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ABSTRACT
Computer science and engineering have evolved rapidly over the
last decade offering innovative Machine Learning frameworks and
high-performance hardware devices. Executing data analytics at
the edge promises to transform the mobile computing paradigm
by bringing intelligence next to the end user. However, it remains
an open question to explore if, and to what extent, today’s Edge-
class devices can support ML frameworks and which is the best
configuration for efficient task execution. This paper provides a
comparative evaluation of Machine Learning inference machines on
Edge-class compute engines. The testbed consists of two hardware
compute engines (i.e., CPU-based Raspberry Pi 4 and Google Edge
TPU accelerator) and two inference machines (i.e., TensorFlow-Lite
and Arm NN). Through an extensive set of experiments in our be-
spoke testbed, we compared three setups using TensorFlow-Lite
ML framework, in terms of accuracy, execution time, and energy
efficiency. Based on the results, an optimized configuration of the
workload parameters can increase accuracy by 10%, and in addi-
tion, the class of the Edge compute engine in combination with
the inference machine affects execution time by 86% and power
consumption by almost 145%.

CCS CONCEPTS
•General and reference→ Evaluation; •Computingmethod-
ologies → Object detection; Machine learning.
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1 INTRODUCTION
In recent years, advances in computer science and engineering have
created a new technological ecosystemwhere new technologies like
the Internet of Things (IoT), Edge-Fog-Cloud computing, Machine
Learning (ML) and wireless communication networks are shaping
new applications of Cyber-physical interconnected devices.

On one hand, Cloud computing is an established technology of
data production and consumption from billions of online users and
systems. A typical Cloud-based system is productive in many use
cases but as applications becoming more complicated and demand-
ing, many critical issues arise related to network efficiency, systems
scalability, and privacy of data [10].

On the other hand, computing technologies at the Edge of mod-
ern networks are coming as a promising solution to all these critical
issues. A lot of research is focused on Edge computing to enable
applications which require the execution of computing tasks in
proximity with users. The Edge-class devices are available at af-
fordable prices and consist of modern high-performance hardware
components (CPU, memory systems), power-efficient modes, and
configurations with dedicated Application Specific Integrated Cir-
cuit (ASIC) hardware for ML acceleration. In combination with
the hardware, the ML frameworks offer rich software libraries and
APIs for developers to create robust applications for demanding
environments [3].

Meanwhile, Machine Learning (ML) on power-efficient devices
is an emerging technology. While utilization of ML at the cloud
has been studied extensively, the question of running efficiently, in
terms of performance and power consumption, ML tasks at Edge-
class devices remains an open question. In this approach the ML
development splits into two separate procedures, as presented in
Figure 1. The ML workload (model) training is performed at the
Cloud using GPUs and high-performance infrastructures, and the
ML workload inference is deployed on Edge-class devices [7].

Our focus is exactly on this topic, which we investigate by de-
ploying a bespoke testbed and launching a battery of experiments
with representative Edge-class devices and ML software libraries.
In this work, we pre-train the workload using Google Cloud in-
frastructures and use the trained model to perform a comparative
evaluation of two ML inference machines on different Edge-class
compute engines. Our goal was to implement hardware-software
ML configurations and to provide figures for the impact of substan-
tial metrics like execution time and energy efficiency.

The rest of the paper is organized as follows. In the following
section, research work related to ML technologies and applications
is presented. In Section 3, we describe our experimental setup and
the metrics for the evaluation of ML inference machines, and in
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Figure 1: ML training and inference processes

Section 4 we present and discuss the results of the comparative
evaluation. We conclude the paper providing our main findings and
suggestions for further work.

2 RELATEDWORK
In recent years, much work has been done related to ML frame-
works development for Edge Computing applications. S. Nikouei
et al. [8] supports the idea that Edge Computing allows efficient
execution of computational tasks on edge devices. Today, time-
sensitive applications could be performed on Edge-class devices
to reduce latency or even allow real-time decision making. Object
detection is a typical application where loading a huge amount of
video streaming data to the cloud takes valuable time and overloads
communication networks. As a solution to this challenge, a light-
weight Convolutional Neural Network (CNN) was introduced by
the authors for human detection at the Edge. The proposed model
was trained based on the ImageNet dataset. The results showed
that this method is promising for surveillance tasks because of its
decent accuracy and good processing speed.

A. Castello et al. in [2] developed a framework that performs ef-
ficiently model inference with deep neural networks on multi-core
Arm processors. This inference machine which is called PyDTNN is
very user-friendly and supports Deep Learning (DL) networks such
as CNNs and transformers. The results showed that the PyDTNN
is highly competitive compared to other inference machines such
as TensorFlow-Lite and Arm NN. The results highlighted the im-
portance of image’s batch size for response time (images/sec). The
Arm NN inference machine is better than the PyDTNN in terms of
the processing time by 23%.

K. Park et al. [9] introduced a model using MobileNet V2.0 plus
SSD, and a quantization system that detects face mask using Google
Edge TPU (Tensor Processing Unit). This work approves that Google
Edge TPU is capable to deploy a real-time application. The quan-
tized model compared with the 32-bit floating point (FP32) model,
shows extremely low-latency without sacrificing accuracy, which
practically means that processing cost and network delays could
be avoided.

A. Jainuddin et al. in [1] presented remarkable results in terms
of inference time for Deep Learning (DL) application. Google Edge
TPU accelerator which was developed specially for edge devices is
presented. The authors deployed DL models like MobileNet V1.0

and MobileNet V2.0 with Input Shape 224x224x3, on Edge-class
devices. Furthermore, they compared the performance of the edge
devices with and without the accelerator using TensorFlow Deep
Learning models. The results showed that Google Edge TPU device
performs faster than the other.

Lastly, Y. Hui et al. [6] proposed a benchmarking methodology to
evaluate three different Edge AI processors (i.e., Google Edge TPU,
NVIDIA Xavier and NovuTensor). The evaluation of these Edge
AI processors was measured using metrics of latency, accuracy,
and energy efficiency. These metrics demonstrate the performance
of a Deep Learning application. The measured value for accuracy
was the mAP (Mean Average Precision), which is the most popular
metric to evaluate object detection workloads with images. The
results of this work showed that the accuracy is for all Edge AI
processors almost the same, but comparing it in terms of latency the
NovuTensor is faster than Google Edge TPU and NVIDIA Xavier

3 EXPERIMENTAL SETUP
We deployed three experimental setups with the same ML frame-
work and workload. In the two first setups, we chose a CPU-based
Edge-class device in conjunction with two inference machines, and
in the last setup we used a TPU accelerator. In detail, our testbed is
described as follows.

3.1 Edge-class Device Hardware
The main Edge-class device for our experimental setup is a Rasp-
berry Pi 4 Model B Single Board Computer (SBC). This SBC device
has an Arm Cortex A72 (ARM v8) 64-bit SoC with 4 cores running
at 1.500 Frequency (MHz) and 4.000 RAM Size (MB) of PDDR4-
3200 SDRAM type. The SBC operating system is Linux raspberrypi
5.4.42-v8+ aarch64.

Additionally, we used a Google Edge TPU ML accelerator (Coral
USB Accelerator). Coral has an advanced ASIC implementation for
the TPU that provides high performance acceleration supported
by an Arm 32-bit Cortex-M0+ MCU. Also, Coral has a USB 3.1
Gen 1 port to communicate with Raspberry Pi 4. Coral is specially
developed for processing tensors which makes it ideal for AI and
computer vision applications and performs 4 trillion operations
(tera-operations) per second (TOPS), using 0.5 watts for each TOPS
(2 TOPS per watt).

3.2 ML Framework and Inference machines
Each CPU and accelerator manufacturer provides a ML framework
to support the development of AI applications. A framework user
utilizes all the available libraries and API functions to inference
various models on hardware edge devices [12].

In our work we performed our evaluation with ML TensorFlow-
Lite (TFLite) framework. TFLite is an open-source, product ready,
cross-platform deep learning framework that converts a pre-trained
model in TensorFlow to a special format that can be optimized for
speed or storage. Each ML frameworks supports software libraries
for workload inference. On the basis of TFLite framework we de-
ployed two inference machines (i.e., TFLite and Arm NN) on CPU’s
and TPU’s hardware, as presented in Figure 2, and described as
follows:
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• TensorFlow-Lite: is an optimized version of TensorFlow ML
framework targeting mobile and edge devices. In our setup
we used the inference machine for models without metadata
and the TensorFlow-Lite Interpreter API (Python 3.7).

• Arm NN: is a ML inference API for Linux developed by
Arm. Arm NN is built on top of the Arm Compute Library
(ACL) and provides acceleration for Arm CPUs with Neon
(Neon Backend). This inference engine bridges the gap be-
tween the existing neural networks (NN) frameworks, such
as TFLite, allowing it to run efficiently and optimized, across
Arm Cortex-A CPUs. Neon architecture using SIMD (Single
Instruction Multiple Data) technology provides additional
instructions that can perform mathematical operations in
parallel on multiple data streams. In our test we used an Arm
Cortex A72 CPU, PyArmNN 21.0.0, and Arm NN 19.08 infer-
ence machine with TFLite API Loader. Arm NN provides a
TFLite parser for loading neural networks defined by TFLite
FlatBuffers files into the Arm NN Runtime.

• Google Edge TPU: the Coral uses the Edge TPU compiler
software. This software compiles a compatible TFLite model
into a native binary for deployment on Coral. We worked
with TFLite Python API (Python 3.7) and Edge TPU Runtime.

Figure 2: A block diagram of the components of our experi-
mental setup

3.3 ML Workload
Firstly, for our evaluationwe chose theMobileNet V1.0 workload [5]
which is one small image classification network and we trained it
with Transfer Learning in Colab. In this approach, the host computer
runs a Python development environment and TensorFlow, Keras
and OpenCV libraries are installed. In our implementation we added
some new layers over the frozen layers to train the model on a
Kaggle training dataset for a face mask object detection problem
[4]. More specifically, the training dataset contains 7.553 images,
of which 3.725 are labeled (Tag) with-mask and 3.828 are labeled
without-mask. The model was trained for 20 epochs.

The trained model was converted to TensorFlow-Lite (quantized)
before the deployment on the Edge-class device. There are two
options to quantize a FP32 model: the quantization-aware training
and the full integer post-training quantization. For this work we
used the full integer post-training quantization. The full integer
post-training quantization is a technique to convert a previously-
trained model (FP32) into a quantized model (INT8). The next step

is to deploy the workload for inference. Inference refers to the
process of using a trained workload to make a prediction. In our
workload the system predicts if a person wear or not a face mask.
Each ML inference machine has various parameters but the basic
configuration for our experiments is presented in Table 1.

Table 1: Inferencemachines configuration in our evaluation
experiments

Inference Machine Workload Data type Input Shape
Arm NN 19.08 MobileNet V1.0 INT8 128x128x3

TensorFlow-Lite MobileNet V1.0 INT8 224x224x3
Google Edge TPU MobileNet V1.0 INT8 224x224x3

For the Arm NN inference machine the Input Shape is different
than the other two because Arm NN 19.08 does not support the
MobileNet V1.0 with Input Shape 224x224x3.

3.4 Video Dataset
The video dataset for the evaluation consists of 15 videos captured
in real conditions with a webcam. Each video contains a person
wearing a face mask or not. The file format of the videos is .mp4
(we named them V1.mp4, V2.mp4, etc.) with resolution 640x480
pixels and a file size between 5 to 9 MB each.

3.5 Metrics
In literature, benchmark methodologies and metrics for measur-
ing ML inference machine performance are presented in works
[6, 11]. Some of these metrics were adapted to our experimental
measurements. The metrics of this work are as follows:

• Frame Count: is the number of frames of a video file.
• Accuracy: is the fraction of successful predictions of our
model divided by the total number of predictions, as pre-
sented in the following equation. In our binary workload,
Accuracy is calculated in terms of positive and negative
predictions. We checked frame by frame all four possible
outcomes: TP = True Positives, TN = True Negatives, FP =
False Negative, and FN = False Positives, for all the files of
our video dataset.

Accuracy =
Number o f correct predictions

Total number o f predictions
=

TP +TN

TP +TN + FP + FN

• Execution Time: is the period of time for inference process-
ing.

• Throughput: is a measurement in Deep Learning to deter-
mine the performance of various models for a specific ap-
plication. Throughput refers to the number of data units
processed in one unit of time. For video data is frames per
second (fps).

• Energy Efficiency: is a very important metric for Edge-class
devices and measures the number of frames processed per
unit power, which is usually expressed as performance per
watt or frames per second per watt.

• Total Power Consumption: This metric includes the total
power consumed by the SBC for all the tasks during the
execution of each video file. This metric includes power
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consumption for video loading, inference processing and
results logging.

A low-cost USB Voltmeter/Ammeter-Power Capacity Tester was
used for power consumption measurements. This device measures
USB port and device operating current and the output voltage.
To calculate Energy Efficiency metric, Average power was used.
Average power (in watt) is the average of the instantaneous power
values dissipated over the time period of ML inference.

4 RESULTS
The experimental results, as presented in Table 2, highlight the
superiority

of the hardware acceleration compared to the CPU-based infer-
ence machines. Based on these results, TFLite inference machine
with Coral accelerator in execution time is faster 50% than the Arm
NN and almost 86% than the CPU-based TFLite. Focusing on the
Accuracy metric, TFLite with and without the Coral accelerator
has almost the same results. TFLite gives higher Accuracy than
Arm NN and as a result performs a better prediction. This occurs
because the TFLite used model has different Input Shape than the
Arm NN model.

Comparing Energy Efficiency results, it is obvious that TFLite
with Coral accelerator is the best solution for ML workload pro-
cessing at the Edge. As illustrated in Figure 3, the Energy Efficiency
metric for TFLite with Coral accelerator is at least 3 times higher
compared to Arm NN. In more detail, the results showed that TFLite
with Coral consumes almost 145% less power than without Coral.
Compared to the Arm NN, the TFLite with Coral consumes almost
103% less power. Finally, TFLite consumes 64% more energy than
Arm NN. In Figure 4, we present the Total Power Consumption
results for running the application.

Figure 3: Energy Efficiency metric results

Summarizing, the Coral accelerator performs better, as expected,
comparing to the other two inference machines running on the
CPU-based Edge-class device. The reason is that Coral is dedicated
to accelerating forward-pass operations, which make it an efficient
solution for performing inferences. Also, Coral’s ASIC hardware
offers real-time performance as it performs at >30 frames per second.
Comparing the CPU-based setups, Arm NN and TensorFlow-Lite,

Arm NN is much faster because of the ARM v8 Neon technology,
which enables SIMD technology and optimizes inference process.

Admittedly, the price cost of ML inference machines is a factor
that must be taken into account. The Arm NN and TFLite inference
machines without the Google Coral TPU need only a SBC with 4
GB RAM for the Arm NN and up to 1 GB RAM for the TFLite. Using
the Google Coral TPU accelerator with a SBC increases the cost by
almost 85 Euros.

Figure 4: The Total Power consumption for the video dataset

Finally, a critical factor for the selection of an Edge AI setup is the
difficulty of integration and installation of the ML frameworks and
inference machines. The TFLite ML inference machine is the easiest
to integrate on an SBC by using the appropriate available Python
packages. On the other hand, building Arm NN libraries, backends,
and its parsers from source is not always easy to accomplish.In
order to take advantage of the Google Coral, TPU resources the
developers use TFLite and the only restriction is to compile the
TFLite model with the Edge TPU compiler.

5 CONCLUSIONS
In this paper, we present a comparative evaluation of ML inference
machines using two compute engines on Edge-class devices. The
experimental results approve that Edge computing applications are
able to perform advanced ML workloads and will solve emerging
issues in critical applications. The advanced hardware architectures
in conjunction with efficient software libraries are becoming use-
ful tools for engineers to develop energy-efficient and optimized
solutions at the Edge. The testbed results show that an optimized
configuration of the ML model parameters increases accuracy by
10%, the type of the Edge compute engine in combination with
the inference machine affects execution time by 86% and power
consumption by almost 145%. For future work, we strongly believe
that evaluation methodologies, benchmarks, and ML architecture
selection tools are necessary for Edge Computing ML applications
development and research efforts must be focused in this area.
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Table 2: Experimental Results

Inference Video Frame Throughput Exec. Time Acc. Infer. Power Energy Effic. Total Power
Machine .mp4 Count fps sec % watts fps/watt watts
TFLite V5 568 5.7 100.0 92.0 382.0 1.49 397.0
Arm NN V5 568 10.5 54.0 81.0 224.0 2.53 248.0
Edge TPU V5 568 39.4 14.4 92.0 69.9 8.12 93.0
TFLite V6 387 5.4 71.0 83.0 268.0 1.43 279.0
Arm NN V6 387 11.0 33.0 74.5 122.0 2.98 140.0
Edge TPU V6 387 40.7 9.5 82.5 43.7 8.85 57.5
TFLite V9 222 5.2 42.0 86.0 154.0 1.42 167.0
Arm NN V9 222 10.5 21.0 77.5 76.0 2.90 90.0
Edge TPU V9 222 41.1 5.4 85.5 21.6 10.28 32.0
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