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In this article, we propose a computationally efficient iterative algorithm for proper orthogonal decomposition
(POD) using random sampling based techniques. In this algorithm, additional rows and columns are sampled
and a merging technique is used to update the dominant POD modes in each iteration. We derive bounds for
the spectral norm of the error introduced by a series of merging operations. We use an existing theorem to
get an approximate measure of the quality of subspaces obtained on convergence of the iteration. Results on
various datasets indicate that the POD modes and/or the subspaces are approximated with excellent accuracy
with a significant runtime improvement over computing the truncated SVD. We also propose a method to
compute the POD modes of large matrices that do not fit in the RAM using this iterative sampling and merging
algorithms.
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1 INTRODUCTION

Proper orthogonal decomposition (POD), also known as Principal component analysis
(PCA) or Karhunen-Loeve transform is a dimensionality reduction technique used in a variety
of applications including information compression, pattern mining, clustering and classification,
facial recognition, missing data estimation, data-driven modeling, and Galerkin projections. PCA
aims at finding an optimal set of basis vectors that captures energetically dominant features of
the dataset. These basis vectors are also referred to as eigenfeatures or POD modes or principal
directions/components (PCs). The assumption is that a few of these modes are sufficient to capture
all significant features of the dataset i.e., the data is highly correlated and inherently low rank. In
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many of these cases, the dataset is also large, often distributed over several computers and dense.
The two methods commonly used to compute POD modes are via (a) eigendecomposition of AT A
and (b) SVD of A. In both cases, a full decomposition is expensive and approximate methods are
used to obtain the dominant modes. In this article, we explore the use of random sampling based
techniques to obtain the POD modes accurately and in a computationally efficient manner. The
way our data is arranged, these modes are the left singular vectors of the data matrix.

We use the following notation throughout the article, unless otherwise specified. Lower case
letters are used to denote scalars. Lower case bold-face letters are used to denote a vector. Upper
case letters are used to denote a matrix. The ith element of vector a (bold font) is denoted as a;
(non-bold font). The element in the ith row and jth column of the matrix A is denoted by a;;.
a' denotes the ith row vector and a; denotes the jth column vector of matrix A. Ay denotes the
best rank-k approximation of a matrix A and the approximation to Ay is denoted using tilde, as
Ap. Let A = UkaVkT and A, = Ukikf/]g be the SVDs of Ay and Ay. If A is obtained by mean
centering rows of the data matrix, then Uy and Uy, are the accurate and the approximate principal
components (PCs or POD modes), respectively. ||A||, denotes the p norm of matrix A. A is assumed
to be an m X n matrix.

Algorithms that approximate Ay can be classified as random projection, random sampling based
algorithms or a combination of both. Random projection based algorithms have a multiplicative
error bound [Halko et al. 2011a; Sarlos 2006]. They have been used for PCA in Erichson et al. [2017],
Halko et al. [2011b], Nguyen et al. [2009], and Rokhlin et al. [2010] with algorithmic optimizations
to improve accuracy and numerical stability [Erichson et al. 2019; Gu 2015; Li et al. 2017; Rokhlin
et al. 2010] and with out-of-core modifications in Bose et al. [2019] and Halko et al. [2011b] for
large matrices. Yamazaki et al. [2017] use random projections to compute the SVD and random
sampling (of rows) of additional data to incrementally update the SVD. Drineas and Mahoney
[2016] also use a combination of projection and sampling techniques, where projection is used to
precondition the matrix so that subsequent uniform sampling works well.

Random sampling methods are of two types: those that sample elements of the matrix and those
that sample columns/rows of the matrix. The motivation behind sampling elements [Achlioptas
and McSherry 2007] from the matrix is to make the matrix sparser, thereby reducing the time
taken to compute SVD of the matrix. Sampling columns/rows is usually done using (a) uniform
probability [Drineas et al. 2003; Yamazaki et al. 2017] (b) leverage scores [Cohen et al. 2015; Drineas
et al. 2008; Li et al. 2013; Yamazaki et al. 2017] (c¢) column and/or row norms [Drineas et al. 2003,
2004, 2006; Frieze et al. 2004]. In all three cases, error bounds are derived assuming sampling
is done with replacement. Uniform and row/column norm based sampling have additive error
bounds, while leverage score based sampling has a multiplicative error bound. However, leverage
score based sampling is computationally more involved since it requires an estimate of the singular
vectors. While row/column norm based sampling require a maximum of two passes over the data to
get the sampling probability distribution, uniform sampling requires none. But it can be inefficient
as it is equally likely to sample unimportant columns or rows, as for example, zero columns/rows.

The results of the experimental evaluation done by Menon and Elkan [2011] indicates the
column norm sampling method has low run times, with accuracies well below the error bounds
for standard datasets. Additionally, random sampling of columns/rows has several advantages—it
retains the sparsity of the matrix and is easily amenable to incremental improvement.
Multiplicative error bounds using row/column norm based sampling can be obtained using
adaptive sampling, which has several rounds of sampling based on row/column norms [Deshpande
et al. 2006; Deshpande and Vempala 2006].

In this article, our focus is to obtain POD modes of large datasets accurately and in a
computationally efficient manner using random sampling based techniques. We evaluated the
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performance of sampling algorithms proposed in Drineas et al. [2006]. Even with tight error
parameters, the top k POD modes computed using these sampling algorithms as well as the
subspace spanned by these vectors have significant errors. To improve accuracy, we propose an
iterative technique in which additional rows and columns are sampled and the dominant POD
modes are updated using a merge-and truncate (MAT) operation [Vasudevan and Ramakrishna
2017] in each iteration. The iteration converges when the angle between the current and updated
modes is less than a threshold. We also derive bounds for the spectral norm of the error introduced
by a series of MAT operations. We use an existing theorem to get an approximate measure of
the quality of subspaces obtained after convergence. Results on various datasets indicate that the
POD modes and/or the subspaces are approximated with excellent accuracy with a significant
runtime improvement over computing the truncated SVD. Using this iterative algorithm, we also
demonstrate a method to compute POD modes of large matrices that do not fit in the RAM of the
system.

The article is organized as follows. In Section 2, we discuss a few relevant sampling algorithms
found in literature and their drawbacks. This motivates the need for an algorithm with more
efficiency and better accuracy. Section 3 contains the proposed iterative algorithm, the error
bound for MAT operations and the quality measure. In Section 4, we discuss the results of these
algorithms as applied to different datasets. Section 5 concludes the article. Appendix A contains the
experimental results for the datasets obtained using row/column norm based sampling algorithms
(LTSVD, CTSVD) proposed in Drineas et al. [2006].

The following datasets were used for testing all the algorithms.

(1) Faces data from Cambridge [2002], a collection of 400 images from 40 subjects, each of size
112 % 92 giving 400 images of dimension 10,304 each. The matrix is of size 10,304 X 400. This
dataset will be referred to as Faces dataset in the article.

(2) Velocity vector data of a flow generated using a CFD simulation on a grid of size 257 X 257.
The snapshot vectors are of dimension 132,098 and there are 1,024 of them giving a matrix
of size 132,098 X 1,024. It will be referred as Vop

(3) 2414 images of 38 subjects cropped to show only the face of the subject in different
illumination conditions from Lee et al. [2005]. The images are of size 192 X 168 giving 2414
images of dimension 32256 each. Therefore, the matrix size is 32,256 X 2,414. This dataset is
referred to as cropped Yale faces (CYF).

(4) Faces data from Georghiades et al. [2001], a collection of 16,128 images from 28 subjects in
different poses and illumination conditions. 18 of the 16,128 images in the database were
discarded since they were corrupted. Each image is of size 480 X 640. We have 16,110 images
of dimension 307,200 each organized as a 307,200 X 16,110 matrix. This dataset is referred to
as Yale faces (YF).

All the datasets are mean-centered row-wise. The principal components are the left singular
vectors. It is seen that all the datasets have more rows than columns (“tall and thin”). The first
three datasets are small and used for validation of the algorithms. The last dataset is large and the
mean-centered data requires 40GB of RAM.

2 EVALUATION OF EXISTING SAMPLING ALGORITHMS AND MOTIVATION

Algorithms to compute low rank approximations of a matrix using sampled columns
(LTSVD)/rows and columns(CTSVD) have been proposed in Drineas et al. [2006]. The sampling is
done with replacement and the sampled rows and columns are scaled to preserve the Frobenius
norm of the matrix. For both algorithms, the authors show that bound for the error in the rank-k
approximation

1A = GO Al < 1A = Agll + ellAll, (1)
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holds with a probability of at least (1 — §). The sampling probability of the ith column, p; and the
number of columns sampled, ¢, in LTSVD is
_ |a;|?

,= A4 @)
LTV

¢ = 4k(1 + 4/8log (1/8))?/€%. (3)

In the case of CTSVD, the sampling probabilities for columns and rows (p; and g;) are
la;|® |d|?

= —F, q] = —F,
AIIZ I1DI1%

Here, D is the matrix containing the sampled and scaled columns. The number of rows and
columns sampled (c and w) that need to be sampled are

Di (4)

¢ =w = Kk*(1+ flog (2/8))%/€*, (5)

€ and ¢ are the error parameters and the failure probability that need to be set. An experimental
evaluation of the algorithm by Menon and Elkan [2011] concluded that, in practice, the error is
much lower than the bound given in Equation (1).

In this article, our focus is accurate computation of the principal components, which are the
left singular vectors. Therefore, we implemented the two algorithms in order to evaluate its
performance with respect to the error in the singular vectors. In order to evaluate the accuracy of
the modes, we used the following metrics:

(1) The angle between the accurate and approximate left singular vectors (6; = cos_l(uiTzZi)),
denoted by mode angle.

(2) The principal angles between the rank-k subspaces (¢;). This is computed as the inverse
cosine of the singular values of the matrix UkT Uy [Bjorck and Golub 1973].

The pseudo-codes for our implementation and the detailed results are included in Appendix A. A
summary of the results is as follows.

(1) When k (and hence number of columns sampled) is small, the error in the singular values
can be as high as 20% for some datasets. For larger values of k, this error is of the order of
5% or less. (see Figure 8 in Appendix A).

(2) There is a large error in the computed POD modes. As seen in Figure 9, if the mode angle is
greater than about 10°, the POD modes have erroneous features. The mode angles obtained
using these algorithms are as large as 80° in some cases (see Figure 10). As expected, the
accuracy of the dominant subspaces is better, with principal angles between subspaces less
than 40° in most cases (see Figure 11). This large error occurs because each column is scaled
by a factor that depends on the column norm. While this preserves the Frobenius norm, it
tends to distort the subspace spanned by the columns. There is no significant improvement
in accuracy, even when the error parameters are tightened.

One major problem with the algorithms is that, it is hard to a priori fix the values of the error
parameters € and J (see Equations (3) and (5)). Some of these issues are resolved by the adaptive
sampling algorithm proposed in Deshpande and Vempala [2006]. This algorithm also has a tighter
multiplicative error bound. It is based on approximate volume sampling, which essentially involves
multiple rounds of row sampling. In each round, the probability of picking a row is proportional
to the squared distance from the span of previously sampled rows.

The steps involved in the algorithm are as follows:
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(1) Sample k rows from A based on the approximate volume sampling (see [Deshpande and
Vempala 2006] for details) and compute the basis, Q, spanning these rows.

(2) Find the space orthogonal to the space spanned by these basis vectors, E = A — AQQT.

(3) Sample s rows from A based on row norms of E and compute Q, the basis spanning all
sampled rows.

(4) Repeat from (2) for (k + 1) log,(k + 1) times.

In each round 2k rows are sampled, except for the last round where 16k/e rows are sampled. For
k =10 and € = 0.5, we would need 38 rounds of sampling and 1060 rows will be sampled to find the
basis. Once the iteration is over, Q is an approximation to the basis for the row space. To obtain the
approximate left-singular vectors, we need to additionally find the SVD of AQ. For the V,p dataset,
we see that AQ is approximately the same size as A and it is larger for the Faces dataset (for which
you anyway cannot get more than 400 basis vectors for the column space).

The advantage of this method is that (a) the error bound is multiplicative and (b) it directly
approximates the dominant left and right subspaces. The sampled rows are not scaled, thus giving
a better approximation to the dominant right singular vectors.

The algorithm can be made more efficient if (a) there is some pruning of basis vectors in Q in each
iteration, depending on whether it belongs to the dominant subspace or not and (b) computation of
E = A— AQQT is avoided. Since the memory required by AQQ7 is the same as A, the step becomes
inefficient when the matrix sizes are large.

3 PROPOSED ITERATIVE SAMPLING ALGORITHM (ISMA)

In our algorithm, for improved computational efficiency and accuracy, we would like to have
several rounds of column or column and row sampling rather than just row sampling. More
importantly, in each round, we would also like to prune the basis vectors that are not in
the dominant subspace. We would like to stop the iteration when additional sampling does not
improve the quality of either the modes or the subspace spanned by the modes. All sampling is
done with replacement and duplicates are removed.

We use the following steps in our iteration.

(1) Sample a set of columns from A based on column norms. Optionally, also sample rows.
We use Equations (3) and (5) to estimate the number of columns and rows to be sampled,
respectively. Compute SVD of the sampled matrix. Truncate to get the dominant POD modes.

(2) From the remaining columns, sample an additional set of columns or columns and rows.
For this, we explore various sampling strategies. These are discussed in Section 3.1. Find
distinct columns (optionally, if rows are sampled, remove duplicates and scale remaining
rows), compute POD modes of the newly sampled matrix and use it to update the dominant
modes.

(3) Find the cosines between the previously computed and newly updated dominant modes or
the principal cosines between the subspaces. If any one of the cosines is less than the desired
value, 7, continue the iteration.

Algorithm 1 details the steps involved in the iteration. The main iteration is the procedure
Iterative Sampling and Merging Algorithm (ISMA). It uses three other procedures: GET
UPDATE, SAMPLE AND SCALE UNIQUE ROWS and BLOCK MERGE The procedure GET
UPDATE returns the POD modes of the newly sampled columns. In case rows are also sampled (the
parameter rows = 1), GET UPDATE in turn calls the procedure SAMPLE AND SCALE UNIQUE
ROWS that performs a row sampling, removes duplicates and scales the remaining rows. BLOCK
MERGE is used to update the dominant subspace. It is described further in Section 3.2.
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ALGORITHM 1: ISMA; Inputs: matrix A, sampling probability p, rank of approximation k,
number of columns to be sampled ¢, rank of matrices after BLOCK MERGE r, rows (=1 if rows
are also to be sampled) and tolerance 7.

1: procedure ISMA(A, p, k, c, w, r, T, rows)

2: S« {1,2,...,n}

3 U, i, S « GET UPDATE(A, S, 0, p, ¢, W, rows);

4: if rows == 1 then > Orthonormalise U when there is row sampling
5 O.R < QR(U);U, 3,V « SVD(R);U = QU

6 end if

7 & — Owherei=1,2,...,k

8 while 3¢; : & < 7 and S not empty do

i=1,2,....k

9: pi « 1/s;orp; « |la; — [~JUTa,~|Ig/Z |la; — UUTaiIIIZ,,Where iesS
10: U,3,S « GET UPDATE(A, S, [7k,p, C, W, rows);
11: U,3 « Brock MERGE(U, 30,35, r)
12: &« ﬂlTﬁi or X,B,Y « SVD(fIgUk);Q’i «— Ejjwherei=1,2,...,k
3 Je0:5es
14: end while
15: 0,R « QR(ATD) > for computation of error measure

16:  URSRVE « SVD(R)

17: U,i(— UVR,ZR

18: V « QUg > only computed when error measure is needed
19: return u;,6;,0; wherei =1,2,...,k

20: end procedure

21: procedure GET UPDATE(A, S, U, p, ¢, w,rows)

22: I « i :Prsi=a]l=paep,sieS
i=1,2,...,c

23: I. « s; : VY distincts; € Is; g « card(I); S « S\ I,
24: d; — ay,, wheren; € Icandi=1,2,...,9
25: if rows # 1 then
26: V2vT — svD(DTD); t; « Do;/65,i € 1,2,...,r
27: return U, X, S
28: else

. m .
29: qi<—||d’||§;q,-<—qi/zlq,~ orif U #0¢q; « [u'l3/k

i=

30: W « SAMPLE AND ScaLE UNIQUE Rows(D, g, w)
31 VE2VT — sVD(WWTW);i; « DD;/61,i €1,2,...,r
32: return U, X, S
33: end if

34: end procedure

35: procedure SAMPLE AND ScALE UNIQUE Rows(C, q, w)

36: Is « §j containing w row indices sampled with probability q

37: I « §j;f — {fj, number of occurrences of §;} : V distinct §; € I,
38: h « card(I,)

39: wi c§i1lfi/(wq§i), where §; € I andi =1,2,...,h

40: return W
41: end procedure

ACM Transactions on Mathematical Software, Vol. 48, No. 2, Article 16. Publication date: May 2022.



Fast and Accurate POD using Efficient Sampling and Iterative Techniques 16:7

The matrix D in GET UPDATE contains the (distinct) sampled columns and the matrix W in
SAMPLE AND SCALE UNIQUE ROWS is obtained after additionally sampling rows. If there is no
row sampling, GET UPDATE returns the r dominant POD modes, U, and singular values which
are computed using a SVD of DT D. Otherwise, the approximate left singular vectors are computed
using the right singular vectors of W (line 31).

When using right singular vectors of W as an approximation to those of D, the modes obtained
may not be orthonormal. Therefore, for the first approximation of the modes, we orthonormalize
using QR and SVD of a smaller matrix (lines 4-6 of Algorithm 1). In the subsequent iterations,
orthonormalization is implicit in the BLOCK MERGE algorithm.

The iteration stops when the POD modes computed in two successive iterations are similar.
Similarity is measured using cosines between the modes or principal cosines between subspaces
spanned by the modes. After the iterations converge, the quality of the approximated subspace
can be measured using Wedin’s theorem. It requires estimation of the singular values and right
singular vectors (lines 15-18 in Algorithm 1). We describe this measure in Section 3.3.

3.1 Sampling Strategies

3.1.1 Column Sampling. In the first round, we do a column norm based sampling, with
probabilities as given in Equation (2), to get an approximation of the dominant modes. Additional
columns are sampled in subsequent iterations in an attempt to correct the modes. The sampling
strategy for the additional columns is a compromise between the number of iterations and the
computational effort required in each iteration. We explored three sampling strategies for adding
more columns.

(a) Uniform sampling (UNF) is easy to implement as no extra computation for probabilities is
necessary. Larger number of iterations are needed as there is no way to avoid sampling of
unimportant or highly correlated columns.

(b) L, norm sampling (L2N) has only simple arithmetic manipulation of probabilities from the
second iteration but may repeatedly sample columns that are similar or highly correlated.

(c) ORT requires us to project the matrix onto the current estimate of the dominant subspace
(U) and sample based on norm of the component orthogonal to this subspace. Probability of
sampling columns is computed as,

pi =la; — UUT“;’@/Z la; - U0 a2, (6)

Note that, it avoids sampling of highly correlated components and can lead to fewer
iterations. However, the computational and memory requirements in each iteration is large,
making each iteration slow and sometimes impractical for large datasets.

3.1.2  Row Sampling. We have tried two strategies for row sampling:

(a) L, norm of rows and
(b) leverage scores (LS).

Sampling based on L; norm of the rows has been used in Drineas et al. [2006] as well as in the
adaptive sampling algorithm. Both LS based sampling and uniform sampling have been used by
Yamazaki et al. [2017], who propose an incremental algorithm for SVD. Their algorithm reduces the
size of the matrix by projecting columns and sampling rows. Computing leverage scores requires
an estimate of the left singular vectors. Therefore, it is not done in the first round of sampling.

When rows are also sampled, we use the right singular vectors and the singular values of W
as an approximation to those of D. These are used to compute the POD modes (see line 31 of
Algorithm (1)). For this approximation to be accurate, the primary requirement is that the singular
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values computed using W be accurate. In order to maintain the accuracy of the singular values, we
scale the sampled rows as specified in the procedure SAMPLE AND SCALE UNIQUE ROWS. We

remove duplicate rows that were sampled and scale the remaining rows with /#;/wq; where w is

the number of rows sampled, #; is the number of occurrences of each sampled row, and g; denotes
sampling probability. This scale factor makes the computed SVD equal to the SVD obtained without
removing duplicates. This is similar to what is done in Sun et al. [2007] for sampling columns.

3.2 Merge and Truncate (MAT) Operation

Our algorithm requires an efficient technique for estimation of POD vectors in each iteration.
Algorithms to estimate these vectors have been proposed in (Bai et al. [2005], Liang et al. [2014],
and Qu et al. [2002]). Also, several techniques have been proposed for incremental SVD [Baker et al.
2012; Brand 2002, 2006; Gu and Eisenstat 1993], which can be used to get the principal components.
We decided to use the algorithm in Vasudevan and Ramakrishna [2017] (which is a generalization
of the algorithm in Iwen and Ong [2016]) for the following reasons.

(a) We directly obtain the left singular vectors as the output of the operation.
(b) These left singular vectors are obtained using SVD and QR of smaller matrices. Therefore
they are orthogonal by construction.

Let A be a matrix of size m X n that consists of sub-matrices X and Y containing n; and n;
columns, respectively, where n = n; + n,. Assume that the rank-r approximations of X and Y are
Uy, 24, Vf; and U, 2, sz The rank-r approximation of A, A,, can be computed from the individual
SVDs by first merging the two SVDs and then truncating it to a rank-r approximation as follows.

The component of U, orthogonal to U;, is U, = U, —Uj, (UlT, U, ). It U, =U,R is the
corresponding QR decomposition, we have

N S, (ULU)S, | [V 0] vl o
(X Y]=[U, Ul 0 RS, 0 VZ{ =[U:, U]E 0 VZ{ (7)
Now E is a much smaller (2r) X (2r) matrix. If E = UEZEVET, we get
r[Vi o T
(X Y]=[U, U]UgXeVg o V7T =UxV’, (8)
2y

where U = [U;, U,]Ug, X =3gandV = [V})’ VZ ]VE. These singular values and vectors are once

again truncated to get U, and 3.,. Algorithm (2) details the steps involved. In general, if there are
P partitions, a series of MAT operations can be used to obtain the r left singular vectors. Since we
are only interested in the left singular vectors, we do not compute V.

The penalty we pay for getting a more accurate estimate of the dominant subspace is finding
the SVD of the newly sampled columns to do a MAT operation in each iteration. However, the
number of additional sampled columns in each iteration is much lower than the total number of
columns in the matrix. Therefore, a speedup is obtained since the complexity of SVD computation
depends quadratically on the number of columns for “tall and thin” matrices.! Assuming there
are P partitions and all n columns are sampled with same number of columns sampled in each
iteration, the total number of flops required for computing a rank-r approximation of A using a

. . . 2 3 .
series of MAT operations is ~ 14% + % where r << n [Vasudevan and Ramakrishna 2017].

IFor “short and fat” matrices, we need to iteratively sample rows to get a runtime improvement when run on a single
machine.
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ALGORITHM 2: Pseudocode for block merge algorithm: merges left/right singular vectors of two
adjacent blocks. Inputs: U; € R™*™ U, € R™*™ and required rank r.

1: procedure BLock MERGE(Uy, 21, Uy, 22, 7)
2: Ui,,%1,,Us,, %, < Truncate( Uy, X1, Uz, 22) retaining only r values
3 Up & Up, = U1, (U] Uz,);Up, R = QR(Ur)
4& Ee [2“ (UlTrUZ’)ZZ’] s UpSpV! « SVD(E)
0 R%, E
5 U « [Ulr Uo] Ug;Y « Xg;r < min(r,max(i : o; # 0))
6: Truncate U and ¥ retaining only r values
7: return U, X
8: end procedure

3.2.1 Error Analysis for Series of MAT Operations. We derive an error bound in terms of the
spectral norm of the error in the rank-r matrix obtained using a series of MAT operations. For this
analysis, we use the following well known results from literature [Li 2014; Mathias 2014]. Let X
be an m X n matrix and g = min(m, n).

(1) If X = USVT, and X, = U,%, V[ is a rank-r approximation to X obtained by retaining the
top r singular values, then, ||X — X;|l2 = 0,+1(X) and ||X — X;|l2 < [|X — B;||2, where B, is
any rank-r matrix.

(2) f' Y is an m X t sub-matrix of X, then, o1,—+(X) < 0:(Y) < 03(X)

3) IfX = X + AX is a perturbation of X, then |o; — 6;| < [|[AX]|2, i =1,2,...,q.

We use the following notation. Let the matrix X = [X; X, --- Xp]bedividedinto P partitions.
Define Yy = [X1], Y1 = [Yy X;] and so on. In general Y; = [Yj_; Xj41], so that Yp_; = X. Let
X, denote the optimal rank-r approximation of X, and X;, that of X;. Define Z; = [X;, X3,]and
Zj=[Zj-1, Xjs1,]. Let Z = Zp_,. Therefore the error E = ||X — Z,||;, where Z, are the optimal
rank-r approximations of Z.
The bound for the error can be derived as follows.
X = Zll2 < IX = Zll2 + 12 = Z,l2
SIX =Zll2 + 12 = Xrll2
<X =Zll2 + 12 = Xll2 + 11Xy — X2
= 1Xr = Xz + 211X = Z|l2
= or1(X) + 2[I1X = Z|[2. ©)
We find || X — Z||; iteratively. For the MAT operation on the first two partitions, we have

1Z1 = Yillz < 1X1 = Xarll2 + [1X2 — Xz l2
= 0r41(X1) + 0741(X2) < 20741(X). (10)
For subsequent partitions,
Z; = Yilla < 1Zj-1, = Yj-1lla + IXjr1 = X, |12
< WZj-1, = Zj-allz +11Zj-1 = Yiallz + [1Xj41 = X1, 1 l2- (11)
If Z; = Y; + AX, then 0,41(Z;) < 0,41(Y;) + ||Z; — Yil|o. Therefore,
Z; = Yill2 < 0r41(Yjo1) + 211Zj1 = Yioalla + 0r41(Xj41)
< or1(X) + 2l1Zj-1 = Yjioall2 + 041(X). (12)
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The last inequality follows since Y;_; and Xj,; are submatrices of X. Since ||X — Z||, = [|Yp_1 —
Zp_1ll2, it can be computed iteratively using Equation (12). Therefore, the bound for error,
[1X = Z,|la, is (2P*' = 3)0,41(X).2 We note the following:

(1) In the worst case, 0,41 (X;) is close to 0,41 (X) and the error is close to (2F*! — 3)o,,(X). But
this typically happens when the size of the submatrix is large, which means P is small.

(2) If there are many partitions, the number of MAT operations are large, but each 0,41 (X;) is
likely to be small. If Y is an m X t submatrix of X, then o,114n-+(X) < 0441(Y) < 0p41(X).
Since each submatrix is thin and ¢ is small, the lower bound is quite small. Hence the error
in the average case is likely to be much smaller than in the worst case. In practice, we have
found this is true.

Overall, if we need k POD vectors to be approximated well, then either the number of partitions
should be small or we can set r to be larger than k. We set r to 3k to get good accuracies.

3.3 Quality of Converged Solution

In order to estimate the accuracy of the computed POD modes, we need a measure to quantify the
error in the approximation. After convergence, we can get a bound on the error in the subspaces
using Wedin’s theorem [Wedin 1972]. Assume that at the end of the iteration, we get A, = UrirVrT,
out of which we take the top k singular values and vectors. Define R = AVi — UpSy and S =
ATU; — Vi3k. Assume sin(©) and sin(®) are diagonal matrices containing the sine of principal
angles between subspaces spanned by Uy and Uy and Vi and Vj respectively. The sines of the
principal angles are a measure of the distance between the accurate and approximate dominant
left and right subspaces.

Wedin’s theorem [Li 1996; Stewart and guang Sun 1990; Wedin 1972] gives a bound on the norms
of the sine of principal angles in terms of the norms of R and S. The statement of the theorem is

as follows:
VIRIE + IS

IIsin(@)I + [[sin(@)] 2 < ~——, (13)

where o £ min{minj—y __p—k |6k — 0k+jl, 0%} > 0 and o; are the singular values of A. In order to
compute w, we need all the singular values of A, which are not available. However, at the end of the
iteration, we have an approximation of r(= 3k) singular values. Assuming that the kth and (k+1)th
singular values are approximated well (which was the case in all the datasets we have looked at),
we estimate w as min{|ox — 0x+1/, 0% }. If our iteration converges to the correct subspaces, the right
hand side should be close to zero. If it approaches V2k, either (a) additional columns need to be
sampled or (b) the kth and (k + 1)th singular values are very close to each other and small errors
in the singular values result in large values for the bound. In the limit when they are identical, any
vector in the subspace is a POD mode and the bound can become arbitrary. In this case, a better
measure of the quality of the solutions can be obtained after increasing k. Usually increasing k by
one or two is sufficient.

Our main focus is the POD modes. However, in order to compute the bound, the singular values
and right singular vectors are also required. Since we do not scale columns and use some subset
of the columns for computation of the modes, the error in the singular values (not the vectors)

2The trend for the error is similar in the expression derived in Iwen and Ong [2016] (see Theorem 3 in the reference). They
find a bound on the Frobenius norm of the error which grows as (1 + V2)F, which is slightly worse than ours. We used the
spectral norm as it is more appropriate for noisy data as argued in Li et al. [2017]. Our derivation is also simpler and more
specific to the case we are looking at, namely, an iterative algorithm which has a series of MAT operations.
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Table 1. Average Time Taken (in Seconds) by SVD(A) and SVD-AT A for Different Datasets

Dataset SVD(A) SVD-ATA
single thread 4 threads | single thread 4 threads
Vap 25.28 13.94 8.39 2.75
Faces 0.35 0.17 0.13 0.069
Cropped Yale faces (CYF) 34.04 16.43 15.23 6.86
Yale faces (YF) - - - -

Note that SVD of YF could not be computed in our test system (32 GB) since it does not fit in the
system’s memory.

could be significant. This is especially true if the total number of columns sampled is much less
than the number of columns in the matrix. The left singular vectors will be quite accurate if the
columns corresponding to the dominant subspace are captured, but the singular values will not be
accurate. If this is the case, we use the technique followed in the adaptive sampling method i.e.,
after the modes have converged, the singular values and the right singular vectors can be obtained
by computing the SVD of UkT A as detailed in lines 15-18 in Algorithm (1).

4 RESULTS

All algorithms are run in a 4 core Intel® Core™ i7-6700K processor that runs at a maximum clock
frequency of 4GHz with hyper-threading on. The system has a 32 GB RAM. For the YF dataset, the
mean centered data required 40 GB memory. Therefore for this dataset, the runs for the iterative
algorithm were done in a different system, a 8 core Intel® Xeon® CPU E5-2650V2 processor that
runs at a maximum clock frequency of 2.6GHz with hyper-threading on, with 64GB of RAM.

The algorithms are written in Python and run in Python version 3.5.3. It uses numpy version
1.12.1-3, scipy version 0.18.1-2 and openBLAS version 0.2.19-3, which is multi-threaded. Double
precision was used for all computations. We used the linear algebra routines in Scipy, which are
based on LAPACK for SVD computation. The random number generator in numpy is used. Runtime
and speedup values are an average of five runs. We report speed-up obtained when openBLAS is run
using a single thread, to give a measure of the operation count in each algorithm and four threads
(since our system is a four core system), which gives an indication of how the runtime scales with
number of threads. We have not explicitly parallelized our algorithm and any improvement with
multiple threads is entirely due to openBLAS.

The accurate POD modes of A can be computed using SVD(A” A) as follows, (a) find right singular
vectors and singular values of AT A using either SVD or eigendecomposition, (b) compute the k left
singular values as u; = Av;/o;. We denote the algorithm as SVD-ATA.

If A is a tall and skinny matrix, computing SVD(A) using SVD-AT A is faster. This is because
SVD(A) takes approximately fmn? floating point operations (FLOPs). SVD-AT A requires mn?
FLOPs to compute AT A, (+ 16)n> to compute SVD(AT A) and another mn? operations to compute
u; from Av;/o;. Assuming f§ = 6 [Bjorck 2015; Golub and Van Loan 2007], this gives m/(m/3 + (1+
8/3)n) speedup. The results in Table 1 are close to what is expected. Since SVD-A” A is faster, we
benchmark the speedup of the algorithms with respect to time taken for computing kK POD modes
using SVD-AT A.

4.1 Accuracy and Runtime of the Iterative Algorithms

We evaluated the two versions of ISMA algorithm (Algorithm (1))—an iterative column
sampling (ICS) algorithm and an iterative column and row sampling (ICRS) algorithm. We
tested the performance of the iterative algorithms with two different convergence criteria: cosines
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Table 2. Sampling Strategies used for Sampling Rows and Columns by
Iterative Sampling Algorithms

strategy column sampling row sampling (when applicable)
L2N L, norm sampling of columns in -
all iterations

UNF  uniform sampling from second L, norm sampling
iteration
ORT  from second iteration, sampling L, norm sampling

based on orthogonal complement
of A projected onto current
approximation of modes

LS uniform sampling from second leverage score sampling using current
iteration approximation of modes from second
iteration

For all sampling strategies, in the first iteration, columns (and rows in the case of column and row sampling)
are sampled based on their respective L, norms.

Table 3. Parameter Values (k, €, §) used in the
Iterative Algorithms for Various Datasets

Vaop, CYF Faces YF
Case k,e, 6 k,e, o k,e 6
11 10, 0.7, 0.6 | 10,1, 0.75 | 20, 0.6, 0.6
12 2,0.7,0.6 | 2,0.7,0.6 | 5,0.6,0.6

between the modes obtained in successive iterations and the principal cosines between the
subspaces computed in successive iterations. As indicated previously, we tried different sampling
strategies from the second iteration. Table 2 lists the different sampling strategies we use in this
article.

Using € and § around 0.6 — 0.7 resulted in a reasonable tradeoff between the number of columns
(and rows) sampled in each iteration and the number of iterations. For the Faces dataset, we chose
a higher €, § since the number of columns in the matrix is quite small. ORT was not used in the
iterative algorithms for YF, since the overhead for computing the orthogonal complement in each
iteration proved to be large. Table 3 lists the parameter values used for the iterative algorithms. In
all cases, the tolerance parameter for convergence t, is set to 0.99.

Figure 1 shows the first k mode angles computed by the iterative algorithms using L2N, UNF,
ORT, and LS. This is run with convergence of individual modes. As expected, the accuracies
are significantly better than for a single round of sampling. We also ran the algorithm with
convergence of the subspace spanned by modes as the criterion with the same value for 7. Figure 2
shows the principal angles between the subspaces spanned by the approximate modes and the
modes obtained using the truncated SVD. The algorithms give similar results as in Figure 1 for
all datasets. Moreover, it is clear that the accuracies are similar for all the sampling strategies,
indicating it is sufficient to use uniform distribution after the first round of sampling. This is
because UNF is the least complex and computationally more efficient than the other column
sampling strategies.

To evaluate the quality of subspaces obtained, we computed the measure for error in the
subspaces using Equation (13). Table 4(a) shows the error measure for various cases. In general,
the error measure is small indicating good accuracies in the modes. In a few cases (Vzp (k = 2)
and YF (k = 20)), the measure is large. As discussed, this could happen if o} and oy are clustered
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Fig. 1. First k mode angles, 0;, of different datasets computed by iterative algorithms based on convergence
of individual modes. ICS: Column sampling, ICRS: Column and row sampling.
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Fig. 2. First k principal angles, ¢; between the accurate subspace and the subspace obtained using the
iterative algorithm. ICS: Column sampling, ICRS: Column and row sampling.

together. Small changes in the singular values can result in large variations in the measure (as seen
with L2N and UNF). Figure 7 in Appendix A shows the dominant singular values of all our test
datasets. It can be seen that 0, and o3 of Vop are very close in value, whereas oy is well separated.
Therefore when k is increased to 3, the error measure reduces significantly. This can be seen in
Table 4(b).

The other case for which the measure is large is for YF (UNF). In this case also, several singular
values are clustered together as seen in Figure 7. The error drops when k is increased as seen in
Table 4(b). If L2N is used for sampling, the measure is small. It turns out that all the columns were
sampled in this case, leading to a low error. In general, it can be seen from Figures 1 and 2 that
the accuracy of the modes are much better than indicated by the measure. Also note that, in most
cases, our approximation of w worked well. The average error in w was found to be around 6%.

Figures 3 and 4 contain the speedup obtained when the iterative algorithms are run with
convergence of individual modes and subspaces formed by the modes as the convergence
criterion, respectively. Only the smaller datasets are included. YF is discussed later. Speedup is
evaluated with respect to time taken for computing k POD modes using SVD-AT A. We note that (a)
very good speedup is obtained for CYF for both single and multi-threaded execution. The speedup
is the least when ORT is used as the sampling strategy, which is as expected. Since the accuracies
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Table 4. Error measure computed using POD vectors obtained from Iterative algorithms
with convergence of individual modes.

(a) ‘/||R||12, + 1112/ where & £ min {|6) — 611, 6k ).

k Dataset ICS ICRS 2k O'k;ZkH
L2N UNF ORT UNF ORT LS

10  faces 0275 0.252 0.282 0.657 0.677 0.62 4.47  0.107
10 CYF 0.731 0.567 0.665 0.868 0.943 0.748 4.47 0.024
10 Vap 0.119 0.123 0.096 0.158 0.132 0.154 4.47 0.11
20 YF 0.428 5.053 - 6.48 - 0.347 5.48 0.026

2 faces 0.191 0.23 022 0.081 0.25 0.268 2 0.272
2 CYF 0.07 0.055 0.083 0.055 0.097 0.051 2 0.624
2 Vap 0.762 195 2.88 1.278 5.34 1.115 2 0.022
5 YF 2.08 1.71 - 1.394 - 143 3.16  0.073

(b) Error measure with value k increased by one for V,p and YF.

k Dataset ICS ICRS
L2N UNF ORT UNF ORT LS

3 V,p 0237 032 042 0356 0.523 0.453
21 YF 0207 088 - 0.8 - 1.46

Values in bold are either greater than or close to the upper limit of sqrt2k.

of all schemes are similar, it makes sense to use the UNF strategy as it gives maximum speedup.
(b) For small datasets such as the FACES dataset, it is better to use SVD-AT A. (c) Vap has about
1,000 columns. The results show that it may be worthwhile to use the iterative algorithm if k is
small.

We found that for k = 10 (I1), nearly all columns were sampled for the Faces, V,p and CYF
datasets when convergence was achieved, both in terms of mode and principal angles. For 12
(k = 2), the number of columns sampled was substantially lower than n in all cases and the
speedup is much larger. For the V;p and Faces datasets, the speedup is almost the same for both
convergence criteria. However, for CYF, speed up obtained is substantially larger with convergence
of subspace for k = 2. This is because the first two singular values are almost identical. Therefore,
more columns are sampled to capture individual modes accurately than for subspace spanned by
the modes.

As expected, in comparison to other sampling strategies, ORT is slower. UNF, LS, and L2N have
very similar speed up for most cases. This reinforces our conclusion that sampling with uniform
sampling from the second iteration is as good as other sampling strategies we tried.

As indicated earlier, mean centered dataset for YF occupies 40GB memory. We implemented
Algorithm 1 in a system with 64 GB RAM and compared the results obtained using UNF with (a)
SVD(AT A) and (b) projection algorithms proposed in Erichson et al. [2017], Halko et al. [2011a],
and Rokhlin et al. [2010]. We implemented two versions of projection algorithms: one in which the
rows are projected onto the random matrix (RSVD) [Halko et al. 2011a] and the other in which the
columns are projected (COLRSVD) [Erichson et al. 2017; Rokhlin et al. 2010]. We report results for
RSVD and COLRSVD for the YF dataset with three subspace iterations and s = k + 5 as suggested
in Halko et al. [2011a]. The wall clock and computational times taken for YF dataset using these
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Fig. 3. Speed up for iterative algorithms based on convergence of individual modes. ICS: Column sampling,
ICRS: Column and row sampling.
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Fig. 4. Speed up for iterative algorithms based on convergence of subspaces formed by modes. ICS: Column
sampling, ICRS: Column and row sampling.
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Table 5. Wall Clock (WT) and Computational Times (CT) in Seconds (s)
for Projection and Iterative Sampling Algorithms for YF Dataset

Case Algorithm single thread 8 threads
WT(s) CT(s) WT(s) CT(s)
ICS-UNF 217.79 50.78  224.062  38.57
ICRS-UNF  205.71 42.11 222226  41.73
k=5(2) RSVD 298.75  108.43 283.5 108.8
COLRSVD  286.44 109.83  281.78  108.97
SVD-ATA 7151.07 6964.7 2149.77 1962.77
ICS-UNF  626.18 44534  299.05  130.59
ICRS-UNF 379.16 198.19  278.74 111
k =20 (I1) RSVD 335.12  160.77 290.7 159.32
COLRSVD  346.89 159.98 290.18 159.48
SVD-ATA 7403.33 7216.96 2171.17 1984.17

Algorithms were run in a 64 GB system since YF does not fit in our test system.

BRSVDI1 B RSVD I2 B COLRSVD I1 B8 COLRSVD 12
A ICS-UNF I2 © ICRS-UNF I2 A ICS-UNF I1 © ICRS-UNFI1
projection algorithms sampling algorithms
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Fig. 5. First k mode angles, 6;, computed by projection algorithms with three subspace iterations and
iterative sampling algorithms using sampling strategy UNF.

algorithms is shown in Table 5. The wall clock time includes the time required to read the data from
the disk. Figure 5 shows the mode angles obtained. We can see that for Yale faces dataset with k = 5,
the projection algorithms and sampling algorithms have similar accuracy. Sampling algorithms are
1.4X faster with respect to wall clock times and 2Xx faster with respect to computational times. For
k = 20, the wall clock times of projection and sampling algorithms are similar (except for ICS-UNF)
but the projection algorithms have a large error in comparison to the iterative sampling algorithms.
Also note that, the iterative sampling algorithms are much faster (7 — 30X) than truncated
SVD.

4.2 Incremental-Iterative Algorithm for Matrices that do Not Fit in the RAM

As we already specified before, the mean-centered data matrix for YF dataset requires 40 GB
memory and does not fit in a system that has 32 GB RAM. There are two possible ways to compute
the POD modes of this dataset in this system:

(1) Run the iterative algorithm (Algorithm (1)). In the first pass, data is read in chunks that fit in
the memory to compute the sampling probabilities. In the next pass, the data is read again
to form the sampled matrix. Assuming we have enough memory for the sampled matrix
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Fig. 6. Left: mode angles of YF computed using convergence of individual modes. Right: principal angles

computed using convergence of subspace formed by modes. Results are of the incremental sampling
algorithms applied on YF dataset partitioned into four. Parameters are set as given in Table 3.

and its left singular vectors in the RAM, U and 3 of the matrix are computed. Subsequent
iterations may require one or both passes on data depending on the sampling strategies used.
The iteration is continued until Algorithm (1) converges.

(2) Do an incremental computation by running the iterative algorithm on each block of the
partitioned data as follows. Load the block into memory and use ICS/ICRS to compute U,
3 of the block. Use the MAT algorithm to get an updated U, 3 of the dataset. Delete the
partition and the sampled columns and continue the process until all blocks of data have
been processed. Algorithm (3) details the steps involved.

The first alternative requires i + 1 passes of the matrix for ICS where i is the number of iterations
for convergence. For ICRS, it takes a maximum of 3i + 1 passes for i iterations. By passes, we mean
accessing the entire matrix, though it may be done in blocks. The second alternative requires only
one pass over the entire matrix irrespective of whether ICS or ICRS is used to find U, 3 of the
partition. Clearly, the first alternative is severely bottle-necked by disk access times. For YF, we
used the second option and used an incremental computation after partitioning the matrix into
four blocks. We ran the iterative algorithms on each block using the same parameters as given for
YF in Table 3.

Figure 6 shows that both mode angles and the principal angles are less than 5°. Table 6 shows
the wall clock time and computational time for ICS-UNF, ICRS-UNF with convergence of (a) modes
and (b) subspace spanned by modes. It can be seen that for both convergence criteria, time taken
is very similar. As expected, ICRS is faster than ICS. Therefore, we favor ICRS over ICS.

5 CONCLUSION

In this article, we proposed an iterative algorithm to improve the modes/subspaces spanned by the
modes using a previously proposed MAT algorithm. Unlike the earlier methods used for multiple
rounds of sampling, we estimate the POD modes in each iteration and stop sampling when no
further improvement is obtained in either the modes or subspaces spanned by the modes. The
algorithm resulted in good accuracies with significant improvement in runtime even if all columns
are sampled when convergence is achieved. We found that using column-norm sampling in the
first round and uniform sampling in subsequent rounds resulted in good speedups, with accuracy
comparable to using norm of the orthogonal component of the sampled columns.

We proposed a measure using Wedin’s theorem to quantify the accuracy in the computed
subspaces. In most cases, the measure was much less than its upper limit, corroborating the
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ALGORITHM 3: Incremental POD computed using the iterative sampling algorithms for large
matrices that do not fit in system’s RAM. Input: parameters necessary for iterative algorithms and
number of blocks, t.

1: procedure INCREMENTAL POD(A,t.k, ¢, w, r, T, rows)
2 B« {a;j:i€1,2,...,|n/t]}

3 U, ISMA(B, k,c,w,r,T,rows)

4 foriel,...,(t—1)do

5: B« {aj:i€/[in/t],..., (i + 1)n/t]}

6 U,3 ISMA(B, k,c,w,r, T, rows)

7 U,3 « Brock MerGe(U, 3, U,3, r)

. N

9

U — U; S 3
end for
10: return u;,6; wherei =1,2,...,k

11: end procedure

Table 6. Wall clock (WT) and computational times (CT) in seconds
(s) for incremental computation of POD modes for Yale faces dataset
run with a single thread in a 32GB system.

Convergence of individual modes

Case sampling ICS ICRS
strategy
WT(s) CT(s) WT(s) CT(s)
k=5(12) UNF 146.73 51.14 134.09 35.92
k =20 (I1) UNF 302.06 205.27 217.22 121.41
Convergence of subspace spanned by modes
Case sampling ICS ICRS
strategy
WT(s) CT(s) WT(s) CT(s)
k=512) UNF 146.59 50.87 125.76  30.69
k =20(11) UNF 299.73 204.11 211.72 116.45

fact that the approximated modes were very accurate. In few cases, the measure was large due
to clustering of singular values. When the rank of approximation, k, was increased so that this
clustering is avoided, the error measure reduced to a large extent. In general, the accuracy of the
modes are much better than indicated by the measure.

For large matrices that do not fit in the RAM, we used the iterative algorithm on each partition of
the data (that fit in the RAM) to approximate the dominant left singular vectors and singular values
of the partition and then used MAT operation to get the modes of the entire data. As mentioned,
computing the modes using incremental sampling and MAT is advantageous as it requires only
one pass over the data. We obtained very good accuracy using this method when applied on our
large dataset.

APPENDIX
A  EXPERIMENTAL EVALUATION OF LTSVD AND CTSVD

We evaluated the column and column and row norm based sampling algorithms (referred to as
LTSVD and CTSVD). Details are contained in Algorithms (4) and (5). The parameters to be set in the
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algorithms are (a) €, §: error and failure probability parameters and (b) k: desired number of POD
modes. Based on these parameters, number of columns/rows to be sampled, c¢/w are set according
to Equations (3) and (5). We evaluated the algorithms based on (a) runtime and (b) accuracy for
various sets of parameters.

ALGORITHM 4: LTSVD algorithm. Inputs: matrix A € R™*", vector containing sampling
probabilities p, number of columns to be sampled ¢, and rank of approximation, k.
procedure LTSVD(A, p, k, c)
fori—1,2,...,cdo
Pick s; € {1,2,...,n} with probability Pr[s; = a] = pg,a =1,2,...,n

Ci < asi/vcpsi

1:
2
3
4.
5: end for
6
7
8
9:

v32vT — svD(cT ) >V, 3 are the right singular vectors and values of C
u; « Cv;/&; wherei=1,2,...,l and | = min(k,r); r: rank of C
return u;,6; wherei=1,2,...,1

end procedure

A.1 Results

We would like the error parameters, € and &, to be small (<1). However, since the number of
columns sampled depends inversely on powers of €, it increases rapidly and often exceeds the
number of columns in the matrix. This limits the parameter values that can be used. To get some
representative results, we looked at results for three cases namely, C1: ¢ = n except for the YF
dataset, where it is lower, C2: ¢ =~ n/2 (lower for CYF), and C3: ¢ << n (higher for YF). For Vzp,
Faces and CYF, we used k = 10, 5, 2 for the three cases C1, C2, and C3, respectively. Since YF is a
larger dataset, with a more gradual decay of singular values, we used k = 20, 10, 5 for the three
cases. For these cases, k, €, 8, ¢, w are shown in Table 7.

Figure 7 shows the first 20 singular values of the datasets. V;p has a dominant singular value,
followed by a sharp decay. The most gradual decay of singular values is for the YF dataset, where
the first two modes capture only 30% of the energy. For CYF the first two singular values are very
close. For all datasets, but especially for CYF, there is a clustering of the singular values beyond
the first 10 values. Note that the singular values of V,p is plotted on a log scale, while others are
on a linear scale.

We found that the error in approximating Ay is well below the theoretical error bound for the
respective algorithms in all cases. Figure 8 shows the percentage error in the singular values.’®
It is seen that the error is less than 5% for CYF and YF. The two dominant singular values are
captured accurately in CYF even when the error parameter values are close to one. The error is
slightly larger for V,p and Faces dataset, but is still less than 20%, except for CTSVD (C3) for the
Vop dataset.

For many applications in fluid flow and in gene expression modeling, it is the POD modes rather
than the singular values that are important. Figure 9 contains a few modes from the V2p and FACES
datasets. It is seen that there are visually apparent distortions in the approximated modes, even
though the corresponding singular values match well. A measure of the accuracy of the POD modes
is the cosine similarity between the approximate mode (u;) and the one obtained using a truncated
SVD of the entire dataset (u;). Figure 10 shows the angle between the two. We refer to these angles
as “mode angles”. It can be seen from Figure 10 that the modes are approximated very poorly. For

3In the case of CTSVD C1, we could not obtain 10 values with the filter (see line 13 of Algorithm (4)) and the values plotted
are obtained without the filter.
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Table 7. Parameter Values (k, €, §) used in LTSVD and CTSVD
Algorithms for Various Datasets

harumathi et al.

Vab Faces CYF YF
Case k, e, § k,e, & k,e, & k,e, &
LTSVD
C1 10, 0.7, 0.45 | 10,0.75,0.8 | 10, 0.46, 0.44 | 20, 0.35, 0.35
C2 5,1,0.1 5,0.75, 0.75 51,0.1 10, 0.3, 0.25
C3 2,1,0.8 2,1,0.8 2,1,0.8 5,0.3,0.25
CTSVD
C1 10, 1.04, 0.94 10, 1.3, 1 10, 0.9, 0.7 20, 0.83, 0.9
C2 51,0.1 51,0.1 51,1 10, 0.62, 0.9
C3 2,1,0.8 2,1,0.8 2,1,0.8 5,0.5,0.9
Vap 10° Faces dataset \ .1[]5cr0pped Yale faces , 106 Yale faces
— : — : : ‘ : ‘ : : :
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Fig. 7. First 20 singular values of datasets considered.

ALGORITHM 5: CTSVD Algorithm. Inputs: matrix A € R™", vector containing sampling
probabilities for column, p, number of columns ¢ and rows w to be sampled, and rank of
approximation, k.

1: procedure CTSVD(A, p, k, ¢, w)

2:

3
4:
5
6

7:

9:
10:
11:
12:
13:
14:
15:

fori—1,2,..

.,cdo
Pick s; € {1,2,...,n} with probability Pr[s; = a] = po,a = 1,2, ...

Cj asi/\jcpsi

end for

. m
qi — |c'3:qi — qif _Zlqi
P

forj<—1,2,...,wdo_

Pick §; € {1,2,..., m} with probability Pr[§; = a] = qa, @ = 1,2, ...

wl o cSif /WG,

end for

vE2vT — svD(wTw)

y < €/(100k)

I — min(k, max(r : 67 > y||W]|%))
u; « Coj/c; wherei=1,2,...,1

return u;,6; wherei =1,2,...,1
16: end procedure

reference, the corresponding mode angle is indicated in Figure 9, clearly indicating that a large
mode angle implies potentially larger distortions.

The mode angles are known to be sensitive to the clustering of singular values. This is the

reason why the first two mode angles are large for CYF (o; ~ 03). In the limiting case when
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ALTSVD C10CTSVD C1ALTSVD C20CTSVD C2ALTSVD C30CTSVD C3

Vap Faces dataset cropped Yale faces Yale faces
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Fig. 8. Percentage error in the singular values of different datasets for different parameter values, as given
in Table 7.

Vabp
LTSVD C1 SVD CTSVD C1 LTSVD C2 SVD CTSVD C2

+i,, 04 =10.941° +i,, 04 =37.824° (s, 05 =31.172°

+(s, 05 = 38.298°

Faces dataset
CTSVD C1 LTSVD C2 SVD CTSVD C2

+Ug, 83 =51.065° +i{,, 6, =14.526° +ii,, @ =37.92°

LTSVD C1

+dg, 03 = 30.245°

Fig.9. POD modes of various datasets computed by SVD, LTSVD (Algorithm (4)) and CTSVD (Algorithm (5)).
POD mode of V,p consists of both the x and y components of velocity vector at each point in space. The color
at each point denotes the magnitude of this vector at that point. Streamlines shown, denote the direction of
the flow captured by the POD mode.

the singular values are identical, it is only the eigenspace that matters and not the eigenvectors.
Also, for applications such as facial recognition, it is the space spanned by the modes rather than
the modes themselves that are of interest. For this reason, we also measure the accuracy of the
subspaces spanned by k singular vectors rather than the accuracy of each mode. A measure of this
accuracy is the principal or canonical angles between the subspaces, whose cosines are the singular
values of 0kT Uk [Bjorck and Golub 1973]. Figure 11 shows the k principal angles, ¢;, between the
two k-dimensional subspaces. Although the accuracy of the subspace is better than the modes
themselves, in some cases, there is significant error even for ¢ ~ n. The first two principal angles
for CYF match well, indicating that the subspace is captured more accurately than the modes
themselves (due to almost identical singular values).
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Fig. 10. First k mode angles, 0; for different parameter values, as given in Table 7.
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Fig. 11. First k principal angles, ¢;, for different datasets for different parameter values, as given in Table 7.
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