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ABSTRACT

With the advent of machine learning and agent-based approaches,
behavior-shaping in environments composed of several autonomous
entities has become a popular and active research field for the
development of unique realistic behaviors. Realistic simulations
have been particularly studied in the fields of crowd management,
swarm behavior analysis and civilization simulation. In this study,
we present a new dynamic rewarding approach for shaping the
behavior of reinforcement learning agents in mixed (cooperative
and competitive) multi-agent environments. The evaluation of the
proposed rewarding approach is tested in a developed 3D envi-
ronment of two groups of ancient Greek warriors fighting inside
an octagonal arena, testing different agent behaviors in various
scenarios. Interestingly, the results reveal that the trained agents’
behaviors vary based on the situations and the constraints of the
environment, resembling realistic behavior variations.
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1 INTRODUCTION

Reinforcement Learning (RL) environments typically consist of
a single agent that aims to learn actions that yield the highest
rewards, according to a specific reward policy [17]. This area of
Machine Learning (ML) has proven to be very effective in various
scenarios, even against human competition [6, 14, 18]. Very com-
mon applications of RL are games, in which the agent learns to
act within the rules of a specific environment by competing with
other agents, in order to gain insight into how to face progressively
more challenging opponents. Other applications of RL focus on
training agents that develop realistic behaviors within specific envi-
ronments [1, 16]. Behavior-shaping and analysis aims to influence
and study the behaviors of autonomous agents in various situa-
tions and scenarios. Nowadays, agent behavior-shaping is a very
active field of research and development, especially in the case of
multi-agent environments [9, 10].

A common usage of RL is in multi-agent (MA) RL (MARL) sce-
narios (cooperative, competitive or mixed scenarios). Multi-agent
scenarios were studied in the past, but they have recently reemerged
with the advent of new RL techniques [20] and powerful computa-
tional resources. MARL scenarios are typically more complicated
than single-agent scenarios, mainly due to the fact that the agent
has to learn complex behaviors within more dynamic environments.
In addition to that, the environment is changing dynamically (non-
stationary), with its level of complexity depending on the number
of the agents [9, 10].

In these directions, in the last few years, important attention
has been given to the analysis of the generated behaviors by the
trained agents. The agents learn to generate the required behavior
usually through either a reward function (reward-shaping) [2, 13],
where the agent is rewarded positively for the correct behaviors
and/or negatively otherwise, or imitation learning [19], where in its
simplest form the agent’s model is trained on data consisting of the
actions/behaviors to be generated (behavioral cloning). On top of
these kinds of behavior shaping processes, further analyzes of the
behaviors have been conducted, focusing on the collaboration of
agents in collaborative MA environments [3, 8] and even generating
human-like behaviors [4].

In this work, we focus on the application of MARL agents in
battle game scenarios, where the agents learn to cooperate and to
fight as a group (team) against other groups. The ultimate goal of
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the agent’s learning process is to act autonomously, performing
realistic behaviors in various scenarios, in order to prevail in the
context of the game. For this purpose, we present a complex co-
operative and competitive multi-agent environment consisted of
two groups of agents. The ultimate goal of this work in progress, is
to experiment on the process of behavior-shaping in autonomous
agents, implementing a dynamic rewarding approach. After the
training, in the inference phase, the agents are evaluated in vari-
ous scenarios, battling against varying numbers of opponents and
teammates, generating unique behaviors and outcomes, making
each battle unique in itself.

2 RELATED WORKS

In the last decade, there have been several studies focusing on
agent’s behavior-shaping, through the application of various train-
ing algorithms, with most of them exploiting reinforcement learn-
ing approaches. Through reward-shaping, Matheus R. F. Mendonca
et al. [13] developed a fighting game called Boxer and aimed to
train an RL agent for human-like behaviors through three different
reward functions. The reward functions focused on the victory,
hitting the enemy and following a recommended strategy. More-
over, they compared these approaches to the usage of an ANN
trained on recorded sessions. With a more general aim, A. Barreto
et al. [2] proposed the policy improvement and policy evaluation
operations, through which they shaped the agent’s behaviors by
using a modulated preference vector, defining the preferred actions
the agent should consider. E. Langlois and T. Everitt [10] used a
Modified-Action Markov Decision Process to produce asymptotic
behaviors that differ from the agent’s policy, with agents both ig-
noring modifications and others avoiding those that decrease their
reward.

Other studies follow different approaches for behavior modeling,
such as different model architecture or training process and pa-
rameters. For example, S. Loiacono et al. [11] analyzed overtaking
behaviors of Non Playable Characters (NPCs) in a racing car simu-
lator, such as fast opponents or in tight bend situations, by applying
Q-learning. C. Kiourt and D. Kalles [8] analyzed the behaviors of
agents through opponent-learning, where differently trained agents
(Good, Moderate, Bad) chose their opponents depending on their
characteristics, with each category of agents generating different
behaviors depending on the complexity of the environment.

With regard to the aforementioned related works (and many
other), and focusing on the development of more complex environ-
ments, our study has incorporated the following key elements in
the design of the experiments:

(1) Design a complex 3D battle environment as a multi-agent
system in terms of action-state space exploration.

(2) Train an agent in a cooperative approach, as being a part of
a group of agents focusing on the same goal, with the aim
of learning cooperative behaviors.

(3) Evaluation of the trained agent in the context of different
battle scenarios.

(4) Create various agent behaviors through the application of
action-based dynamic rewarding approaches.
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3 METHODOLOGY

In this section we present the adopted methodology, algorithms as
well as the proposed behavior shaping approach.

3.1 Agent setup

The setup of the agents’ learning algorithms/parameters, the ac-
tions, the rewarding policy, as well as the state space representation,
are challenging in RL experiments. In our case, where we focused
on shaping the agent’s behaviors, the adopted setup is presented in
the following paragraphs.

3.1.1 Character setup: The character’s attributes consist of the
following key elements:

(1) Health Points (HP): The life points of the agent with a maxi-
mum (mHP) of 200 HP

(2) Attack Damage (AD): light = 20 and heavy = 2 * light HP

(3) Defence Capacity: Takes 0.5 * AD of an incoming attack

The values of the above attributes were kept simple without
focusing our attention on the balancing of the values so as to make
the AD or Defence Capacity more "fair" towards the player/agents.
As the study focused on shaping the behaviors, the values were
chosen so that they made sense regarding their functionality, e.g.
a heavy attack does more damage than a light attack (without
thinking how much heavier it is).

3.1.2  Action space: The agent’s action space includes the following
four action branches:

(1) Horizontal movement: he{—1, 0, 1}, with -1 corresponding
to left and 1 to right.

(2) Vertical movement: ve{-1,0, 1}, with -1 corresponding to
backward and 1 to forward.

(3) Attack (melee attack): ae{0, 1, 2}, with 1 corresponding to
light attack (will cause light damage) and 2 to heavy attack
(will cause heavy damage).

(4) Defence: de{0, 1}, with 1 corresponding to defence.

In all cases, the value of 0 corresponds to no action. Moreover, a
heavy attack, although it is expected to inflict heavy damage, lasts
twice as longer compared to the light attack, making the attacker
more susceptible to counter-attacks. Moreover, it should be noted
that for an attack to hit, the enemy has to be hit by the spear during
the attack animation. In both attack type cases, the agent has to be
at least 1.25m close to the enemy for the spear to reach them. On
the other hand, to defend an attack, the agent simply has to be on
a defensive stance (holding the shield in front of them, covering
their body), defending attacks from all sides and taking half the
damage from the opponent’s attacks. Additionally, the agent can
take actions from all the above branches, but only one action will
be performed (except for the movement, where the agent can move
horizontally and vertically at the same time). For example, if the
agent chooses to attack and defend, the defence will override the
attack action, if the agent is moving and attacks or defends, the
movement action will be blocked (movement will stop to perform
the other action).

3.1.3 Observations: A single agent collects 135 observations (state-
space representation) in real-time, specifically:
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(1) 80 of the 135 observations are calculated using 20 rays of
20m length, evenly spread around the agent. Each ray de-
tects objects that belong to two object layers, differentiating
between allies and enemies, returning as a value the nor-
malized distance it travelled from the origin (the agent’s
position),

(2) 5 of the observations are the agent’s status and include:

(a) Health percentage He[0, 1]

(b) Ifthe agent attacked during the last action it took [ True, False]
(c) Ifthe agent defended during the last action it took [ True, False]

(d) Its normalized x and z position inside the arena
(3) The remaining 50 observations contain information about
the enemy team’s agents, with 5 observations for each one,
up to 10 agents. For each agent, the following 5 observations
are collected:
(a) Enemy’s health percentage He[0, 1]
(b) If the enemy is attacking [True, False]
(c) If the enemy is defending [True, False]
(d) The normalized x and z distance between the agent and
the enemy

It should be noted that in case there are less than 10 opponents, the
agent fills the remaining values with zeros (zero padding), for the
total 50 expected observations. This helps the agent with receiving
observations for various sizes of opponent groups, as well as to
test its generalization in non-stable environments. Moreover, it
is obvious that the agents do not differentiate between light and
heavy attacks, due to the more general focus of the study.

3.1.4 Rewards: A time penalty of —1/MaxSteps is applied for ev-
ery action taken, forcing the agents to explore the state-action
space with an inclination towards fast wins. When an agent hits
an opponent, it receives a reward of +0.1 and when it manages
to defend an enemy attack it receives a reward of +0.05. This re-
warding approach produces more active agents, by pushing them
to attack their opponents, while also trying to defend their attacks,
disfavouring, at the same time, constant defensive strategies. In ad-
dition, by exploiting a multi-agent credit assignment algorithm, the
cooperative behaviour of the agents is boosted. Regarding group
rewards, a —1 indicates loss of a battle, a +1 indicates a win and
0 indicates a draw, which was awarded at the end of an episode.
The result is regarded a draw when the episode has ended after
MaxSteps = 15,000 steps, with at least one warrior surviving in
both groups. An agent is considered out-of-battle (“dead”) when
its HP have reached 0 and so, a group wins the battle when all
the opponent’s agents are out-of-battle. The reasoning behind this
credit assignment approach is so that the agents of a group cooper-
ate to receive the positive group reward, despite their individual
status, even when some agents of a group are expected to die dur-
ing a battle. It should be noted that all of the above rewards were
normalized.

3.2 Behavior-shaping

We tested three different behavior-shaping approaches based on
the rewarding of an agent. This included the comparison of the
training outcomes in each Test-Case (TC), as well as the monitoring
and analysis of the behavior-shaping of the agents in the arena. In
all three approaches, the agents received the same observations
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(a) (b)

Figure 1: Two agents (ancient Greek warriors) during a
melee action (a) and the training environment, the arena (b).

and rewards mentioned in previous paragraphs, with an additional
reward depending on the approach (which focuses on the behavior-
shaping of the agents), calculated as follows:

TC-1 (center): Distance of the agent from the center of the
arena; this gives the agent more space to act more freely and
accurately, “precise behavior”.

TC-2 (midpoint): Distance of the agent from the midpoint
of the enemy group; this pushes the agent directly towards
the opponents, “selfish behavior”.

TC-3 (both): Distance of the agent from the midpoint be-
tween the arena and the agent’s closest opponent; this pushes
the agent directly towards an opponent by trying to have
more space for more accurate actions, “wiser behavior”.

The distance reward was calculated using 1, taking into account
only the normalized x and z axes:

(di —dc) - & e
T o I ac > dj

dist = MaxSteps J (1)
Gdo -
MaxSteps e = di

where MaxSteps = 15,000, d. is the current normalized distance
between the agent and the target position (different for each TC) and
d; = 0.0875 is the maximum normalized distance for an agent to be
able to hit an opponent. The resulting value of Equation 1 was then
clipped to [-0.5, +0.5], so that the total reward is maintained in the
range of [—1, +1], preventing the agents on maximizing this reward
only. It is worth noting that the distance reward was applied every
time the agent took an action and for this reason it was divided by
MaxSteps, resulting in the same minimum and maximum values at
the end of an episode.

4 EXPERIMENTAL SETUP

The training environment and agents were implemented using the
Unity Game Engine, using the ML-Agents toolkit [7] for the training
process of the agents. The training was done by using an 8 core
16 threads CPU, 16GB RAM and a RTX 3070 Laptop GPU, with
the training process including 16 separate environments running
concurrently, using a headless (no graphics enabled) executable.
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4.1 Environment

Figure 1 depicts two 3D avatars representing two opponent agents
in melee action (a), and the environment, the arena (b). A special
care is taken so that the environment and agents be of natural
dimensions, thus the arena is an octagonal region of a diameter of
20m, enclosed with walls of 5.25m height, whereas the height of the
avatars of the agents is fixed to 1.8m for all the agents. The arena
confines the movement of the agents and they eventually have to
face each other.

4.2 Training Approach

Two groups of 4 agents were battling among each other during
the training process. In every episode a new battle started with a
new random position and rotation for each agent inside the arena.
Each group was spawning on a separate half of the arena (top and
bottom), with the battle lasting a maximum of 15,000 steps or until
a group won. After that, the entire environment was reset.

4.3 Learning Parameters

For the experiments we used the Proximal Policy Optimization
(PPO) [15] RL algorithm, which is considered to be a very effective
approach in large scale complex environments. The setup of the neu-
ral network consists of 2 hidden layers each one with 256 neurons.
For the optimization algorithm we used: learning rate = 0.0003,
B = 0.005 € = 0.2, A = 0.95, epochs = 3, batch size = 1024
and memory size = 20480. The agents’ extrinsic reward param-
eters were: strength = 1.0 and y = 0.99. The values of those
learning parameters were chosen after testing a large number of
different parameters, from larger networks and values to small net-
works and even smaller learning rate, beta etc. The batch size and
memory size parameters, were set to higher values as the length of
the episode was large, requiring the collection of larger memory
and (as a result) for a larger batch size during the model training.

Moreover, for the multi-agent credit assignment algorithm, we
used the MultiAgent POsthumous Credit Assignment (MA-POCA)
algorithm provided by the ML-Agents toolkit, which utilizes a cen-
tralized neural network for the whole group of agents, giving re-
wards for the whole group. With MA-POCA, agents eventually
learn how to cooperate together so as to earn the reward, while
also helping each other to earn their individual rewards. The algo-
rithm is built upon other cooperative learning algorithms, such as
[5, 12]

The total duration of the training was 15 million steps for each
TC. We used self-play parameterization for the agents in the train-
ing process, to allow them to train against various models (older
versions) of opponents, resulting in a more stable learning process,
while also producing variable opponent behaviors, increasing (as a
result) the complexity of the non-stationarity of the environment.
Thus, the parameters used where the following:

(1) save_steps = 25000: number of steps between model snap-
shots that are saved

(2) team_change = 150000: after this number of steps the agent
changes teams

(3) swap_steps = 50000: number of steps before swapping the
enemy teams model
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5 DISCUSSION

In the inference phase of the experiment, we performed a number
of different scenarios regarding the sizes of each agent group for
each TC. Each scenario was performed 500 times, with the same
configuration and the following group sizes: 1v1, 2v5, 4v4 and 6v3.
With these setups, we tested the generalization of the agents’ per-
formance under different constraints (e.g. lower number of allies
or opponents).

Table 1: Win-rates of the first team for each TC scenario.

Team Sizes
Behavior type  1vs1l 2vs5 4vs4 6vs3

TC-1 53.80% 39.80% 54.40% 64.40%
TC-2 60.80% 37.60% 55.80% 61.40%
TC-3 46.60% 27% 43.80% 51.80%

Based on the data gathered during the experiments, we created
heat map representations for each TC, as shown in tabular form in
Figure 2. In these heat maps, the concentration of heat corresponds
to the most busy regions in the arena. Overall, the battles took place
in various regions of the arena and therefore had different duration
and outcomes. For example the battles of TC-1 “Center” ended quite
fast and the agents utilized quite large areas of the arena in almost
all cases. In the TC-2 “Midpoint”, both groups rushed onto each
other, ending the battle fast by trying to squeeze each other at a
corner/edge of the arena. In most cases the fastest acting group
(squeezing the other group) won the battle. In the TC-3 “Both” the
agents of each group split, each one fighting its closest enemy while
trying to keep the battle in the middle of the arena.

The analysis of the win-rates revealed some important and ex-
pected outcomes. As shown in Table 1, in the cases in which the
group sizes were the same for all TC scenarios, a win rate of 44—60%
was observed, which is reasonable as both groups had the same
size and same configuration. Similarly, in most cases of imbalanced
group sizes, in which the larger group had a much higher win rate
than the smaller one, with about 27 — 40% win rate for the smaller
group in the scenarios of 2v5 and 35 — 40% win-rate for the scenario

1wsl Ivss dvsd 6ws3

TC-1

TC-2

163 a

Figure 2: Heat maps of agents’ activity for each TC scenario.
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of 6v3. At this point, an important exception should be highlighted:
in the TC-1 “Both” with group size 6v3 the smaller group’s win-
rate was 48.2%, an average difference of about 15.7% to the other
two 6v3 TC scenarios. This is due to the fact that a smaller group
size results in better cooperation (“wiser behaviors”) among the
agents. Simply put, they act more freely/wisely by focusing more
on their opponents instead of their co-warriors, as it happens in
large groups of agents, where one may leave his fighting position
to protect his co-warrior resulting in a loss of a battle.

An important conclusion that can be derived from the heat maps
is that there is a slight bias towards the lower part of the arena,
especially in the TC-2 “Midpoint®. This was happening due to the
fact that during the training process, the team that was spawning
at the lower half of the arena (and most of the times losing the
episode) was running away from the enemy team, so as to stay
alive for as much time as possible. Therefore, this resulted in the
agent model to become biased towards that part of the arena.

6 CONCLUSIONS

In this work in progress, we presented a complex mixed multi-agent
(cooperative and competitive) environment, represented by groups
of warriors in a melee game, briefly analyzing the RL agents’ behav-
iors under some constraints. The overall goal was to experiment in
the behavior-shaping of autonomous agents. In order to implement
the behavior-shaping process, we proposed a dynamic rewarding
approach, with quite large self-adapted rewards and penalties.

In our preliminary experiments, the agents were tested and eval-
uated in different Test-Case scenarios. The results show that the
agents were able to learn the corresponding behaviors that were
favored by the behavior-shaping algorithm. Additionally, the anal-
ysis showed encouraging results regarding the behavior-shaping
of the agent in mixed environments, through the dynamic reward
shaping approach, paving the road for further study on this subject.

The study implemented a cooperative and competitive multi-
agent environment, utilizing the MultiAgent POsthumous Credit
Assignment training algorithm which has shown to perform well in
the literature in this type of environments. Although the episodes
lasted long at the beginning of the training process, eventually they
lasted much less than the maximum number of actions per episode,
meaning that smaller values for the aforementioned parameters
should be tested. Lastly, the training approach required training for
along time (10,5 hours on average), despite using multiple instances
of the environment. The training duration can be attributed to the
fact that the environment is complex with a large action space,
despite it being small in size, while also having a large observation
space. Therefore, the training duration and results of a smaller
observation space should be researched.

As for future works, the study will focus on:

o Comparing the performance of a different training algorithm
(such as SAC) and so, changing the action space from a
discrete to continuous one;

e increasing the complexity of the environment, along with
the available actions in the action space of the agents, such
as jumping, crouching and different weapon usage;

e designing a reward function so that more actions can be
incorporated to the behavior-shaping process, making an
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agent defend more, or prefer a type of attack (heavy or light)
more than another;

e analyzing the behaviors in different environments and are-
nas, such as in unlimited and unconstrained open spaces;

o analyzing the resulting behaviors with regards to the realism
of those behaviors in different kinds of situations and battle
scenarios.
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