system [17]. This effect can increase dramatically
especially at the lower tiers of the supply chain, which is commonly known as the bullwhip effect
[25]. Since we can control every factor including the noise factors in a simulation model, we can
use simulation to assess the robustness of a system. A popular method for the measurement of
robustness is the Taguchi method. Genichi Taguchi, who originally came from a quality engineer-
ing background, developed a methodology to assess decision alternatives not only based on their
outcome value, but also on the variability around that outcome against noise. Taguchi created for-
mulas (shown in Table 1) that calculate the quality loss caused by deviation from a desired value.
Here, L̄ is the average loss for a given system configuration over all noise configurations n, k is
a fixed constant called the quality loss coefficient, ȳ and σ 2 represent the mean and variance of
an output value for each system configuration against all noise configurations (pure y represent-
ing the output for each experiment). In this context, a configuration represents one distinct set
of factor values. The experiments that need to be conducted then ultimately consist of different
configurations tested against each other. Depending on the characteristics of the desired output
parameter, different loss functions have to be applied [36].

The nominal-the-best loss function aims to reduce the variability around a desired output target
value τ and therefore sanctions output values above and below this target, for example the required
output voltage of an electrical circuit. The smaller-the-better function aims to minimize a given
output, for example cost, stress, or energy consumption. On the other hand, the larger-the-better
loss function is used to maximize an output value like reliability, strength, or efficiency. The result
of the loss function is usually converted to a logarithmic ratio (−10loд10 (L̄)). This is called the
signal-to-noise ratio and represents the magnitude of the mean compared to its variance in indus-
trial processes according to Taguchi [36]. Besides the collection of formulas, the Taguchi method
also provides experiment design patterns. Taguchi’s work on robustness analysis had a great im-
pact and also a lot of controversies among statisticians [32]. A more in-depth review on the subject
of Taguchi method and other robust design concepts can be found in Park et al. [34]. Besides the
Taguchi method, other optimization methods for system robustness evaluation exist, for exam-
ple the Response Surface Method [31]. A great comprehensive review on robustness analysis can
be found in [39, 41]. The Taguchi method recommends using crossed orthogonal fields, that are ori-
ented towards minimizing experimental effort and therefore offer only a small degree of freedom.
For example, having three factors with 4 levels each, the Taguchi method would recommend the
L9-Array, which offers 9 rows of experiments. While criticism on the Taguchi method particularly
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focused the aspects of experiment design and experiment plans [31], the Response Surface Method
was proposed as an alternative for robustness optimization. RSM resembles a more traditional ap-
proach to experiment analysis. In a two-stage approach, statistical models are to be fitted onto the
data to determine an optimal value. For simulation-based optimization, modern techniques like
Genetic Algorithms and Swarm optimization are discussed to replace RSM [7, 33]. However, for
robustness optimization, Taguchi’s formulas, also in combination with other methods, still offer a
great way to explore, visualize, and optimize the systems robustness by dividing the model’s fac-
tors into decision and noise [38, 41]. This is why they still today are the subject of current research
[19, 28], especially in the simulation community [12, 22, 44]. The strength of simulation-based
robustness optimization using Taguchi’s formulas is that a broad range of possible noise and de-
cision configurations can be evaluated when large-scale experiment plans are used. This enables
an in-depth analysis and investigation of the system behavior and the potential contributors and
roadblocks to the system robustness. Several publications aim to improve on the experiment de-
sign aspects of the Taguchi method [12, 43, 47]. While Taguchi’s formulas offer a great way to
calculate a value of robustness, simulation-based approaches obviously can conduct many more
experiments in a given time span than what could be achieved in a real-world experimental setup.
New approaches that can make use of Taguchi’s formulas but are also able to increase the informa-
tion gain by leveraging the efficiency of a simulation model. A current approach in [12] combines
the method of data farming with the Taguchi method. This allows to calculate the Taguchi values
over a much larger collection of output data then the traditional orthogonal arrays that have been
used for the Taguchi method. Data farming is a methodology for using a simulation model as data
generator and an efficient experiment design next to automated output analysis to maximize data
yield and therefore information gain [9, 21]. The farming metaphor describes how the data output
can be maximized by efficient experiment designs, like a farmer that cultivates his land to maxi-
mize his crop yield [42]. This is, in particular, made possible by new approaches in the design of
experiments that are highly efficient and manage a balance between broad scale factor combina-
tions and manageable data volume [24]. For these kinds of experiments, having experiment plans
that are of high quality is very important. The experiment plan defines the number of experiments
that need to be conducted as well as the value of each factor for each individual experiment. In
addition to the manageable number of individual experiments in the plan, the main criteria for
quality concerns usually are orthogonality, the space-filling properties, and balance.

Orthogonality can be measured by simply calculating the maximum pairwise correlation be-
tween factor values, represented by the columns of an experiment design. Ideally, the pairwise
correlation should be zero, but Cioppa and Lucas showed that in modern, efficient experiment de-
sign methods, it can be beneficial regarding the space filling properties to accept a minimal amount
of correlation [5]. The space-filling properties represent the ability of an experiment design to suf-
ficiently cover the input space defined by the factors. This input space coverage can be measured
by the so-called discrepancy. Discrepancy measures the uniformity of the distribution of config-
urations within the input space [45]. A rather computation-intensive way to calculate this is the
L∞-discrepancy [10]. In this work, we use the L2-discrepancy [5], which is more commonly used
in practice to measure the space filling properties of a design [18]. The balance property accounts
for the balanced distribution of factor values. This means that the values of a factor should occur
with equal frequency. This can be measured by calculating the maximum imbalance measure Δk

from all factors [49].
Efficient experiment designs are necessary since a full factorial design (nk) that covers all math-

ematically possible combinations of factor values is usually not practical if more than just a few
factors and factor values need to be addressed. In incomplete experiment designs, multiple factors
are altered simultaneously between two subsequent experiments. In such cases it is important that
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Fig. 1. Matrix of crossed arrays for robustness evaluation [12].

the quality criteria described above are kept at sufficient levels [5, 20, 40]. Many different design
methods are available in the literature. Commonly used designs are the Latin hypercubes because
of their good general-purpose applicability for exploring complex simulation models [5, 13, 40],
as well as more optimized nearly orthogonal Latin hypercubes (NOLH) [15, 23]. For the ro-
bustness analysis based on data farming, one experiment plan for mapping the decision factors
(system configurations) and one for representing the noise factors are generated and crossed. Af-
ter the experiments are conducted, the results can be arranged into a matrix-like table that shows
how each system configuration performs for each noise factor configuration, see Figure 1.

In the matrix, each cell represents one simulation experiment and can be filled with its corre-
sponding robustness value of a selected output parameter x according to the chosen loss function.
For each row, we can determine the average loss representing the robustness of each system con-
figuration. We can then build various analysis methods around this robustness calculation. For
example, in [12], a two-step process built around visually aided analysis was developed. The first
step is grouping system configurations into classes of similar robustness groups using classifica-
tion algorithms. Simulation experiments in the same class belong to system configurations that
have similar values in their corresponding robustness dimensions. In the second step, different al-
gorithms are usable for further analysis. The goal here is to provide insights on which input factor
values lead to distinct classes, preferably those with decent robustness values. Knowing how to set
input factor values accordingly to get to a desired class label allows conclusions on how to make
the system robust.

2.2 Generative Adversarial Networks

Machine learning, as a sub-discipline of artificial intelligence (AI), is currently a very popular
topic. In particular, deep learning is used in a wide variety of applications, such as classifying im-
ages, audio waveforms containing speech, or natural language text corpora processing. The most
popular and striking successes in deep learning have been achieved in regards to discriminative
models. Those usually map a high-dimensional, rich sensory input to a class label [15].
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Fig. 2. Schematic basic structure of a GAN.

In contrast to classifying real world data, a comparatively new idea is to use neural networks to
generate artificial data. This can be used for example for the generation of photorealistic images
or videos [23]. One type of network used for this purpose is the Generative Adversarial Network
(GAN), which is a class of machine learning systems invented by Goodfellow [16] in 2014. Given a
training set, this technique learns to generate new data based on the features of the training set. A
GAN (see Figure 2) consists of two main components, the actual generator (G) and a discriminator
(D).

Both networks are implemented as feedforward networks. The basic idea is that the generative
network generates candidates (χg), based on a noise vector (z), while the discriminative network
evaluates them. Evaluation means that the discriminative network distinguishes candidates pro-
duced by the generator from the true data distribution (χd). The generator trains based on whether
it succeeds in fooling the discriminator. The discriminator, on the other hand, is trained to distin-
guish generated from real data. The training therefore winds up in turn-by-turn zero-sum game,
until the generator has improved in such a way that the discriminator can no longer distinguish
between real and generated data samples. The results that have been achieved with GANs so far
are impressive. For example, in 2018, a GAN-generated image was auctioned for $432,500 [6]. In
the spring of 2019, researchers demonstrated a GAN-based tool that could generate videos of a
person based on a single photograph [50].

3 CONCEPT FOR USING GENERATIVE ADVERSARIAL NETWORKS FOR
ROBUSTNESS OPTIMIZATION

As already mentioned in Section 2.1, the strength of simulation-based robustness optimization
using Taguchi’s formulas is that a broad range of possible noise and decision configurations can
be evaluated. This allows to explore the best decision configurations, and also the worst noise
configurations. This is achieved by combining two experiment plans in a crossed array, one for
the decision factors and one for the noise factors. As for every experiment-based analysis, the ex-
periment plans need to meet certain quality criteria as explained in the previous section. These
criteria ensure that the analysis of results is not biased in any way and that the input space is
decently covered. In fact, creating experiment plans that meet those requirements and yet are ef-
ficient enough to be conducted in adequate runtime can be challenging. The idea of our approach
is, that we implement a system of two GANs that can create experiment plans: One GAN gener-
ates single decision configurations that are evaluated against a complete experiment plan of noise
configurations, generated by the second GAN. The robustness is evaluated using Taguchi’s for-
mulas in a turn-by-turn game. As a starting point, both GANs generate their experiments based
on experiment design quality criteria as explained in the previous section to initially cover the
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possible input space. During the optimization process, the training database is then altered based
on the calculated robustness value, so that the first GAN is getting better and better at generating
robust configurations over time, while the second GAN learns how to come up with disruptive
noise configurations that can bring down the system robustness. Therefore, we first introduce
some preliminary considerations on how to use a GAN for generating experiment plans that ex-
pose the desired features in Section 3.1. The actual process for robustness optimization using two
GANs that compete against each other is then introduced in Section 3.2.

3.1 Preliminary Considerations on Using GANs for Experiment Plan Generation

Before using GANs for robustness optimization, we need to ensure that they are able to generate
experiment plans in the first place. The underlying objective function that the GAN is generating
samples of therefore should be based on some form of quality criteria for experiment plans. In
Section 3.1.1, we first show that GANs are able to generate experiment plans by learning from
a given distribution, which is the traditional way of using GANs. In Section 3.1.2, we present an
improvement that we call directed GAN, where the database of the discriminator GAN is changing
dynamically in order to further improve the training. When using GANs for the actual robustness
optimization (Section 3.2), the objective function is then switched to a robustness measure. Because
two GANs are competing against each other, one GAN aims to minimize the robustness measure
and the other aims to maximize it.

3.1.1 Generating Experiments Using Traditional GAN-Training. Of particular interest here was
to investigate if a GAN can generate single experiment configurations or even complete exper-
iment plans. We tested both cases, as is described in the following section. In order to generate
experiment configurations, a GAN must be able to generate points from the corresponding input
space. When the input space is defined properly, meaning that lower and upper limits for each fac-
tor has been set, the input space represents the distribution Pdata (see Figure 2 in previous section)
that the GAN needs to learn from. Since the GAN has no insight into this original distribution,
because its task is to learn it from examples, we need to generate m learning examples in the first
step, where m is the size of a mini batch for training. A mini batch is a small sample drawn from the
underlying data distribution. These examples are generated in such a way that every value stems
from a uniform distribution between the lower and upper limit for each corresponding factor. This
distribution can be either continuous or discrete, depending on the scale of the factor. These factor
values are then combined to a complete sample configuration. Afterwards, the actual training can
start. Figure 3 shows the schematic architecture for GAN-based experiment generation.

The goal of the generator is to generate configurations that are not predictable as synthetically
generated by the discriminator. The discriminator, on the other hand, aims to distinguish original
from generated configurations. Generator and discriminator compete in a contest, which is played
over different rounds. In each round, the generator is trained first, and then the discriminator
is trained on the current outputs. The generator always determines its error against the current
version of the discriminator.

Individual configurations can then be combined to a complete experiment plan afterwards. This
has some obvious drawbacks regarding experiment plan quality criteria that are calculated over
multiple factors. So besides from generating individual configurations, generating a complete ex-
periment plan at once is also possible in a fairly similar way. However, both methods are needed
for our concept for robustness optimization that we present in the next section. For generating
complete experiment plans, the original distribution does not represent the input space of a single
factor but rather the set of all possible experiment plans in the entire input space of all factors.
Therefore, the data to be generated corresponds to an experiment plan, represented by a matrix
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Fig. 3. Schematic architecture of GAN-based experiment plan generation.

Mdata in the form of nXx K (nX rows/design points and K columns/factors), which needs to be
transformed into a vector having nXx K entries for using it as an input for the discriminator. This
can easily be done by simply linking together the rows of the matrix vertically. This means, that
the output layer of the generator needs to include nXx K neurons as well in order to generate a
similar vector. This vector can then be reconstructed into a matrix afterwards. Figure 4 shows the
training of a GAN for a three-factor experiment plan in 3D scatter plots.

On the top left (in red), the original data (χd) is shown, which stems from a random sampling.
For simplicity, all factors have a value range from 0 to 10. The blue dotted plots show the generator
outputs after a corresponding number of training rounds. It can be seen that this is initially around
the value 0 for each factor due to the initialization of the parameters (G ). From here, with more
training steps, the points are shifting in the direction of the desired factor space until it is hit by
the generator after about 10,000 steps. At this point, the input space is covered decently according
to the experiment quality criteria that the GAN was trained for. This is basically the process of
traditional GAN training. It shows that the GAN is able to generate new samples that matches a
given distribution and therefore is able to learn a desired distribution in the factor space in order
to generate experiment plans.

On that note, actually two options exist for generating data through the generator network.
The first one is, like shown in Figure 4, to generate the configurations directly through linear
transformation of the output layer. The second option is to put a sigmoid function onto the output
layer, limiting the interval of the generator output to the unit vector between 0 and 1 through a
non-linear function embedded in the hidden layers of the generator. The output then needs to be
scaled to the appropriate factor space. The advantage here is that the generator does not need to
vary its value margin as high during training, which can reduce the time needed to converge. From
here, we are able to create experiment plans that can recreate an original uniform distribution. The
obvious problem here is that those experiment plans lack needed quality criteria like orthogonality,
balance, and space-filling properties (as described in Section 2.1). Therefore, we implemented and
tested two additional measures in order to improve on this. The first one was to use experiment
plans that already exhibit those quality criteria for the original database Pdata instead of uniformly
distributed random numbers.

3.1.2 Generating Experiment Plans Using Directed GANs. The second measure we carried out
was to let the database of the discriminator (χd) change dynamically. As a side note, it might be
debatable whether the term GAN is technically correct when used in a way where the discrimina-
tors database is altered dynamically, so we propose to call this approach directed GAN. This means
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Fig. 4. Illustration of a training of a GAN (three-factor experiment plan).

that the GAN is directed towards a goal defined by an objective function. The idea here is that the
GAN is given data samples drawn by a distribution that is improved over the course of the train-
ing towards the given objective function, rather than drawn from a fixed base distribution like in
traditional GANs. After every training round, the best generated experiment plans are added to
the database. The evaluation of the plans is done by the calculation of the quality criteria of the
experiment plans itself. This way, the GAN could learn those quality criteria in an iterative process
based on its own output. For this purpose, the first step is to train a GAN that is able to create an
experiment plan from the set of all possible experiment plans. This means that the original data
again stems from a uniform distribution. We let the GAN generate 1,000 sample experiment plans,
which are then evaluated based on the following criteria: Maximum correlation ρmax, space-filling
property measured by L2-discrepancy ML2, and maximum imbalance measure max Δk. From these
samples, we choose the one that has the best value regarding one of these criteria. This step is re-
peated until we have enough candidates for a sufficient mini batch. This mini batch is then set as
the new database Pmax for the GAN training. This process contains 20 iterations and is repeated for
each of the quality criteria. This strategy turned out to be very effective, as shown in Table 2. We
can see that quality criteria for the generated configurations without these additional measures are
equal to the uniformly distributed random sampling, both when generating single configurations
as well as when generating the complete experiment plan at once. When we substitute the random
sampling with a LHS template for the learning database, the quality criteria of the generated exper-
iment plans start to improve slightly. When trained for a specific quality criteria by dynamically
changing the discriminators database as described above, the value of the corresponding criterion
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Table 2. Comparison of Quality Criteria (Smaller is Better)

Method ρmax ML2 max Δk

Random sampling 0.626 20.602 1.861
GAN – Single configuration 0.677 21.314 2.084
GAN – Complete experiment plan 0.632 24.34 1.95
GAN – Using LHS template 0.628 18.264 1.656
GAN – Trained for orthogonality 0.406 36.001 3
GAN – Trained for input space coverage 0.622 11.653 1.5
GAN – Trained for balancing 0.797 37.397 1.341
LHS [29] 0.629 13.801 0.5
NOLH [18] 0.047 13.412 0.062

Table 3. Final Hyper-parameters/Training-parameters of the Neural Networks

hyper-parameter/training-parameter generator Discriminator
hidden layers 1 2
neurons per layer 128 128
training steps 10050 10050
batch-size 64 64
learn-rate 0.00005 0.0001
activation function rectified linear unit (ReLU) rectified linear unit (ReLU)

improves drastically, but in some cases worsens the value of the other criteria. For example, this
is the case when training for a balanced distribution of factor values. Obviously, Table 2 shows
that a pre-optimized NOLH experiment plan still remains superior. Note that we focused on single
objectives for demonstration purposes, but a more complex, combined objective function based
on linear combination of multiple quality criteria could also be carried out. However, in terms of
first proof-of-concept, we can see that the GAN has potential to be trained into improving qual-
ity criteria fed by the discriminator. With a fine-tuned discriminator database that can manage
a balance between multiple quality criteria, the GAN might be able to produce equally valuable
experiment plans. This potential should be further evaluated in future work. On a side note, the
GAN is obviously not able to generate discrete factor values since the output is always continuous.
Therefore, is it necessary to discretize the continuous output. This can be done by rounding, which
can reduce the quality of the experiment plan in regard to orthogonality. However, increasing the
number of experiments contains this effect [49].

Regarding hyperparameters, we were able to limit the range of possible parameter values due
to background knowledge and upfront testing. However, we aimed to further narrow down the
best hyperparameters for the GAN-training. For that purpose, we set up an experiment design for
the hyperparameters and trained the GANS multiple times. Afterwards, we were able to analyze
the most influential hyperparameters. After additional testing, we could then identify the best
value for each parameter. The results are shown in Table 3. However, note that these settings were
evaluated using a three-factor test case. For larger experiment plans, the parameters may need to
be adjusted.

3.2 Using experiment-generating GANs for Robustness Optimization

In the previous section, we showed that a directed GAN can generate samples from a distribution
by learning its factors, and that this can be leveraged to generate factor configurations and
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Fig. 5. Schematic structure of GAN-based robustness optimization framework.

experiment plans. This can therefore be used for a robustness optimization mechanism. The
objective function that the GAN is directed to therefore needs to be based on a robustness measure.
As already described in Section 1, two experiment plans are needed for the analysis or the opti-
mization of the system robustness, one for the decision factors and one for the noise factors. Both
experiment plans can be generated with the outlined approach shown in the previous section.
The goal of one GAN is to maximize the robustness given a certain plan of noise, while the goal of
the other GAN is to minimize the robustness given a certain system configuration. So technically,
each GAN is used to improve its output regarding a given criteria as shown in Section 3.1, which
in this case is the criteria of robustness. This approach is shown conceptually in Figure 5.

In the upper part of the figure, the GAN F (Decision GAN) is for generating configurations X
of the decision factors is shown. In the lower part, the GAN S (Noise GAN) for generating the
experiment plans for the noise factors Ms is shown. Both use random numbers (z) as an input
vector.

In order to be able to achieve even better robustness, the particularly robust configurations are
included in the corresponding experiment plan for the decision factors X. On the other hand, the
most unfavorable environmental conditions need to be discovered, so they must be part of the
corresponding experiment plan for the noise factors (Ms ). The aim of the concept is searching for
a configuration X which maximizes a robustness measure η under a given noise Ms . The training
of the GANs is conducted alternately. This means, when the decision factors are optimized, the
noise remains fixed and vice versa. The actual evaluation of the robustness is then done by con-
ducting simulation runs and calculating the robustness values using a loss function, as shown in
Section 2.1. Therefore, the two GANs need to be connected via the simulation model to compete
with each other. Figure 6 shows the schematic architecture of the framework for robustness op-
timization, using two GANs and a simulation model. Both GANs can start the simulation model
using their experiment plans and update their database for their respective discriminator based on
the results of the robustness measurement.

The actual process for the optimization of robustness is shown in Figure 7. By definition, ro-
bustness is the average loss of a single decision configuration against the noise (see Section 2.1).
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Fig. 6. Schematic architecture of GAN-based robustness optimization framework.

Thus, the value of one single decision configuration is calculated against a complete noise plan.
We therefore build the optimization process so that the decision GAN generates single decision
configurations, while the noise GAN generates experiment plans. The process starts with the deci-
sion GAN generating several initial decision configurations. and a randomly initialized noise plan.
Those are used for the first calculation of the initial robustness values using the simulation model.
Both initializations are based on the previously trained GANs that were optimized for experiment
plan quality criteria. Further on, the decision GAN only generates one new decision configuration,
while the noise GAN generates complete experiment plans. The process starts by training the de-
cision GAN, which then generates a new decision configuration. After that, the simulation starts
once again (running the new and best decision configurations vs. the current noise plan) followed
by the calculation of the robustness values.

We use the same strategy for dynamically changing the database of the GANs as described in
the previous section. This means, if a new most robust configuration was found, it is added to the
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Fig. 7. Process for robustness optimization using GANs.

database of the decision GAN, and the GAN training based on the new database is carried out.
The next step then is the training of the noise GAN, which is analog to the previous step. The
noise GAN generates a new noise plan that is then tested against the current best decision con-
figurations. After both GANs are trained, one iteration is completed. They can then generate new
configurations based on their training of their refreshed databases. When no further improvements
in the robustness can be achieved, neither in the decision GAN nor in the noise GAN, the process
stops and the most robust decision configuration as well as the worst noise plan was found.

The decision, whether or not an improved configuration and/or experiment plan was found,
is based on the results of the simulation runs. These are evaluated by the robustness index η =
−10 loд10 (L̄), where L̄ is defined as in Table 1. The S/N-ratio is subsequently communicated to the
GANs and is used for further training rounds.

When testing the decision configurations against the noise plan, the noise plan is kept constant.
Therefore, the calculation of the S/N-ratio of these configurations is done against the current best
(or worst in terms of robustness) noise plan. For testing noise plans, it goes the other way around
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Fig. 8. Matrix of S/N-ratios.

by testing the current best decision configuration against the new noise plan. In order to get signif-
icant results, we perform R replications for each configuration against the noise plan. This results
in R S/N-ratios, which are the basis for the evaluation. Thus, replications are not calculated for
each single element 𝓎i of the crossed target matrix (see Figure 1 in Section 2), but rather for each
configuration over the entire noise plan. This is because we are not optimizing for individual target
values, but for S/N-ratios, which are calculated by means of the rows of the crossed target matrix.
Thus, which each replication, the regarding row is simulated again. By using the robustness for-
mula, we get a corresponding S/N-ratio for each replication of a factor configuration, which results
in a matrix of S/N-ratios seen in Figure 8.

From this matrix, we can then calculate a mean value for each decision configuration. The sim-
ilar strategy applies for testing multiple noise plans against a single decision configuration. Note
that S/N-ratios are already a form of expectancy values themselves, since they are calculated over
varying conditions in the model. Because there are usually a variety of noise factors in a discrete-
event simulation model in the context of production and logistics, it is not feasible to consider all
of them in the noise factor plan. When potential noise factors are not considered in the noise plan,
their values have to be determined by pseudorandom numbers. But since the robustness of each
configuration needs to be calculated for a given noise plan, we must ensure that those noise fac-
tors, that are not considered in the noise plan, do not add a bias to the S/N-ratio. This is important
because the Noise-GAN ultimately aims to find the worst-case-scenario of noise plans and there-
fore relies on the S/N-ratio as a measure of assessment. This should therefore not be dependent on
noise factors that are excluded from the noise plan. The problem would be that those can disrupt
the signal to the noise GAN, whose noise plan currently minimizes the configurations robustness.
Therefore, initial values for the random number generators for each replication of different con-
figurations should be constant to ensure that only noise factors included in the noise plan are
influential to the variance of the systems target value and the resulting S/N-ratios. This can be
done by using common random numbers [27].

Furthermore, since we use multiple replications, we need to validate the selection of the best
candidates statistically. The goal here is to find the true best robustness measure within the tested
configurations under an error probability α . Therefore, we use classical methods of ranking and
selection [14]. Using the matrix of S/N-ratios, we conduct a ranking-and-selection-screening by se-
lection of the configuration with the best expected performance measure with indifference zone =
3 and a = 0.05. This way, definitively inferior configurations are weeded out. Ranking and selec-
tion also determines the number of additional replications that needs to be conducted. The same
principle goes for finding noise plans. In the next step, if the best solution cannot be identified, a
new set of replications is determined and conducted.

4 CASE STUDY

4.1 Implementation and Simulation Model

To verify the concept, we implemented a prototype. Figure 9 shows the prototype’s main archi-
tecture. The central component is implemented in Python 3.6 (developed with Jupyter Notebook
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Fig. 9. Components of the implementation.

Fig. 10. Screenshot of the used Plant Simulation Model.

as a web-based interactive computational environment). Various Python libraries have been used
including numpy, matplotlib, scipy, and win32.client. This Python component includes the user
interaction, visualization of the results as well as the general controls. For the realization of the
GANs, we used the popular open-source platform for machine learning Tensorflow, which can
be addressed directly from the Python application. For implementing the simulation, we used the
commercial simulator Siemens Plant Simulation (see Figure 10).

The simulator is connected via a Component Object Model (COM) interface. The interface
allows the optimizer package to have access to the event controller of the simulation. The opti-
mizer package can therefore start the execution of the experiments based on the generated plans
by crossing decision configurations X and noise plans Ms in regard to the defined number of
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Table 4. Decision Factors for the Simulation Experiments

Factor name Scale Description Margins
#Stations Discrete Number of parallel stations 1–6
S7_ProcTime Continuous process time of station S7 10–60s
#Carriers Discrete Number of work piece carriers 1–100

replications r. Once all experiments have been completed, corresponding robustness measures 𝓎
are returned. Other than that, no further interactions between optimizer and simulator take place.
Due to these interactions, the implementation of the conjunction of simulator and optimizer tech-
nically classifies as an optimization with integrated simulation [48].

For a proof of concept, we developed a simulation model of an assembly line. Figure 8 shows
a screenshot of this model. In this model, three different part types are loaded onto carriers that
are then transported via a conveyor. The parts are processed on up to six stations (Station 1-6). At
the end of the line, there is a quality inspection (S7) before parts get unloaded from their carrier
and leave the system. The mixture of parts can vary, but arriving parts are kept in a buffer until
they are cleared to get mounted on a free carrier. Some stochastic effects arise through machine
reliability and a small proportion of parts that fail the quality assurance and are rescheduled for
manufacturing.

The goal here is to make the line robust against variations in the product mixture. For the actual
output that should be optimized for robustness, we chose the total throughput of the line. Because
we expect the throughput to be preferably large, the larger-the-better loss function was used to
calculate the system robustness. The decision factors that we used for this model are shown in
Table 4.

For the example scenario, we compared the traditional Taguchi based method presented in
Section 2.1 with the GAN based approach presented in the previous section. Additionally, we car-
ried out a robustness optimization using the Response Surface Method (RMS) for comparison.

In the traditional Taguchi approach, two different experiment design methods were used. The
decision factor plan was created by using the L9 design method [36] recommended by Taguchi.
The experiment design for the product mix requires a so-called mixture design. Here, the simplex
lattice design [26] was used, which is a standard design method for the creation of experiments
for mixture problems. In terms of noise factor values, a product mixture is obviously limited by
0%–100% per product. When choosing other factors for the noise, of course every system could
possibly be made unstable with just enough noise. Therefore, the range and limits for the noise
factors should be chosen reasonably and realistically according to the noise in the real system. We
ran the resulting crossed experiment plan with five replications for each configuration. Using an
F-Test, we confirmed that all factors have a significant effect on the S/N-ratio.

RSM, on the other hand, is a set of procedures that combine design of experiments with nu-
merical optimization in order to describe the relation between a target value and corresponding
factors. For more information on RSM see [30]. Using the RSM, an experiment plan that mutually
considers both decision and noise factors as recommended in the literature [31] is not possible due
to the mixture problem that needs to be addressed in the noise. The creation of such an experiment
plan that covers both decision factors and mixture proportions and furthermore enables to calcu-
late main effects, interaction effects, and quadratic effects is not feasible. Therefore, we again used
a crossed design, but one that allows to determine interaction and quadratic effects in terms of
the RSM. Instead of calculating an S/N-ratio, we created two metamodels: one for the target value
and one for the variance of the target value. Following the guidelines in [41], we used the loga-
rithm of the variance. For the factors, we used a custom experiment plan created through statistical
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Fig. 11. Robustness measured over the 13 learning rounds.

software. In the first phase of the RSM, the complete input space is searched. It is then narrowed
down in the second phase of the RSM. With the results of the second phase, we can estimate an
equation that defines a decision configuration. In terms of robustness optimization, this is the sta-
tionary point of minimum variance. For our GAN concept, we applied the parameters defined in
Section 3.1 (Table 3). In addition, we set a number of five replications per experiment. For the
ranking and selection, an error probability (α ) of 0.05 was defined.

4.2 Results

Figure 11 shows the progression of the robustness index (as calculated according to Equation 1)
over the learning rounds. Note that in even rounds the GAN for the decision factors was trained,
and in the odd rounds the GAN for the noise experiment plan was trained, resulting in the up-
and-down-curve that we see in the figure. When the decision GAN finds a new most robust con-
figuration, the noise GAN adapts in next iteration and brings down the robustness index in turn.

After 13 rounds of training, no further improvements could be achieved since both GANS are in
a stable equilibrium by having found both the most robust configuration as well as the worst/most
disrupting noise plan. Figure 12 shows a visualization of the experiment plans of the decision
factors as 3D scatter plots, after the initialization and the training rounds 2, 4, 6, 8, and 10. We can
see how the GAN quickly adapts from a randomized distribution to a very specific distribution of
factor values that yield the highest robustness for the underlying system.

Regarding experiment plans for the noise, Figure 13 shows the processing of the product mix
plans during the training of the noise GAN in comparison to the simplex lattice design (bottom
right) that aims to cover the input space uniformly. In the figure, each point represents the pro-
portion of the three products (A, B, C) in a mixture. At the beginning of the training, the noise
plans represent mixtures with roughly balanced proportions for each product. During training,
the points quickly move to the sides, which means that mixtures that exhibit a more dominant
product seem to be preferred. Therefore, mixtures with one dominant product obviously exhibit
much worse robustness than balanced mixtures. By analyzing the actual robustness measures, we
found out that the increase of the proportion of product B seemed to decrease the robustness the
most. Consequently, the noise GAN detected this effect correctly and adapted to it.

Table 5 shows the results of GAN-based optimization in comparison to the traditional Taguchi
method and RSM that we conducted for reference. Since the robustness of throughput was
investigated here, the larger-the-better loss function was used. A direct comparison of the results
of all three methods is not useful since different noise plans and robustness measures are used.
In order to compare the three methods, we tested the best configuration found by each of three
methods against both a GAN generated noise design and the simplex lattice and calculated the
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Fig. 12. Progress of the training of decision factors; from top left to bottom right initial and after training

round 2, 4, 6, 8, and 10.

Fig. 13. Progress of the training of product mix (noise factors); from top left to bottom right: initial, after

training round 1, 3, 5, 7, 9, 11, and the simplex lattice design.
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Table 5. Comparison of Methods for Robustness Optimization

Best configuration

found

Robustness index
(closer to 0 is better)

Best configuration against
GAN-generated noise

design

Best configuration against
simplex lattice design

Taguchi method
• #Stations = 3
• S7_ProcTime =10.0s
• #Carriers = 100

−64,65 −65,15

RSM
• #Stations = 5
• S7_ProcTime = 10.0s
• #Carriers = 63

−57,807 −60,31

GAN approach
• #Stations = 5
• S7_ProcTime = 10.0s
• #Carriers = 82

−54,72 −55,37

corresponding S/N-ratio. We can see that the three methods found different configurations to be
most robust, but in all solutions, the process time on the station S7 is 10 seconds. The method
based on traditional Taguchi recommends three stations and 100 carriers, whereas RSM and the
solution based on GAN identified five stations as most robust. On the other hand, RSM and the
GAN based solutions differ in the number of recommended carriers. Regarding the robustness
measure, our GAN-based approach delivers the best results in both scenarios with a significantly
better robustness. The reason why the Taguchi method performs poorly in comparison to RSM
presumably is associated with the factor plan that was used here. This plan only accounts for the
estimation of main effects, so interaction effects cannot be determined. However, the second phase
of the RSM optimization showed that there is an interaction between the number of stations and
the number of carriers in regards to their effect on the throughput. Since the calculated S/N-ratio is
dependent on the mean target value, this effect was not accounted for in the solution based on the
Taguchi method. In the GAN-based approach, we assume that the internal model of the generator
was able to pick up this effect. The implications of this simple case study are not generalizable,
yet they demonstrate the potential of the GAN-based robustness optimization in terms of a
proof-of-concept. More complex case studies are needed to verify and improve the method.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated a method for robustness optimization using two Generative Ad-
versarial Networks that are connected via a simulation model. In a simple case study, we were able
to show that with the method presented here, robust solutions can be found that beat traditional
robustness optimization methods. It should be noted though that the method presented does not
automatically qualify as an optimization from a purely mathematical standpoint. If we define the
term optimization more broadly, the method presented provides the incremental improvement of
a target value due to purposefully testing different configurations. That means, although winning
against the Taguchi method and RSM, our approach does not necessarily guarantee to find a global
optimum. In addition, hardly any insights into the internal model of the neural networks’ behav-
ior are possible, so that no knowledge is generated regarding why the determined solution is so
robust. This is a common problem with machine learning and AI-based systems and is usually
referred to as the problem of Explainability/Explainable AI [1]. The presented case study acts as
proof of concept that can keep up with the traditional robustness evaluation methods. The results
show that the presented method has a lot of potential but needs to be elaborated and validated
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in additional case studies with more factors and larger model complexity. Further research in-
vestigating the applicability of GAN variants like InfoGAN [4], BiGAN [8], or DCGAN [37] is
also conceivable. In addition, having tested our approach against more traditional approaches like
Taguchi method and RSM, future work should investigate how the performance and efficiency of
this approach holds up against large scale LHS or NOLH experiment designs, and against modern
optimization methods like genetic algorithms and swarm optimization. This work accounts for the
current trend in the simulation community to incorporate machine learning and AI-based systems
into simulation workflows for optimization and therefore contributes to expanding of the portfolio
of useable methods by GANs. We also showed that in a more generic way, GANs can also be used
for generating experiment plans that exhibit desirable design quality criteria. This was done by
setting up the GAN-training in a way that the GAN is able to learn those features. Although being
only a byproduct of this work, we see a lot of potential in this approach as well, which should be
investigated more in-depth in future work.
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