
Performance Evaluation
of Mobility-based Software Architectures

Vincenzo Grassi * Vittorio Cortellessa * °
* Dip. di Informatica, Sistemi e Produzione, Università di Roma “Tor Vergata”, Roma, Italy

° Computer Science and El. Eng., West Virginia University, Morgantown, WV
{grassi, cortelle}@info.uniroma2.it

1. INTRODUCTION
Software architectures (SA) describe software systems at an

early design stage, in terms of components and interactions
among them; decisions made at this early stage can have a deep
impact on the overall quality of the final software product,
since they can affect several quality attributes, like reusability,
performance, reliability. For this reason, it is important to
develop methodologies to evaluate the impact of different
architectural choices on these attributes, at the time these
decisions are made [1, 5, 7, 12]. One of such decisions
concerns the adoption of an architectural style, that determines
the components type and patterns of interactions that can be
used [2]. Several styles have been identified, motivated by
trends in software design and technologies. In recent years, it
has emerged the idea of explicitly taking into account the
notion of components location, to deal conveniently with the
fact that it is becoming increasingly common for applications
to operate in large scale computing environments (like the
World Wide Web), with heterogeneous locations, both
geographically and logically distributed, and that can also be
physically mobile (portable devices).

This rises the question on which is a suitable architectural
style for such distributed applications. Besides the traditional
client-server style, another suggested style is based on the
notion of code mobility [6], where components of an
application may autonomously decide to move themselves to
different locations, during the application lifetime. Arguments
in favor of this new style concern the improvements of both
qualitative attributes (like customizability) and quantitative
ones (like network traffic). However, it is also recognized that
such arguments are not valid in general, and hence the choice
between the two styles should be performed on a case-by-case
basis [6].

Our goal is to define a methodology that helps the designer
to perform such a choice at the SA stage, by giving insights
about the impact of the two styles on the final application.
Given the large spectrum of quality attributes affected by such a
choice, our methodology does not encompass all of them.

Rather, it focuses on quantitative attributes that are significant
for the class of applications that operate in a geographically
distributed environment, with heterogeneous (and possibly
physically moving) locations. In particular, we focus on
interaction related performance indices (e.g. generated network
traffic, possibly on some particular links, or consumed energy,
of interest for portable devices [10]). For a more
comprehensive evaluation of the merits of different styles, our
methodology should be supported by further steps, addressing
different attributes.

In the following, we outline the steps of our methodology,
using as example a “context-aware” application [3].

2. METHODOLOGY
2.1 SA description

The starting point of our methodology is the description of
a software application in a suitable architecture description
language (ADL) that includes the possibility of specifying
components location. Languages of this kind have been
proposed quite recently [4, 9, 11]. Our approach is not tied, in
principle, to a particular language. However, for the sake of
example, we adopt a modification of the COMMUNITY
language [11]. In this ADL, each component is a set of named
guarded actions, that can modify only local variables. A special
local variable λ indicates component location. Each action is
non-deterministically chosen for execution when its guard
holds true. To model interactions and (possible) mobility, we
introduce a parametric connector type (Mob_Comm), based on
a slight modification of the COMMUNITY Communicator
connector modelling synchronous message sending.
Mob_Comm can also model code mobility; its prototype is as
follows:

connector Mob_Comm(c1, c2: component; a1, a2 :
action; x1, x2: any_type; I, M: condition)

where a1 and a2 are the names of actions performed by c1 and c2
components, respectively, “synchronized” by the connector,
while x1 and x2 are c1 and c2 variables, respectively, used to
send and receive the exchanged value; I is a condition that
controls the connector activation (action a1, that starts
communication, is executed only when both its guard and I hold
true, see [11] for further details). M is a condition that controls
the mobility of component c1; if M holds false, then
Mob_Comm has the same semantics of Communicator (the
value of x1 is sent to x2), while if M holds true, then the
connector semantics corresponds to changing the location of
c1 to that of c2, and then transferring the value of x1 to x2. M
may also be set to the undetermined value “?”. In this case, the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or
a fee.
Proceedings of WOSP2000, Ottawa, Canada, 9/2000
(c) 2000 ACM. ISBN 1-58113-195-X.

44

Permission to make digital or hard copies of part or all of
this work or personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.

WOSP 2000, Ontario, Canada
© ACM 2000 1-58113-195-X/00/09 ...$5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F350391.350403&domain=pdf&date_stamp=2000-09-01

connector semantics corresponds to the non deterministic
execution of both the above options.

The context-aware application that we consider uses as
computing platform a portable device (PD) with wireless
connections, and a server (SV) connected to a fixed network. In
our example, the “context” simply consists of the physical
position of PD; when PD is within a building, its position is
detected by a device (AB) co-located with SV, while it is
detected by a device (GPS) co-located with PD when PD is
outdoor. The application consists of three components, namely
AB, GPS and a monitor (MON) that periodically checks the
current PD position; to this purpose, MON must communicate
with AB, when PD is indoor, and with GPS when PD is outdoor.
MON may be located on both PD or SV; the two solutions may
have different impacts on the interactions cost. Its SA
description is as follows; for the sake of brevity, we only
report some components and corresponding connectors:

Componen ts
program MON at λ
var sent, received : bool; oldpos, newpos: position;
init λ = PD and sent = false and received = true and newpos
= null
do send_req: [sent = false ---> sent := t rue || oldpos :=
newpos]
[] get_pos: [t rue ---> received := t rue || sent := false ||
Check(oldpos, newpos)]

program GPS at λ
var pos: position; ready : bool;
init λ = PD and ready = false
do wait_req: [true ---> pos := Current_pos() || ready := true]
[] send_pos: [ready = true ---> ready := false]

…

C o n n e c t i o n s
MON-to-GPS: Mob_Comm(MON, GPS, MON.send_req,
 GPS.wait_req, void, void, GPSactive(), ?)

GPS-to-MON: Mob_Comm(GPS, MON, GPS.send_pos,
 MON.get_pos, GPS.pos, MON.newpos, GPSactive(), false)

…

The init proposition states the initial variables value.
MON-to-GPS and GPS-to-MON are instances of Mob_Comm
that model, respectively, a request sending to GPS, and a reply
from GPS. GPSactive() is a function that holds true when PD is
outdoor, and false otherwise. Note that condition M in GPS-to-
MON is set to false since our design choice is such that GPS can
never change location, while it is set to ? in MON-to-GPS.

2.2 Application dynamics
The goal of this step is to build a “representation” of the

application dynamics. Interactions cost can change
dynamically, due to location changes. Hence, the static
description of a SA (its “box and line” diagram) does not
contain enough information to perform an accurate evaluation
of interaction related attributes. To this purpose, we derive from
the SA description a labelled transition system (LTS), i.e. a
graph where each node represents a given application state
(e.g. components locations and internal state), and each arc
represents the execution of a given action (e.g. the transfer of a
value during an interaction). Each arc label contains

information about the cost of the corresponding action (e.g.
interactions between components that share the same location
can be considered to have a negligible cost with respect to
interactions involving communications through the network).
The derivation of the LTS from the SA description may be
performed automatically, using the “operational” semantics
outlined in the previous section. Figure 1 shows the LTS for our
example. In each state, we only report the location of MON (PD
or SV) and of PD (IND for indoor or OUTD for outdoor). As cost
measure we adopt the number of bytes transmitted over a
wireless link (r is the size of a request from MON, p is the size
of a reply from GPS or AB, and m is the size of MON when it
changes location); where the cost is not shown it is equal to
zero. Dashed arcs starting from a node represent the two
possible actions (mobility or no-mobility) corresponding to
the activation of the Mob_Comm connector with control
condition set to “?”. We call a node with these outgoing arcs a
decisional node.

PD,IND

PD,IND

SV,IND

PD,OUTD SV,OUTD

PD,OUTD SV,OUTD

SV,IND

p

pr

r

m

m

m

m

Figure 1 - LTS of the context aware application

2.3 Stochastic decisional model
The outgoing dashed arcs from a decisional node model a

non deterministic choice between two alternatives
(mobility/no-mobility). Our goal is to turn this non
deterministic choice into a deterministic one, where one of the
two alternatives is selected if it improves the considered
performance index. To this purpose we derive from the LTS a
Markov decisional process (MDP) [8]. States and transitions of
MDP correspond to nodes and arcs of LTS, respectively; the
reward to be associated to each MDP transition is given by the
cost label of the corresponding LTS arc; with regard to MDP
actions, only the MDP states obtained from decisional nodes
have two alternative actions, that correspond to selecting the
mobility or no-mobility option (with the corresponding cost).
To complete the MDP construction, we only need to attach
suitable probabilities to the process transitions. This is the
only step that cannot be performed automatically.

2.4 MDP simplification
The goal of this step is to alleviate the computational

problems caused by the state explosion. To this purpose, we
drop all the non-decisional states whose outgoing arcs have
cost equal to zero, and modify transitions among the remaining
nodes so that the new process is equivalent to the original one
(in the sense that the policy that optimizes the original MDP
also optimizes the reduced one). This reduction can be
performed automatically, but for space limits we do not report
the algorithm. Fig. 2 shows the simplified MDP for our
example (transition probabilities are not shown).

45

2.5 MDP solution
Solving a MDP means finding a policy that selects an

action in each state, so that the total accumulated reward is
optimized. In our perspective, if the obtained optimal policy
selects in some states the mobility option, this can be
considered as an indication that code mobility may represent an
effective style for the considered application. In our example
we get that code mobility is an effective option only if
r + p

m
≥max

2pio (pio + poi)

(1− poi)(pio + poi + 2piopoi)





,
2poi (pio + poi)

(1− poi)(pio + poi + 2piopoi)





,

where pio and poi are the probabilities that PD moves from

indoor to outdoor position, or from indoor to outdoor position,
respectively. In general, a symbolic solution could not be
feasible, and the solution must be performed numerically by
instantiating appropriately the model parameters, where each
instantiation defines a possible implementation scenario, so
that we can compare the impact of code mobility in different
scenarios.

PD,IND

PD,IND

PD,OUTD SV,OUTD

SV,OUTD

SV,IND pr

r

m
m

m

m

p

m

m

Figure 2 - Simplified MDP

Acknowledgements
Work partially supported by MURST project “Software
architectures and languages to coordinate distributed mobile
components”.

References
[1] S. Balsamo, P. Inverardi, C. Mangano “An approach to

performance evaluation of software architectures” in Proc.
Workshop on Software and Performance (WOSP ’98), Santa
Fe, New Mexico, Oct 12-16 1998

[2] L. Bass, P. Clements, R. Kazman, Software Architectures in
Practice, Addison-Wesley, New York, NY, 1998

[3] P.J. Brown, J.D. Bovey, X. Chen “Context-aware
applications: from the laboratory to the marketplace” IEEE
Personal Communications, vol. 4, no. 5, Oct. 1997, pp.
58-64

[4] L. Cardelli, A.D. Gordon “Mobile ambients” Foundations of
Software Science and Computational Structures (M. Nivat
ed.), LNCS 1378, Springer-Verlag, 1998, pp. 140-155

[5] M.-H. Chen, M.-H. Tang, W.-L. Wang “Effect of
architecture configuration on software reliability and
performance estimation” in Proc. IEEE Workshop on
Application-specific Software Engineering and Technology
(ASSET 98), Richardson, Texas, March 1998

[6] A. Fuggetta, G.P. Picco, G. Vigna “Understanding code
mobility” IEEE Trans. on Software Engineering, vol. 24,
no. 5, May 1998, pp. 342-361

[7] H. Grahn, J. Bosch “Some initial performance
characteristics of three architectural styles” in Proc.
Workshop on Software and Performance (WOSP ’98), Santa
Fe, New Mexico, Oct 12-16 1998

[8] D.P. Heyman, M.J. Sobel, Stochastic Models in Operations
Research, McGraw-Hill, 1984

[9] G.-C. Roman, P.J. McCann “An introduction to Mobile
UNITY” in Parallel and Distributed Processing (J. Rolim
ed.), LNCS 1388, Springer-Verlag, 1998, pp. 871-880

[10] M. Stemm, R.H. Katz “Measuring and reducing energy
consumption of network interfaces in hand-held devices”
IEICE Trans. on Communications (special issue on Mobile
Computing), 1997

[11] M. Wermelinger, J.L. Fiadeiro “Connectors for mobile
programs” IEEE Trans. on Software Engineering, vol. 24,
no. 5, May 1998, pp. 331-341

[12] L.G. Williams, C.U. Smith “Performance evaluation of
software architectures” in Proc. Workshop on Software and
Performance (WOSP ’98), Santa Fe, New Mexico, Oct 12-16
1998

46

