
COMPUTING PRACTlCES

Edgar H. Sibley
Panel Editor

Many contemporary user oriented applications require a combination of
attributes from both window and forms management systems. PANES was
developed as a tool to fill this niche by providing a simple, yet flexible tool
for both the moderately trained, as well as the more sophisticated
programmer, while allowing the development of user friendly, modeless
application software.

AUATOMY OF A COMPACT USER INTERFACE
DEVELOPMENT TOOL

JACK W. STOTT and JEFFREY E. KOTTEMANN

The development of a highly interactive, information
modeling system [8] necessitated the selection or con-
struction of a user interface development tool (UIDT).
Like many current applications, this modeling system
processes symbolic expressions and text as well as tra-
ditional data. Further, the UIDT must address com-
mand and control protocols in such a way that user
interfaces can be customized for particular applications.
A search of the literature and available products un-
covered several UIDT alternatives. These alternatives
can be categorized in two groups: forms managers and
window managers.

FORMS MANAGERS
Forms managers typically view the screen as a collec-
tion of data elements, for example, a screen form ver-
sion of an employee record. They give the programmer
the capability to define data input screens, validate in-
put data, process basic commands, and display results.
Forms managers can be grouped into three categories:

(1) Generalized, embedded forms managers. These are
usually implemented as language extensions, either
intrinsic to a language processor (an extension to the
compiler) [6, lo] or as sets of extrinsic routines linked
to programs at link edit time [l-3]. They usually in-
clude a set of functions to manage terminal input and
output, and also some functions that validate a set of
data types. These UIDTs aid programmers in the con-
struction of interfaces for data-oriented applications.

OOOOl-0762/66/0100-0056 $1.50 ACM

(2) Generalized, nonembedded forms managers. These
are front-end input processors (or filters) that collect
input and place it in an intermediate file to be used by
batch application programs. Examples of these can be
seen in [7] and [ll]. These UIDTs eliminate the need to
construct user interfaces for each application.

(3) Application-specific, embedded forms managers.
These are represented by those found in popular data-
base management packages, for example, RBase and
dBase. They function much like the generalized, em-
bedded UIDTs, except that they can only be used in
conjunction with the host packages. They may also
be used as filters or front ends like the generalized,
nonembedded UIDTs.

WINDOW MANAGERS
Window managers are usually implemented as part of
an operating-system environment. Sometimes they are
embedded in applications such as word-processing
packages. In the operating-system environment, a win-
dow is a logical view port for each job in the multitask-
ing environment; a screen is a physical window upon
which each logical window is mapped. Usually, the end
user can change the size and orientation of a logical
window to the physical window. Typically, only one
job is active at a time, such that opening a particular
window is comparable to activating that job. In some
windowing environments, the Macintosh, for instance,
the operating system’s window management routines
are made available to application programmers. The
programmers can then use windows in their applica-

56 Communications of the ACM Janua y 1988 Volume 31 Number 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F35043.35048&domain=pdf&date_stamp=1988-01-01

Computing Practices

tions for such purposes as pull-down menus and dia-
logue boxes. Dialogue boxes are, in essense, form win-
dows in which the end user can set task parameters.

INTEGRATING CONCEPTS FROM BOTH WORLDS
From the perspective of an application programmer,
two critical and contradictory aspects separate forms-
oriented and window-oriented UIDTs: flexibility and
complexity. Although forms managers are relatively
easy to learn and use, their overall support for develop-
ing interactive applications is quite limited. Window
managers are powerful tools, yet require assiduous
training. For example, Macintosh programmers must
know numerous internal details of the operating-system
environment, the object-oriented programming para-
digm, and debugging at the Motorola 68060 object-code
level.

Our primary goal was to provide both forms oriented
and selected window-oriented interface development
support. The relative simplicity of forms oriented inter-
face was to be maintained. The resulting UIDT, PANES,
satisfies these basic requirements. PANES has been suc-
cessfully used by moderately skilled programmers after
limited training. It has shown itself flexible enough to
be useful in a number of application areas that include
office automation, knowledge-based expert systems,
document management, and data processing. PANES
was originally implemented in Pascal on a Digital
VAX under VMS. Since then, it has been implemented
on microcomputers under MS-DOS and in C under
UNIX@. The basic nature of PANES is illustrated by
the list of requirements it was designed to satisfy
(see Figure 1).

MODEL APPLICATION
In order to motivate the general requirements and
characteristics of UIDTs such as PANES, we will simu-
late an application. The example is a KWIC-indexed
document-retrieval system that allows users to search
for documents by entering a series of keywords to be
used for matching document titles. Further, the user
may specify, via the menu, that the keywords are to
match the titles only if they appear (1) in any order,
(2) in relative order, or (3) in strict consecutive order
(e.g., the keywords dolphin and person will match the
title “A Dolphin Is Smarter than a Person” only under
the first and second ordering criteria). In addition to
perusing a database of documents, the user may create
a report that lists the current document information
and insert comments within the report.

In order to make the application user friendly, func-
tion keys are assigned to the various application
functions:

FKl: Activate’ the next user I/O window;
FKZ: Find the first or next matching document;

UNIX is a registered trademark of AT&T Bell Laboratories.

’ In this paper windows being activated means that they become ready to
accept user input. Only one window can be active at a time.

FK3: Print the current document information to a
report; and

FK4: Open a text input window to let the user enter
text to be written to the report-perhaps a re-
port heading or comments about the current
title.

After using FK4 the following functions become active:

FK4: (Used a second time) to confirm that the entered
text should be printed to the report; and

FK5: To cancel the display of the comment.

The screens for the KWIC application are shown in
Figures 2a and b. Notice that the screen is composed of
several windows. Each window serves a different pur-
pose and therefore behaves differently, as the following
explains.

l Windows (l), (2) (4) (6) (8) and (10) of Figure 2a and
window (12) of Figure 2b are label windows. Label
windows display labels, or any text, that describe
other windows or the entire screen. Once label win-
dows are displayed, the application never allows the
user to enter these windows.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

To provide window-oriented textual interfaces for indi-
vidual applications, where windows could be assigned
separate operational attributes and functions within
each application

To allow definitions of and provide management for data
and text, as well as menu windows and commands

To allow specification of the conditions under which the
user interface system should return control to the appli-
cation, including application-level command inputs as
well as a number of status conditions, such as buffer
overflows

To hide the application-to-user-interface-system func-
tional layers from users-that is, users should not need
to give one command to exit from the dialogue manager
and then another to initiate action in the application; per
above, the dialogue manager must then know what
commands should be passed up the line

To provide predefined functions and control protocols
for manipulating windows so that assorted applications
would have consistent user interfaces

Yet, to allow applications to easily override the user
interface system’s functions

To be hardware independent, assuming only an asyn-
chronous, ‘I-bit ASCII terminal with a minimum set of
terminal control commands (e.g., cursor positioning)
attached to an 8-bit per byte computer

To provide these capabilities in a manner that makes the
application development environment usable to moder-
ately experienced programmers, while also allowing
experienced programmers the utmost latitude to define
“renegade” types of windows and to access low-level
functions

FIGURE 1. Basic Requirements on a UIDS

]anuay 1988 Volume 31 Number 1 Communications of the ACM 57

Computing Prnctices

(1) Document query system

(2) Input keywords:

(3) PERSON
DOLPHIN

(4) Word matching criteria:

(5) Any order in title
Relative order
Strict order

(6) Matching document ID:

(7) O-12-3700035-60

(8) Matching document title:

(9) A Dolphin Is Smarter than a Person

(10) Abstract:

(11) Based on the volume of brain matter and the relative size of the medulla
oblongata, the dolphin perhaps has advanced facility for some activities that
are more advanced than those that humans may be able to accomplish. It seems

FIGURE 2a. Primary Screen for an Example Document Query Application

Document query system

Input keywords: Word matching criteria:'

PERSON
DOLPHIN

Any order in title
Relative order
Strict order

Matching docupent ID:

O-12-3700035-60

Matching document title:

A Dolphin Is Smarter than a Person

(12) Input user comment

(13) This article seems to be relevant to our current research.
Please route to Bob.

FIGURE 2b. Secondary Screen for an Example Document Query Application

58 Communications of the ACM January 1988 Volume 31 Number 1

l Window (3) is a user window used to input keywords.
Window (3) is active upon entry to the application or
can be activated by use of the FK 1 key. User win-
dows are used for general user input and output. In
this example, the application’s database management
system requires that the keyword tokens be entered
in a list. Therefore, the application must ensure that
each keyword is separated by a carriage return.

l Window (5) is a menu window used to specify the
matching criteria. Window (5) can also be activated
using the FK 1 key, The user may use the up and
down arrow keys to select an option, or hit A, a, R, r,
S, or s. After some keywords are entered into win-
dow (3) and a selection is made in window (~3, the
FK2 key may be used to find titles that meet the
given criteria.

l Windows (7), (g), and (11) are read-only windows
used to display information on the current matching
document. Window (7) displays the current document
identifier; window (g), the current document title;
and window (ll), a summary of the document. Since
the abstract in window (11) may be longer than fits
on the screen, the user may use FK 1 to select win-
dow (11) and then use the up and down arrow keys to
scroll through the remainder of the abstract.

l Window (13) of Figure 2b is a user window used to
accept a comment entry from the user to be written
to the report. Note that windows (12) and (13) overlay
windows (10) and (11). When the user strikes FK4,
windows (12) and (13) appear, and window (13) be-
comes active, allowing the user to enter a comment.

In this application the windows used are not an ex-
haustive set of the different types definable by using
PANES. Table I reviews these types and describes some
other basic types of windows. The example shows a
typical application for a LJIDT system to handle. Basic
requirements of the UIDT that surface here are (1) gen-
eral interface, (2) user-oriented characteristics, and
(3) programmer-oriented characteristics.

Computing Practices

General Interface Requirements
Many applications, as shown in the example, require
the UIDT to support forms whose fields act as windows.
As seen in the example, the fields are multiple line
fields (windows (9) and (11)) or field groups (window
(3)). The UIDT must be able to handle fields that have
separate operational attributes and functions. As in
the example, windows for data (including multivalued
fields), text, menus, and commands must be sup-
ported.

User-Oriented Requirements
Primary objectives of any user interface are ease of use
and consistent behavior within families of applications
(see [J]). Given a good UIDT, the latter requirement can
be fulfilled by merely using the UIDT for all applications.

Second, the application-to-UIDT functional layers
should be hidden from the users. In the example, for
instance, the user should not need to give one com-
mand to exit the UIDT procedure and then give the
FK2 command to initiate the application’s find action.
Rather, whenever FK2 is entered, a matching doc-
ument should be immediately displayed. In the
Smalltalk/Xerox Star [5] and later the Macintosh [9]
environments, this concept is part of a philosophy
termed modeless operation.

Programmer-Oriented Requirements
To reduce development cost, the UIDT should be easy
to use, yet support many variations of data, text, and
command windows. Also, the programmer must be able
to easily define conditions under which the UIDT pro-
cess should return control to the application, and the
UIDT must also return the command input as well as
any relevant status conditions. This requirement is re-
lated to the above user requirement. As the user strikes
the FK2 command, the UIDT process must both return
to the application and let the application know that it is
returning because of the command.

TABLE I. Some Basic Window Types Supported by PANES

Type Usage Content loading Special notes

Label (windows (1) (2) (4) Displays labels for other
0%. (81, (1 Oh and (12) of windows or titles for a
Figure 2) screen

Read only (windows (7)
(9) and (11) of Figure 2)

Displays help, program
messages, or application
documentation

Menustatic (window (5) of
Figure 2)

Menudynamic

User (windows (3) and (13)
of Figure 2

Displays alternatives for
application execution

Displays application
alternatives for user’s
choice

Used for general user input
and output

Application loads at program
initiation

Application loads at program
initiation, or from files at or
during run time

Application loads at program
initiation

Application or user loads
during application execution

User input or application
loads during execution from
files or other windows

User may not enter; may be
highlighted or boxed

User may not alter; may be
more text than fits in the
window, so must allow
scrolling

May be horizontal or vertical;
user may use cursor keys
to select

User may build a menu

Input may be filtered to allow
data edits

]anuary 1988 Volume 31 Number 1 Communications of the ACM 59

Computing Practices

The UIDT must also be flexible enough to allow pro-
grammers to override or redefine any of the UIDT func-
tions. For instance, given a UIDT function clear
current window, if the application has a window
with a large amount of critical text, the application
must be able to override that function to ensure that
the user does not accidentally erase the text.

The UIDT should be very easy to use for novice pro-
grammers, yet allow experts the utmost latitude in de-
fining renegade window types, and perform actions at
the lowest possible level. Finally, to make the system
portable, the UIDT should be as hardware independent
as possible.

INTERFACE CHARACTERISTICS AND
REQUIREMENTS
Understanding what an application might require from
a UIDT, the operations and control mechanisms sup-
ported by PANES can now be explained.

Editing in Windows
PANES provides two primary routines for applications
use:

(1) DISPLAYER: displays the current contents of a
window onto the screen; and

(2) EDITOR: performs the full-screen text input and
editing in any window on the screen.

To the user, PANES appears similar to common, full-
screen window-oriented text editors with such ameni-
ties as word wrap and function-key-controlled editing.
EDITOR has predefined commands that allow the user
to move the cursor up or down a line, move the cursor
to the right or left by character or word, move the
cursor to the top or bottom of the window text, find a
string, delete a character or word, or clear the entire
contents of a window. The application can bind the
invocation of these functions to any alternate key or
keys if desired.

Beyond these primary operations, the UIDT must also
“know” something about each type of window defined
by the application programmer. In PANES this defini-
tion involves the specification of restrictions on the
allowable user input (including command keys) when
the given window is active, the mapping of user input
(again, including command keys) to other keys, and
command and control passing protocols.

Restricting Input
In manv cases, the application would like to enforce
restrictions on the character set allowed as input to a
given window. These restrictions often apply to data
input; for example, in a window that may contain only
integers, the UIDT system should restrict input to the
characters O-9 and - (minus sign). An application may
also want to restrict the user’s use of the commands
embedded in the UIDT procedures; for example, the
application may want to disallow the user’s ability to
easily erase the entire contents of a window. To enforce
this, the application may restrict the use of the clear

60 Communications of the ACM

Window PANES EDITOR command in that window. Fi-
nally, the application will want to restrict the input of
all other characters and command keys not explicitly
allowed in the given window. Other exampl’es of input
restrictions are

label windows, which restrict all input (see windows
(l), (Z), (4), (6), (8), and (10) in Figure Za);
read-only windows, which allow only cursor move-
ment commands and the find command, and restrict
all other input (see windows (7), (9), and (11) in Fig-
ure Za);
menu windows, which allow only cursor characters
and the first characters of menu entries, and restrict
all other input (see window (5) in Figure ~a);
user windows used for strictly alphabetic names, which
allow the upper- and lowercase alphabet, a.nd PANES
text editor commands, but restrict all other input;
and
user windows used for specialized data elements, such as
a part number that uses only the characters A, D, J,
Q, and O-7, which allow only certain characters and
PANES text editor commands, but which restrict all
others.

Note that the programmer would also define which
application-level commands are allowable in each win-
dow.

Mapping Character Input
The application may also want to specify a mapping, or
conversion, of some inputs before they are processed by
PANES. Input character mapping is used to (1) enhance
user friendliness; (2) implement a more active form of
character restriction; (3) cope with difference.5 in termi-
nal environments; and (4) modify the behavior of
PANES, specifically, the editing commands. These uses
are exemplified in the following examples:

l Mapping restricted characters to related legal charac-
ters is utilized to improve user friendliness. For in-
stance, in a window used for eliciting a columnar list
of items in which each token entered must be sepa-
rated by a carriage return, the programmer might
specify that spaces be converted to carriage returns.
This feature is used in window (3) of Figure 2a.

l A similar function is mapping the letter o to the
number 0 for integer-type windows. This example
shows the notion of active character restriction. The
letter o is actually a restricted letter; however, in-
stead of merely ignoring the input, the application
tells PANES to assume what the user really meant to
input.

l Read-only windows may map the left-arrow charac-
ter to the up-arrow character, and the right-arrow,
carriage-return, and line-feed characters to the down-
arrow character, in order to implement a more flexi-
ble cursor movement.

l In terminal environments where there is bo-th a
DELETE and BACKSPACE key,the application could
map both of them to the backward character delete
function.

Ianuary 1988 Volume 31 Number 1

Computing Practices

l Modifying the PANES EDITOR commands can be
used to make the editor behave as a familiar word
processor. For example, control -X may be mapped
to DOWN-ARROW to emulate WORDSTAR’s cursor
movement scheme.

Basic Control Mechanisms
The control passing mechanism between the UIDT
process and the application should be transparent to
the user (or appear modeless). Since the UIDT receives
all inputs, even application commands, many UIDT sys-
tems require the user to give one command to exit the
UIDT level and then another to direct the application.
A better control mechanism would allow the UIDT
process to know the application commands, and upon
receiving one, return control to the application, passing
back the command. Upon regaining control, the appli-
cation would then act on the command.

To implement such a control mechanism, the appli-
cation defines a collection of keyboard commands that
are active at the application level. Then as the user,
who always appears to be active inside one window or
another, issues a keyboard command (strikes a control
or function key), the PANES EDITOR determines if
control should be returned.

THE CURRENT IMPLEMENTATION OF PANES
In developing PANES we desired a simple, unified win-
dow definition scheme that would capture the behav-
ioral characteristics of the various logical window types
given above. This is accomplished via definition of in-
put control tables.

Window Definition via the Input Control Table
Thus far, window types to be supported include labels,
various types of menus, and an assortment of read-only
and user input windows capable of restricting and map-
ping inputs. Further, the application must be able to
define its command keys, as well as override or rede-
fine PANES EDITOR commands when desired. The def-
inition of these various aspects is simplified and unified
when one considers that an entered character or se-
quence (e.g., an escape sequence generated by a func-
tion key) can be classified into one of four mutually
exclusive sets:

(1) a command to return to the application;
(2) a restricted character, to be ignored;
(3) a command to PANES; or
(4) a text character to be used as input to the window.

Also, the application may require an input to be con-
verted before determining which set the input belongs
to.

For implementation, each window’s definition in-
cludes a table that maps and then categorizes each
input. In PANES this table is called the INPUT-
CONTROL-TABLE (ICT). The ICT is a character
array, 256 bytes long, containing a value for each possi-
ble keyboard input. (Although the ASCII character set
defines only 128 characters, a low-level routine maps

function-key character sequences and other key se-
quences to the high-order values, 128-255. Control se-
quences, that is, function keys, may then be treated as
single-character input by PANES and the application.)
Each element in the ICT corresponds to one of 256
possible input characters or character sequences. Each
element position is given a value:

(11

(21

(3)

(41

RETURN-CODE (ASCII 255), if the input indicates
return of control (i.e., if ICT [ord (input) I =
RETURN-CODE, return control and the input to
the application);
RESTRICTED-INPUT (ASCII O),iftheinputis
illegal for this window;
the alternate value that an input is to be mapped
to (if the input is to be mapped); or
the same value as the input, if the input is to be
put into the window or is a PANES-level command
to be respected.

Using this simple map table scheme, all of the win-
dow types and requirements previously discussed can
be defined and implemented. For example, the ICT for
a read-only window would

l map the application commands to RETURN-CODE;
l mapthe UP-CURSOR and DOWN-CURSOR characters

to themselves;
l possibly map other characters to UP-CURSOR and

DOWN-CURSOR(e.g.,LEFT-CURSOR to UP-CURSOR,
RIGHT-CURSORtoDOWN-CURSOR,CARRIAGE-
RETURN~~DOWN-CURSOR); and

l map all other characters to RESTRICTED-INPUT.

The ICT for a menu window would

l map the application’s commands to RETURN-CODE;
l map the first character of each menu entry to them-

selves, or to RETURN-CODE (the first method re-
quires the user to enter a choice and then hit an
additional command to initiate action; the second
only requires the user to hit the first character of the
command to initiate action);

l mapthe UP-CURSOR and DOWN-CURSOR characters
to themselves;

l possibly map other characters to UP-CURSOR and
DOWN-CURSOR(e.g.,LEFT-CURSORtoUP-CURSOR,
RIGHT-CURSORtoDOWN-CURSOR,CARRIAGE-
RETURN~~DOWN-CURSOR); and

l map all other characters to RESTRICTED-INPUT.

For a text input window, the ICT would

l map the defined return control characters to
RETURN-CODE;

l map all PANES commands and printable characters
to themselves; and

l map all other nonprinting characters not used as
commandsto RESTRICTED-INPUT.

Any of the previously mentioned variations can also
be implemented. If a window should only receive nu-
meric input, all alphabetic and punctuation characters

Ianuary 1988 Volume 31 Number 1 Communications of the ACM 61

Computing Practices

RETURN-FLAG := false;
BUFFER-OVER-OR-UNDER-FLOW := false; I
repeat

IN-CHAR := GET,CH; I

MAPPED-CHAR := INPUT,CONTROL-TABLE[IN-CHAR]; ;
if MAPPED-CHAR = RETURN,CHAR

RETURN-FLAG := true [returns control to
application)

else if MAPPEr.uxAR = RESTRICTBD-CHAR
BEEP (an illegal character for this window)

else if MAPPED-CHAR in [EDITOR-COMMANDS)
PROCESS-EDITOR,COMMAHR~

[These commands include moving the cursor up
or down a line, moving the cursor up or down
a window, moving the cursor right or left's
character, moving the cursor right or lefi a
word, moving the cursor to the top or bot&mr
of the wind&@,or text, finding a string, /
deleting'& ~~~~~~~~~~~r word, and clearing
the ent~~~~~~~~~~~~~~~$~ a window.] ,

else
* >" >.%,>', 4 ~' >y;g: , _ ‘, <+,

if
A~~-C~ARA~~~~~~~~~~~

BUFFER,OVER-o~vdb~~~~~~W and \

(Rmmkmi-f3hcK ox 'R&TURN-~N-F~RWARD) the4
RETURN-FLAG := TRIJE; 4 I

until RETURN-FLAG; ,
,

FIGURE 3. EDITOR Top-Level Algorithm for Processing Input with the ICT

(* Static memory buffer descriptors *)
first-buffer-position : integer;
last-buffer-position : integsx;
maximum,logical~lines : integer;

(* Dynamic memory buffer descriptors *)
current-buffer-position : integer7
current-end-of-text : integek-;
current-logical-lines : integer;

(* Static screen partition descr$ptors *)-
top-row : ii%tegeKi

left-column : integer+
number-of-rows : .iXTt+pEi
number-of-columns : integer;

(* Dynamic screen partition descriptors *)
cursor-row : integer;
cursor-column : integer;

(* DISPLAYER control parameters *)
draw-box : boolean;
is-Vmenu : bodltaan j
is-Hmenu : boolean;
null-character : ChaXi

('* EDITOR control parameters *)
reset-to-top : boolean;
return-on-back : boolean;
return-on-forward : boolean;

input-xontrol-table : packed i
array[0.,2$f]
of'eher;

FIGURE 4. Window Description Parameters for PANES

would be mapped to RESTRICTED-INPUT. If a win-
dow should be a columnar list, SPACE would be
mapped toCARRIAGE-RETURN.

Also, all PANES commands can be redefined or dis-
abled by changing their values in the ICT. This allows
substantial flexibility for the application prog.rammer to
modify PANES to resemble any environment with
which the users are familiar. PANES functions can be
modified by experienced programmers as follows: The
commands of issue are made to map to RETURN-CODE;
and application-specific routines are written and called
when these commands are entered. Figure 3 shows the
main procedure of the PANES EDITOR.

Miscellaneous Window Definition Parameters
In PANES the memory buffer is stored as a character
array (in our Pascal implementation, PACKED AR -
RAY[n . . m I OF CHAR). Each application usually de-
fines one large memory buffer to hold the contents of
all windows. (Although not required by PANES, using
one buffer eliminates the need to declare and manage
large numbers of different buffers.] DISPLAYER dis-
plays text and data from this buffer, and EDITOR man-
ages the placement of data and text into the buffer as
well as managing control functions.

The two types of parameters that describe the mem-
ory buffer and screen partitions are the static position
indicators and the dynamic status indicators. The first
describes where in the buffer and on the screen the

62 Commutlications of the ACM]anuary 1988 Volume 31 Number I

Computing Practices

window resides, and the second describes the current
state of the window. See Figure 4 for a list of these
parameters, and Figures 5a and b for examples of their
use.

In addition to the memory and screen parameters,
and the ICT, a number of other parameters control mis-
cellaneous aspects of PANES. They include the Boolean
variables that determine whether or not to draw a box
around a window, highlight the current line (used
mainly for menus), reset the cursor to the top of a
window upon (re)entry, and return control if the user
moves past the beginning or end of the text of the
window. These last two parameters are mainly used
when there is more information than fits in the buffer
space. Finally, a parameter specifies the character used
to display instead of using spaces (e.g., underscores to
indicate empty space).

THE PANES SUPPORT TOOLS
Window definition and instantiation involve loading
text such as label values in buffers, setting and chang-

ing parameters, and initializing ICTs. To aid the appli-
cation programmer, tools were created to eliminate the
tedium connected with defining windows, storing their
definitions, and initializing interfaces. The primary
support tool is the PANES SCREEN-DEFINER. This
tool allows the application programmer to interactively
prototype a screen layout. SCREEN-DEFINERacts
very much like an interactive editor-indeed it uses
EDITOR and DISPLAYER--to edit existing and allow
full-screen creation of new screen layouts.

From the above descriptions of parameters and ICTs,
it would seem that this definition is a time-consuming
process. Using the concept of logical window types
described under “A Model Application,” however,
SCREEN-DEFINER can set the values of many of the
window parameters and create an initial ICT based on
the logical window type-label, menu, read-only, or user.
The programmer may then alter any of these default
values to add any of the variations discussed earlier.

The output of SCREEN-DEFINER is Pascal code for
the declarations and procedures that define and initial-

current-buffer-position= 14

\
current-end-of-contents=19

EMSNAMEAdam Jackson AGE43 DESCRIPTIONAdam is th . .

A first-buffer-positlon = 8 last-buffer-position = 27

FIGURE 5a. Values of Memory Buffer Parameters for a Sample Window

Adam Jackson AGE 43
I

\

:.“::ETi:h - -., -“!

, t
number-of-rows = 1

number-of-columns = 30 1

i

I
DESCRIPTION Adam is the president of ABSees, Inc.

i

FIGURE 5b. Values of Screen Partition Parameters for a Sample Window

January 1988 Volume 31 Number I Communications of the ACM 63

Computing Practices

Choose a program
template

t&SCREEN-DEFINER
Parameters describing

buffer and screen
I

to prototype a new - partitions for all
M Initial program

screen layout

L-

windows

(used at compile time)

Screen definition file

&k32d at run time)

/ v
Prdram customization

;)nd modification

~ I
Pinal program

FIGURE 6. Using the PANES Support Tool Environment

begin (main programj
DONE := false; I

DLSPLAYER(1, 11, WINDOW-PARAMETERS, WINDOW-BUFFER);
CURRENT-WINDOW := 3;
repeat

EDITOR(WINDOW-BUFFER, WINDOW_PARAMETERS(CURRENT_WINDQW),
RETURN-STATUS, RETURN-fNPUT);

case RETURN-INPUT of
FKl: Set CURRENT-WINDOW to next entexable window;
FK2: FIND-FIRS%NEXT;

{This procedure uses the contents of windows (3) and (5) to
search the database and fill windows (7), (91, aed (ll).]

FK3: PRINT-bOC,fNFO;
FK4: begin

DISPLAYER(1.2, 13, WINDOW-PARAMETERS, WINDOW,BUFFQR);
EDITOR(WINDOW-BUFFER, WI&?DOW.-.PARAMFTERS 1131, RETURN-STATUS,

RETURN,INPUT);
case RETURN-INPUT of

FK4: PRINT-DOCLNFO;
[This procedure prints window (13) to a report.)

FK5: (nullj;
end;
ERASE-WINDOWS(l2, 13, WINDOW-PARAMETERS);
DISPLAYER(10,
end;

11, WINDOW-PARAMETERS, WINDOW-BUFFER);

CONTROL-E: DONE := TRUE;
end;

until DONE;
end; {main program]

FIGURE 7. The Main Procedure for an Example Document Query Application Using PANES

64 Connnunications of the ACM January 1988 Volume 31 Number I

Computing Practices

WNdt the application~program d&s;

Program initialization; DISPLAYER displays windows (l)-(11)
on the terminal screen;

Activate window (3) by setting CURRENT-WINDOW to 3 and Input several keywords into window (3); Use FK I to activate
calling EDITOR; wait for user input . . . window (5).

Because FKI is defined as a return character, EDITOR returns
control to the main procedure; control is passed to the FK 1
label of the CASE statement where CURRENT-WINDOW
is changed to 5 and ED I TOR is called again; wait for user
input . . .

Select matching criteria by using cursor keys or entering the
first character of the desired choice; use FK2 to find the first
document that meets the criteria.

Again, as FK2 is defined as a return character, EDITOR re-
turns control to the main procedure; control is passed to the
FK~ label of the CASE statement where a database query
routine is called to get the first title and insert it, to get the
document ID and abstract into their respective windows, and
to call DISPLAYER to display their new contents; EDITOR is
called again; wait for user input in window (5) . . .

Change the matching criterion; use FK~, repeating the last
program Step, or use FK 1 twice.

CURRENT-WINDOW is now 11; wait for user input . Use the cursor keys to scroll up and down through a large
abstract; finally use FKl,FK2, FK3, or FK4, or use FKl twice

Using FK 1 twice will make window (3) active again . . Use the EDITOR's editing capabilities to change the current
keywords; use FK 1 or FK2, or use FK4.

Control is returned to the main procedure, and the FK4 label
of the CASE statement is executed where DISPLAYER over-
writes window (10) and (11) with windows (12) and (13) and
savesthe CURRENT-WINDOW in SAVE-WINDOW;EDIT~R is
called with window (13) active; wait for user input . . .

Enter text of a comment to be included in the report; use FK4
again.

Control is returned to the main procedure, and the FK4 proce-
dure is executed to print comments to the report; DISPLAYER
overwrites windows (12) and (13) with windows (10) and (11);
EDITOR is called with the SAVE-WINDOW active; wait for user
input. . .

Use FK3.

Control is returned to the main procedure, and the FK3 proce-
dure is executed; the current title, document ID, and abstract
are written to a report file; Control is returned to EDITOR with
the CURRENT-WINDOW still active; wait for user input . . .

Use FK~ or FK~.

FIGURE 8. Walk-Through of an Example Document Query Application

ize parameters. SCREEN-DEFINER also produces a
screen definition file so that a window definition may
be edited later. Finally, a summary report of the screen
definition is prepared. The role of SCREEN-DEFINER
is summarized in Figure 6. Another version of
SCREEN-DEFINER is application callable and will
store parameter values in definition files, This feature
allows applications to bind screen definitions at run,
rather than compile, time. Observe, however, that,
since applications can manipulate the definitions dur-
ing execution, the definitions are never strictly bound.

At a lower level, application programmers have com-
plete access to the window definition record and the
library of routines upon which PANES is built. Though
application programmers need know very little about
the window definition parameters to use PANES, the
parameters are directly available to the application, al-
lowing the application to dynamically change attributes

of the window at any time. This approach gives pro-
grammers both ease of use and a high degree of flexibil-
ity. The PANES software library also gives the program-
mer access to a multitude of string and screen handling
tools that can be used to manipulate the buffer con-
tents.

THE EXAMPLE PANES APPLICATION REVISITED
Using the main line code in Figure 7, the operation of
the example application given under “A Model Appli-
cation” will be explained.

After initialization procedures, the application, using
DISPLAYER, displays the screen as shown in Figure Za,
and then activates window (3) by calling EDITOR with
CURRENT-WINDOW equal to 3. The user may now en-
ter one or more keywords. Using FK~ the user moves to
window (5). Since FK 1 is defined as a return character
for window (3), EDITOR returns control to the applica-

January 1988 Volume 31 Number 1 Communications of the ACM 65

Computing Practices

tion, whichexamines RETURN-CHARACTER~~~~~
case statement and changes the currently active win-
dow to window (5). The user may now enter a match-
ing criterion, or use the default already shown in the
window. The user now hits FK2, the cofnmand to find
the first document title. Again, since FK2 is defined as
a return character, control is returned to the applica-
tionthatexamines RETURN-CHARACTER~~~~~ case
statement and calls the FIND-FIRST-NEXT applica-
tion procedure. This procedure finds the first docu-
ment, fills in the buffer area for windows (7), (91, and
(ll), and calls DISPLAYER, which displays these win-
dows. Control returns back to the application, which
calls EDITOR, still with window (5) active. The user
may now hit FK~ once or twice to activate window (9)
or (II), respectively, and scroll through a lengthy title
or documentation.

Suppose, at this point, the user wants a report of the
current title, but first wants to enter a comment. Hit-
ting FK4 displays and activates windows (12) and (13)

as shown in Figure 2b. The user enters his or her com-
ment and then hits FK4 again to print the comment (or
FK~ to cancel the printing). Windows (10) and (11) are
then redisplayed, and the user is returned to the win-
dow that was active before the printing operation.
Hitting FK3 causes the document information to be
printed. Figure 8 outlines an expanded scenario.

CONCLUSIONS
PANES offers three levels of use: For standard applica-
tions, a simple template, similar to that of Figure 7, is
easily understood and modified by moderately experi-
enced programmers. For nonstandard applications, new
templates can be written, and finally, for very sophisti-
cated applications, all of the parameters and lower level
routines of PANES can be accessed.

In the original implementation of PANES, we defined
window types as an enumeration of available window
types,such as LABEL,USER-ANY,USER-NUMERIC,
USER-ALPHA, and MENU. Our original intent was to
make window definition easier for the programmer by
typing windows in this manner. Instead of windows
being defined by a few attributes and their ICTs, the
proceduresin EDITORIAL DISPLAYER“~~~~" specif-
ically about each predefined window type. We quickly
found, however, that there were a large number of dis-
tinct window types with many variations, and that
each new type required new definition parameters and
management routines. The more recent ICT approach
has proved to be more succinct and robust. By defining
windows in this fashion, programmers have the flexi-
bility to invent “renegade” window types that might not
otherwise be allowed. So that PANES did not lose the
simplicity of the original typing approach, the interac-
tive SCREEN-DEFINER was created to allow windows
to be defined by choice from a menu of commonly used
window types. This acts as a buffer between program-
mers and the details of window definition.

PANES has proved to be surprisingly easy to learn

and use. Given the support tools such as SCREEN-
DEFINER,~~~ application template, and the options of
three levels of use, PANES has been used effectively by
programmers with little training and only a few months
of programming experience. It has also proved useful in
implementing fairly sophisticated applications in var-
ious areas. PANES has been used to implement user
interfaces for applications in the areas of office automa-
tion, knowledge-based (expert] systems, database and
document-base management systems, as well. as run-of-
the-mill data processing. PANES joins the concepts of
window-oriented and forms-oriented management to
provide a flexible system with which prograrnmers can
readily implement user interfaces in a varietyy of appli-
cation domains.

REFERENCES
1. Arciszewski, H.. and Van Gasteren, E. P/CL: A flexible input pro-

cessor. Softw. Pratt. Exper. 14. 12 (Dec. 1984), 1147-1141%
2. Bass, L.J. A generalized user interface for applications programs (11).

Commun. ACM 28, 6 (June 1985),617-627.
3. Digital Equipment Corporation. Introduction to VAX-11 FMS. Rep.

AA-L318A-TE. Digital Equipment Corporation, Maynard, Mass.,
Jan. 1983.

4. Draper, S., and Norman, D. Software engineering for user interfaces.
In Proceedings of the 7th International Conference on Software Engineer-
in,q (Orlando, Fla., Mar. 26-29. 1984). IEEE Computer Society, Los
Angeles, Calif.. pp. 214-220.

5. Goldberg, A. Smalltalk-80: The Interactive Programming I?nvironment.
Addison-Wesley, Reading, Mass., 1984.

6. IBM. CICS/VS version I systems/application design guide. SHZO-
9025, IBM. Available through IBM branch offices.

7. Jacky, J.P., and K&t, I.J. A general purpose data entry program.
Commun. ACM 26, 6 (June 1983). 409-417.

8. Konsynski, B.. Kottemann, J.. Nunamaker, J., and Stott I. PLEXSYS-
84; An integrated development environment for information sys-
tems. 1. Manage. I?$ Syst. I, 3 (Winter 1984-1985), 64-104.

9. Rose, C.. and Hacker, B. Inside Macintosh. Vol. 1. Addison-Wesley,
Reading, Mass., 1985.

10. Rowe, L., and Sheens, K. Programming language constructs for
screen definition. IEEE Trans. Softw. Eng. SE-g, 1 (Jan. 1!)83). 31-39.

11. Wartik, S.P. and Penedo, M. Fillin: A reusable tool for form-oriented
software. IEEE Softw. 3, 2 (Mar. 19861, 61-68.

CR Categories and Subject Descriptors: D.2.2 [Software Engineer-
ing]: Tools and Techniques--user interfaces; H.1.2 [Models and Princi-
ples]: User/Machine Systems

General Terms: Human Factors
Additional Key Words and Phrases: Display system, screen manage-

ment, user dialogue

Received 12/86; revised 7/87; accepted 5/87

Authors’ Present Address: Jack W. Stott and Jeffrey E. Kottemann, Dept.
of Decision Sciences, University of Hawaii, 2404 Maile Way, Honolulu,
HI 96822.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

66 Communications of the ACM January 1988 Volume 31 Number 1

	jan0002A.pdf
	jan0007B.pdf
	jan0008A.pdf
	jan0008B.pdf
	jan0009A.pdf
	jan0009B.pdf
	jan0010A.pdf
	jan0010B.pdf
	jan0011A.pdf
	jan0011B.pdf
	jan0012A.pdf
	jan0012B.pdf
	jan0013A.pdf
	jan0013B.pdf
	jan0014A.pdf
	jan0014B.pdf
	jan0015A.pdf
	jan0015B.pdf
	jan0016A.pdf
	jan0016B.pdf
	jan0017A.pdf
	jan0017B.pdf
	jan0018A.pdf
	jan0018B.pdf
	jan0019A.pdf
	jan0019B.pdf
	jan0020A.pdf
	jan0020B.pdf
	jan0021A.pdf
	jan0021B.pdf
	jan0022A.pdf
	jan0022B.pdf
	jan0023A.pdf
	jan0023B.pdf
	jan0024A.pdf
	jan0024B.pdf
	jan0025A.pdf
	jan0025B.pdf
	jan0026A.pdf
	jan0026B.pdf
	jan0027A.pdf
	jan0027B.pdf
	jan0028A.pdf
	jan0028B.pdf
	jan0029A.pdf
	jan0029B.pdf
	jan0030A.pdf
	jan0030B.pdf
	jan0031A.pdf
	jan0031B.pdf
	jan0032A.pdf
	jan0032B.pdf
	jan0033A.pdf
	jan0033B.pdf
	jan0034A.pdf
	jan0034B.pdf
	jan0035A.pdf
	jan0035B.pdf
	jan0036A.pdf
	jan0036B.pdf
	jan0037A.pdf
	jan0037B.pdf

