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Abstract

Learning graph-structured data with graph neural networks (GNNs) has been recently emerging as
an important field because of its wide applicability in bioinformatics, chemoinformatics, social network
analysis and data mining. Recent GNN algorithms are based on neural message passing, which enables
GNNs to integrate local structures and node features recursively. However, past GNN algorithms based on
1-hop neighborhood neural message passing are exposed to a risk of loss of information on local structures
and relationships. In this paper, we propose Neighborhood Edge AggregatoR (NEAR), a framework that
aggregates relations between the nodes in the neighborhood via edges. NEAR, which can be orthogonally
combined with Graph Isomorphism Network (GIN), gives integrated information that describes which nodes
in the neighborhood are connected. Therefore, NEAR can reflect additional information of a local structure
of each node beyond the nodes themselves in 1-hop neighborhood. Experimental results on multiple graph
classification tasks show that our algorithm makes a good improvement over other existing 1-hop based
GNN-based algorithms.

1 Introduction

Interest in learning graph structured data has risen rapidly in recent years because of its wide applicability
in bioinformatics, chemoinformatics, social network analysis and data mining. For learning graph-structured
data, we need an algorithm that can effectively represent the graph structure and relations between the graph
nodes. In recent years, numerous approaches to learn graph structure were developed, including graph kernel
methods [47, 14, 34, 32, 1] and ”neural message passing” [9] based graph neural network (GNN) methods
[44, 12, 46, 27, 20, 5, 43, 40].

Most of GNN algorithms aggregate feature information on connected nodes recursively, and thereby create
new feature vectors for each node in the graph. By repeating this process, an algorithm gets information about
k-hop neighborhood of each node and a representation of the whole graph by combining those feature vectors.
[42] formulated this GNN encompassing process mathematically by using a concept of multiset functions.

A major limitation of 1-hop based GNN algorithms is that each node uses only its neighborhood nodes’
information, which does not comprise relationships of neighborhood nodes. This limitation causes GNN archi-
tectures map different neighborhoods into the same representation, which leads difficulties in learning the graph
structure. To illustrate this limitation, we propose a family of artificial graphs that are impossible to classify
using the 1-dimensional Weisfeiler-Lehman (WL) test [38] and Graph Isomorphism Network (GIN); this shows
that reflecting relationships between the nodes in the neighborhood is necessary.

To overcome this limitation, we propose Neighborhood Edge AggregatoR (NEAR), a simple framework that
aggregates edges in a neighborhood of a given node. Our idea was inspired by noticing that certain graph struc-
tures that cannot be classified by previous 1-hop based message-passing GNN frameworks. Incorporating NEAR
and graph isomorphism network (GIN) [42] framework, we can combine relationships between the nodes in the
neighborhood and the existing node feature vectors. Our proposed algorithm enables the graph representation
to reflect the relationships between the nodes in the neighborhood.

Our main contributions can be summarized as follows.

• We constructed a family of graphs that cannot be classified by the existing GNN models that are based
on 1-hop neighborhood aggregator, thus claiming that reflecting relationships between the nodes in neigh-
borhoods is required to represent their local structure.

• We proposed NEAR, a simple framework that aggregates the local structure of neighborhoods which can
be used with GIN. We verified that our framework can reflect the local structures of graphs well enough.
Performance of GIN has been improved with NEAR.
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• We proposed simple variants of NEAR, which have a more powerful discriminative power to classify local
structures. Our variants of NEAR showed compatible performances on various graph classification tasks
[17] among GNN baseline algorithms.

2 Related Works

Graph Neural Network: Graph neural networks (GNNs) [10, 31], especially emphasizing graph convolutional
networks (GCNs) [5, 20], have been widely studied due to their successful results [20, 12] in node classification,
link prediction, and graph classification tasks. Motivated from these studies, advanced techniques in GCN such as
skip-connection [43], attention in graph [25, 36], capsule-GNN [41], graph pooling [44, 23, 30], graph generation
[3, 45], graph auto-encoder [19] are also rapidly emerging and discussed. Applications on drug discovery with
drug-drug interaction [29, 15], bioinformatics [8] and chemoinformatics [39, 4, 22], and knowledge graphs [11,
16, 37] are also widely studied, where the data can be represented in a graph form that includes an interaction
between two nodes.
Weisfeiler-Lehman test: The evolution of GNN is influential in solving problems of graph theory and its
related algorithms, and ideas in graph theory also improve GNN’s performance as well. One of the focused
algorithms in graph theory which recently arises in GNN literature is a graph isomorphism test. Weisfeiler-
Lehman test (WL-test), in general k-dimensional WL test, determines that given two graphs are isomorphic or
not. WL test has been firstly proposed by [38] and widely used nowadays in a form of Weisfeiler-Lehman subtree
kernel [6, 33], whereas a family of corner-case counterexamples was discovered by [2]. In terms of encoding a
graph into a vector, the question of whether GNN can distinguish two non-isomorphic graphs has been naturally
arisen.
Relationship between 1-dim WL test and GNN: Several studies have been proposed to connecting WL
test and GNN in recent GNN researches. In Graph isomorphism network (GIN) [42], authors formulated their
message-passing GNN with multiset functions and compared with 1-dim WL test. Their results claim that the
choice of aggregator functions on the nodes in 1-hop neighborhood effects on the capacity of the GNN model,
and prove that GIN has an equal performance with 1-dim WL test. Also, there are several attempts to reflect
WL test with a higher dimension to GNN algorithm, such as k-GNN [26] and disentangled GCN [24].

3 Proposed method

3.1 Preliminaries

GNN’s neighborhood aggregator and graph-level readout function operate on a set of feature vectors of nodes,
potentially admitting the same feature vectors [42]. Therefore, we first introduce a generalized concept of sets
that allows repetition of elements.

Definition 1. (Multiset) A multiset X is a generalized concept of sets that allows repetition of elements. Multiset
X can be represented as a pair of a set S ⊂ Rn and a function m : S → N, namely X = (S,m). S represents a
set of unique elements in X and m represents multiplicities of each element in S.

For example, two multisets {a, a, b, b, c} and {b, c, a, a, b} can be represented as ({a, b, c},m) with m(a) =
m(b) = 2,m(c) = 1. We can easily observe that a multiset is invariant under permutation, because its underlying
set and multiplicities remain the same under permutation. Therefore, functions that operate on multisets should
be at least permutation invariant to be well-defined. Typical examples of multiset function are count (for finite
case), summation (sum), average (mean), and min/max.

According to [42], the main structure of message-passing based GNN layer can be formulated using three
core functions: AGGREGATOR, COMBINE, and READOUT. Given a graph G = (V,E), suppose that there
exist feature vectors on set of nodes with H = {hv|v ∈ V }. Let hv be a feature vector of node v ∈ V , hNv be
an aggregated feature vector of neighborhood Nv of node v, and hG be a representation vector of graph G. In

this case, hNv , hG and a set of new feature vectors Φ(H) = {h(new)
v |v ∈ V } can be defined as below.

hNv = AGGREGATOR({hu|u ∈ Nv}) (1)

h(new)
v = COMBINE(hv, hNv

) (2)

hG = READOUT ({hv|v ∈ V }) (3)

First, AGGREGATOR operates on a set of feature vectors of neighborhood Nv of node v. AGGREGATOR
integrates information of Nv and returns a feature vector hNv

that represents neighborhood of v. Second,
COMBINE operates on hv and hNv

and creates a new feature vector of node in the next GNN layer. While
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repeating this for every GNN layer, READOUT function operates on the set of nodes in G and returns a vector
that represents the whole graph G. Summation was used as AGGREGATOR and summation/mean were used
as READOUT [42]. 2-layer MLP with learnable parameters was used as COMBINE to approximate an injective
universal multiset function.

Let H(k) = {h(k)v |v ∈ V } be a multiset of feature vectors of nodes in kth GNN layer Φ(k), where H(0) =

{h(0)v |v ∈ V } be a multiset of the given initial feature vectors of nodes. Because GNN layers are stacked in a
row, every layer computes its new feature vectors recursively: H(k) = Φ(k)(H(k−1)) for k ≥ 1. By stacking k
GNN layers in a row, we can expect that the model can learn up to k-hop neighborhood’s representation.

3.2 Toy example

Summing AGGREGATOR in GIN aggregates the information on neighborhood’s size and distribution [42].
However, besides GIN, the current GNNs only with any simple 1-hop AGGREGATOR (regardless of sum/mean)
may misclassify sets with different local structures.

Here, we introduce a family of graphs that cannot be distinguished by GIN. Figure 1 is an example of graphs
that have the same neighborhood set with different local structures.

Lemma 1. There exists a graph G = (V,E) with a multiset of feature vectors of nodes H = {hv|v ∈ V } =
({hw, hb},mN ) with mN (hb) = mN (hw) = 2N , satisfying the following conditions for every N ∈ N.

• G = (V,E) where |V | = 4N and |E| = 5N .

• There are 2N black nodes and 2N white nodes.

• Every white node is connected with two black nodes and has the same feature vector hw.

• Every black node is connected with two white nodes and one black node, and has the same feature vector
hb.

Proof. Let VB = {1, 2, · · · , 2N − 1, 2N} be a set of black nodes and VW = {2N + 1, 2N + 2, · · · , 4N} be a set of
white nodes, where two black nodes 2k − 1 and 2k are connected for 1 ≤ k ≤ N . We define a multiset of black
nodes with multiplicities 2 as B = {1, 1, 2, 2, 3, 3, · · · , 2N, 2N}.

It is enough to show that the multiset B can be partitioned into 2N sets B2N+1, B2N+2, ..., B4N , each set
Bj comprises two distinct black node elements. If such partition exists, then the only remaining part is
connecting each white node j to two black nodes j1, j2 of Bj = {j1, j2}.

It is clear that each white node j is only connected with two black nodes {j1, j2} above. In the per-
spective of a black node i, every i is contained in two partitioned sets Bi1 , Bi2 with i1 6= i2, since B =
{1, 1, 2, 2, 3, 3, · · · , 2N, 2N} is partitioned into 2N sets B2N+1, ..., B4N . Thus, each black node i is connected
with two white nodes i1, i2 and one black node i∗, where i∗ = 2k if i = 2k − 1 and i∗ = 2k − 1 if i = 2k.

For 2N+1 ≤ j ≤ 4N−2, if |B| > 4, we randomly pick 2 different elements j1, j2 in B and define Bj = {j1, j2}.
After then, we remove j1, j2 from the multiset B. Next, we connect them with the given white node j. Repeating
this procedure, we get 2 remaining white nodes {4N − 1, 4N} and 4 black node elements in B.

If |B| = 4, then we have three possible cases.

• Without loss of generality, if B = {p, p, q, q}, then we pick {p, q} and connect them with the white node
4N − 1. For the white node 4N , we connect it to black nodes p, q.

• Without loss of generality, if B = {p, p, q, r}, then we pick {p, q} and connect them with the white node
4N − 1. For the white node 4N , we connect it to black nodes p, r.

• If all elements in B are distinct, then we choose 2 elements randomly and connect them to the white node
4N − 1. The remaining elements will be connected with the white node 4N .

Finishing the procedures above, every white node is connected with two black nodes and every black node
is connected with two white nodes and one black node, which generates the desired graph. This completes the
proof.

Suppose black nodes have its feature vector hb and white nodes have its feature vector hw. GIN aggregates
neighborhood of target node v and combine it with feature vector of v. These only take into account the
combination of feature vectors of the nodes in Nv, not the relationship between the nodes in Nv. Therefore,
although marked black nodes in Fig. 1 have different local structures, they will be mapped to the same feature
vector in the next GNN layer. The following proposition is a general statement for graphs in Fig. 1.

3



Figure 1: Examples that satisfy the conditions in lemma 1. Every black node is connected with two white nodes
and one black node. Thus, GNN layer will map the same vector on every black node in the next layer. However,
in the shaded area, all black nodes have different local structures.

Proposition 1. Let G be a graph that satisfies the conditions in lemma 1 with its feature vector multiset H.
For a GNN layer Φ with 1-hop neighborhood AGGREGATOR and COMBINE, G with a new feature vector set
Φ(H) also satisfies the conditions in lemma 1.

Proof. 1-hop neighborhood AGGREGATOR and COMBINE do not modify the graph structure. Therefore, it
is sufficient to prove that all nodes with degree 2 and degree 3 have the same feature vector mapped by the
GNN layer respectively. Let hw be a feature vector of the white node and hb be a feature vector of the black
node. Then, a new feature vector for the white node can be represented as below.

h(new)
w = COMBINE(hw, AGGREGATOR({hb, hb})) (4)

Because every white node has the neighborhood with the same feature vectors {hb, hb}, this can be applied
to all white nodes in G, regardless of COMBINE function or AGGREGATOR function. Therefore, all white

nodes are mapped to the same feature vector h
(new)
w . For black nodes, this can be similarly proved from the fact

h
(new)
b = COMBINE(hb, AGGREGATOR({hb, hw, hw})) (5)

Every black node in such graph G has the same feature vector, degree, and multiset of feature vectors of
neighborhood nodes. Therefore, every black node will be mapped to the same feature vector in the next GNN
layer. Likewise, every white node will be mapped onto the same feature vector. Repeating these procedures for
every GNN layer with our proposed family of graphs, we obtain the following theorem which states that GIN
may fail to catch differences in the local structures.

Theorem 1. For a family G of graphs introduced in lemma 1, suppose a GNN model contains K GNN layers,

which contain 1-hop neighborhood AGGREGATOR and COMBINE. Let a vector h
(k)
G = READOUT ({h(k)v |v ∈

V }) be a representation vector of graph G in kth GNN layer. Define a representation vector of graph h
(rep)
G as

h
(rep)
G = CONCAT (h

(0)
G , h

(1)
G , ..., h

(K)
G ), then

• If mean is used as a READOUT, then GNN model maps every graph G ∈ G to the same vector, regardless

of AGGREGATOR and COMBINE, i.e. h
(rep)
G is constant for every graph G ∈ G.

• In general, for any READOUT function, h
(rep)
G is only dependent on |V |, where |V | is the number of nodes

in a graph G.

Proof. Let G(0) be an original graph G with its node feature vectors and G(k) be a graph G that passed k GNN
layers. From the Proposition 1, we can deduce that G(k) also satisfies the conditions in lemma 1 inductively.
Therefore, there are 2N black nodes with degree 3 and 2N white nodes with degree 2 which have the same

feature vector respectively in kth graph G(k). Let h
(k)
b , h

(k)
w be the feature vectors of black/white nodes in G(k)
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respectively. Then,

h
(k)
G = READOUT ({h(k)b , · · · , h(k)b︸ ︷︷ ︸

2N times

, h(k)w , · · · , h(k)w︸ ︷︷ ︸
2N times

}) (6)

= Ψ(h
(k)
b , h(k)w , 2N) (7)

Note that

h
(k)
b , h(k)w = Φ(k)(h

(k−1)
b , h(k−1)w ) = · · · (8)

= Φ(k) ◦ · · · ◦ Φ(1)(h
(0)
b , h(0)w ) (9)

Let F (k) = Φ(k) ◦ · · · ◦ Φ(1), then h
(rep)
G can be represented as below.

h
(rep)
G = [h

(0)
G , h

(1)
G , · · · , h(K)

G ] (10)

= [Ψ(h
(0)
b , h(0)w , 2N), · · · ,Ψ(h

(K)
b , h(K)

w , 2N)] (11)

= [Ψ(h
(0)
b , h(0)w , 2N), · · · ,Ψ(F (K)(h

(0)
b , h(0)w ), 2N)] (12)

= F(h
(0)
b , h(0)w , 2N) (13)

Note that h
(0)
b , h

(0)
w are fixed for all graphs G ∈ G. If READOUT function Ψ is independent of the size of set

|V | = 4N , then Ψ(h
(k)
b , h

(k)
w , 2N) = Ψ(h

(k)
b , h

(k)
w ) and h

(rep)
G is also independent with 2N . This immediately

proves the first statement, because

MEAN({h(k)b , · · · , h(k)b︸ ︷︷ ︸
2N times

, h(k)w , · · · , h(k)w︸ ︷︷ ︸
2N times

}) =
h
(k)
b + h

(k)
w

2
(14)

is independent of N . In general, h
(rep)
G is only dependent on N = 1

4 |V |, which directly proves the second
statement.

Theorem 1 illustrates that previous GIN model may miss valuable information on local structures in such
cases illustrated in Fig. 1. Not only the corner cases, this leads several 1-hop based GNN models to have lower
model capacities. Therefore, the problem is to find a new graph neural network framework that can distinguish
such differences.

3.3 Neighborhood Edge Aggregator

Here, we propose NEAR, a new GNN framework that aggregates information of a neighborhood via edges in
a 1-hop neighborhood Nv of a node v. We aim to obtain local structural properties by inserting an additional
neighborhood edge aggregator. While aggregating and feed-forwarding the node’s feature vector in every GNN
layer, NEAR encodes the edges in Nv and passes the information to the next layer. The definition below states
an edge-aggregating process in our proposed algorithm NEAR in an abstract form.

Definition 2. Let G = (V,E) be a graph with a multiset of node feature vectors H = {hv|v ∈ V } ⊂ Rn. Let
Nv be a set of nodes in neighborhood of v ∈ V and ENv be a set of edges that connect nodes in Nv. Suppose
that g : Rn × Rn → Rc is a real-valued function, where n is the dimension of feature vector of nodes and c is
the dimension of the embedded vectors. Let φ be a fixed multiset function. NEARg,φ, which operates on graph
G, node v, and feature vector multiset H, is defined as below.

NEARg,φ(G, v,H) = φ({g(hu, hz)|u, z,∈ Nv, (u, z) ∈ ENv}) (15)

We set φ as a summation in our work, which was motivated from the summation AGGREGATOR in [42].
Then, NEARg,sum(G, v,H) can be rewritten as below, where euz is an adjacency matrix’s element. In order to
simplify the notation, we will state NEARg,sum(G, v,H) as NEARg(Nv, H).

NEARg,sum(Nv, H) =
∑

uz∈ENv

g(hu, hz) (16)

=
∑

u,z∈Nv

euzg(hu, hz) (17)

5



For a given node v, we add the feature vector h
(k)
v and the aggregated neighborhood feature vector h

(k)
Nv

,

where h
(k)
Nv

is calculated by 1-hop neighborhood AGGREGATOR. In NEAR, edges in Nv are additionally

aggregated and mapped to h
(k)
NEv

, which is shown with bold edges. After then, two vectors h
(k)
v +h

(k)
Nv

and h
(k)
NEv

are concatenated and mapped to a new feature vector of v in the next GNN layer by COMBINE (MLP in Fig.
2). These procedures will be done for every node in graph G.

Figure 2: Brief sketch of GNN layer with GIN-0 and NEAR, which is also used in our experiments. GIN-0 is

illustrated with h
(k)
v and h

(k)
Nv

and NEAR is illustrated at the bottom with h
(k)
NEv

.

Note that g(hz, hu) is sufficient to encode the connection between two nodes z, w whose feature vectors
are hz, hu. Once we define NEAR that maps the connection between the nodes in neighborhoods onto some
hidden vector with size c, we can re-design the previous GIN architecture using our proposed method. NEAR
can encode the local structure into every GNN layer.

h
(k)
Nv

= AGGREGATOR({h(k)u |u ∈ Nv}) (18)

h
(k)
NEv

= NEARg(Nv, H
(k))

=
∑

u,z∈Nv

euzg(h(k)u , h(k)z ) (19)

h(k+1)
v = COMBINE(h(k)v , h

(k)
Nv
, h

(k)
NEv

)

= MLP (k)(CONCAT (h(k)v + h
(k)
Nv
, h

(k)
NEv

)) (20)

h
(k)
G = READOUT ({h(k)v |v ∈ G}) (21)

h
(rep)
G = CONCAT ({h(k)G |0 ≤ k ≤ K}) (22)

3.4 Proposed Variants of NEAR, Computational Cost, and Related Discussions

We propose four simple variants of NEAR: NEAR-c, NEAR-e, NEAR-m, and NEAR-h. NEAR-c uses the sim-
plest constant function gc(hi, hj) = 1 and NEAR-e uses a simple addition function ge(hi, hj) = hi+hj . NEAR-m
uses an element-wise max function and NEAR-h uses the Hadamard product. However, aggregating neighbor-
hood edge information with a naive summation may cause heavy computational cost on large and dense graphs,
while evaluating the term

∑
uz∈ENv

g(hu, hz) =
∑
u,z∈Nv

euzg(hu, hz) over ENv
or Nv ×Nv.

For NEAR-c and NEAR-e, we can simplify our computation as below by incorporating and reformulating
our NEAR term with local graph invariants. di|Nv

is the number of nodes in Nv that are connected with node
i, which is equal to the number of triangles that contain node i and node j.
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NEARc(Nv, H) =
∑
ENv

eij = |ENv | (23)

NEARe(Nv, H) =
∑
ENv

hi + hj =
∑
i∈Nv

di|Nv
hi (24)

These reformulations of NEAR-c and NEAR-e significantly reduce the time-complexity of calculating the
NEAR term. That is, NEAR-c and NEAR-e compute its summation hNEv over Nv (a set of neighborhood
nodes of v) with equation (23) and (24), which can be computed simultaneously with hNv . These make its
computational cost almost the same as GIN. Empirically, under the same model settings in our experiments,
GIN, GIN with NEAR-c, and GIN with NEAR-e take a similar time per epoch, whereas NEAR-m and NEAR-h
take 10x ∼ 20x times per epoch.

3.4.1 Possible Future Works

We mainly focused on a particular form of NEAR with a summation multiset function and four simple functions
g that represent connections in a neighborhood, namely NEARg,sum = NEAR − c/e/m/h. Other variations
of NEAR with different edge aggregator multiset function φ and edge feature map g can be discovered in
future works. Also, their reformulation with graph invariants can be further discussed with its computational
cost reduction issue. One possible solution to handle the equation (19) is to approximate the neighborhood
edge aggregation term by sampling. As an example, a sampling-based method as in GraphSAGE [12] can be
considered, which will also be an interesting future work that can improve our proposed method with GIN.

3.5 How powerful is NEAR?: Its limitation and a comparison with 3-WL test

It is known that GIN is as powerful as 1-WL test with an injective neighborhood node aggregator and an
injective graph-level readout function. [42] Clearly, 1-WL test and GIN cannot distinguish the proposed family
of graphs as in Fig. 1. By collecting the information of edges e ∈ ENv in a local neighborhood Nv, at least
our proposed algorithm NEAR can distinguish the examples in Fig. 1. These graphs empirically show that
NEAR is strictly more powerful than GIN, and surely increases the model capacity of GIN by incorporating
the information of local neighborhood edges, equivalently the information of triangles.

From the perspective of a graph isomorphism as a benchmark of discriminative power of the model, two
questions on the discriminative power of NEAR naturally arise.

• Is there an example that NEAR cannot distinguish two non-isomorphic graphs?

• How powerful is NEAR aggregator compared with a higher-order WL test?

An encoded hidden vector passed through GIN with NEAR as in Fig. 2 can be rewritten as below:

h(k+1)
v = COMBINE(h(k)v , h

(k)
Nv
, h

(k)
NEv

) = MLP (k)(h(k)v + h
(k)
Nv
, h

(k)
NEv

) (25)

= MLP (k)(h(k)v + h
(k)
Nv
, φ({g(hu, hz)|u, z, v are connected}) (26)

Note that GIN with NEAR aggregates the information of triangles that contain v to h
(k+1)
v , from the

equation (26). Therefore, we can consider the simplest counterexample: two non-isomorphic graphs that are not
distinguishable with 1-WL test and do not contain triangles. They cannot be distinguished by NEAR since any
informative information does not appear on a NEAR term hNEv = 0. Also, from the fact that 3-WL test is
executed over 3-tuples of vertices, we can deduce that if two graphs are not distinguishable with 3-WL test,
then NEAR also cannot distinguish them. That is, GIN with NEAR is strictly more powerful than 1-WL test,
but less powerful than 3-WL test.

4 Experiments

We conduct two experiments to show the importance of relations between the neighborhoods and obtain a
compatible performance over the existing GIN. In the experiments, we constructed GIN-0 based models with
our variants of NEAR. Firstly, we performed two graph classification tasks with the toy examples in Section
3.2. Each task requires us to classify several graph properties. Secondly, we performed the graph classification
for 9 benchmark datasets and our two toy example tasks. 10 times of 10-fold cross-validation was applied, and
mean and standard deviation of the test accuracies were reported. Overall, our proposed model improved the
previous results of GIN and other GNN-based models on several graph classification benchmarks.
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4.1 Model Configuration of GIN

Following the model configuration of [42], we impelemented GIN and NEAR variants based on the GIN-0. The
GIN model in our experiments has 5 GNN layers stacked in a row; each of them has sum AGGREGATOR, sum
READOUT and 2 fully-connected layers as COMBINE [42]. COMBINE function of our baseline GIN-0 model

is given by h
(k+1)
v = MLP (k)(CONCAT (h

(k)
v +h

(k)
Nv
, h

(k)
NEv

)). After generating h
(rep)
G , this is feed-forwarded into

2-layer MLP with ReLU activation function and softmax function to obtain a probability vector. The number of
batch size and the dimension of hidden layer are both given by 64. Batch normalization [13] is applied after every
hidden layer and dropout [35] ratio for the final prediction layer is given by 0.5 [42]. We used Adam optimizer
[18] with its learning rate 10−4 for toy-example plots in Section 4.2 and 10−2 for benchmark evaluations in
Section 4.3, with exponential decay 0.99. Cross entropy is used as a loss function. The detailed structure is
illustrated in Fig. 3.

Figure 3: GNN model in our experiment. GIN-0 and NEAR are combined and aggregate neighborhoods’ in-

formation recursively. READOUT extracts the graph representation vector h
(k)
G of each graph G,H(k) and

combines it into h
(rep)
G . This vector is put into 2-layer multilayer perceptron (MLP) classifier with a softmax

activation and the model returns the probability vector.

4.2 Toy example

In this experiment, we aim to show that NEAR can encode relations between the nodes in the neighborhoods.
Comparing it with a plain GIN model and its variants, we can deduce that considering local structures to GNN
layers is strongly required. We perform two graph classification tasks with the family of graphs introduced in
Section 3.2, which was proven to be indistinguishable by GIN. Firstly, we generate 5000 artificial graphs that
satisfy lemma 1. Each graph has its node labels based on lemma 1. We labeled the graphs into 5 balanced
classes upon the clustering coefficient (ARTFCC) and the length of the longest simple cycle in the cycle basis
(ARTFCY).

We performed two graph classification tasks for the graphs above with a plain GIN model (GIN-0 in [42]
with sum AGGREGATOR) and 4 simple variants of NEAR with GIN-0: GIN-0 with NEAR-c/e/m/h. We
report the loss curves, accuracies, and the entropy of predicted graph labels for fixed train/validation splits on
ARTFCC/ARTFCY datasets in Fig. 4 and Fig. 5. An entropy of predicted labels is reported to emphasize the
fact that GIN with sum READOUT and ReLU activation maps almost all of graphs in the validation set to the
same label.

From the results on the toy examples with our GIN variants in Fig. 4 and Fig. 5, we can observe that the
training loss of GIN decreases slowly compared with the proposed NEAR variants, while other proposed NEAR
variants were trained well. Moreover, the validation accuracy and validation loss of the plain GIN were not
improved sufficiently well, whereas those of all the other NEAR variants got improved well. This implies that
the plain GIN model predicted graphs only with |V |, which makes a step-function like behavior for the validation
loss and validation accuracies. Besides, the entropy of predicted results on the validation set by GIN remains
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Figure 4: Accuracy, loss, and entropy of the predicted labels for training set (on the first column) and validation
set (on the second column) of ARTFCC. GIN-0 is marked as black line, and GIN-NEAR-c/e/m/h are marked
as dashed red/orange/blue/green lines.

low, which shows that GIN predicts most of graphs in the validation set to be in the same label depending only
on |V |. These results empirically show Theorem 1 with sum READOUT function and ReLU activation.

The graphs in these tasks have the same neighborhood sets with different local structures. Therefore, our
proposed models also have the ability to catch differences between various graph structures.

4.3 Graph classification tasks

Next, we perform graph classification tasks on eight real-world benchmark graph datasets, one synthetic bench-
mark dataset, and our two toy-example datasets. Four variants of NEAR (NEAR-c/e/m/h) are used as our
proposed models in this experiment. Results of the recent algorithms based on GNNs and graph kernels are
compared with ours. We executed all GNN-based models in our experiments.

4.3.1 Datasets and features

We use 6 chemistry/bioinformatics datasets (COX2, MUTAG, PTCMR, PROTEINS, NCI1, FRANKENSTEIN),
2 social-network datasets (IMDB-BINARY, IMDB-MULTI), and 1 synthetic dataset TRIANGLES as bench-
mark datasets. TRIANGLES is a dataset proposed by [21] which is related with a number of triangles in the
graphs. Discrete node labels were encoded into one-hot vectors, and continuous node attributes were used with-
out preprocessing. If there are no node labels or attributes, we generated constant dummy labels or attributes
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Figure 5: Accuracy, loss, and entropy of the predicted labels for training set (on the first column) and validation
set (on the second column) of ARTFCY. GIN-0 is marked as black line, and GIN-NEAR-c/e/m/h are marked
as dashed red/orange/blue/green lines.

for all nodes. Degree was one-hot encoded to a 500-dimensional unit vector and inserted as an additional node
label. While preprocessing the degree, a node with degree 500 and a node with degree larger than 500 will
mapped to the same one-hot vector.

Table 1 shows descriptions and statistics for 9 graph benchmark datasets and 2 proposed datasets which
are used in our experiments. The category of each dataset, number of graphs and classes, average number of
nodes and edges are provided. If node features exist in the dataset, we use ’+’, otherwise ’-’. If continuous node
attributes exist in the dataset, their dimension is noted in parenthesis.

4.3.2 Model settings

We selected the basline algorithms as following: Graph Isomorphism Network (GIN) [42], Deep Graph Convolu-
tional Neural Networks (DGCNN) [46], PATCHY-SAN (PSCN) [27], and Random Walk Graph Neural Network
(RWNN) [28] were used as GNN-based baseline algorithms, and Return probability-based Graph Kernel (RGK)
[47], Weisfeiler-Lehman subtree kernel (WL) [32], and Graph Neural Tangent Kernel (GNTK) [7] are used as
kernel-based baseline algorithms.

We trained 100 epochs for GIN, PSCN and NEAR variants with learning rate 10−2. PSCN with k = 10 was
used in our experiment. We used the model setting in Section 3.1 on the baseline GIN-0 and NEAR variants.
Following the basic settings that are suggested in the official PyTorch implementation of DGCNN [46], we
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Table 1: Detailed Data Statistics and Information

Dataset Features Statistics

Cate Node Num. of Average Num. of
Name -gory Label Attr. Graphs Classes Nodes Edges

COX2 Bio + +(3) 467 2 41.22 43.45
PROT Bio + +(1) 1113 2 39.06 72.82
FRANK Bio + +(780) 4337 2 16.90 17.88
MUTAG Bio + − 188 2 17,93 19.79
PTC-MR Bio + − 344 2 14.29 14.69
NCI1 Bio + − 4110 2 29.87 32.30
IMDB-B Soc − − 1000 2 19.77 96.53
IMDB-M Soc − − 1500 3 13.00 65.94
TRIANG Syn − +(1) 45000 10 20.85 32.74

ARTFCC Syn + − 5000 5 26.78 33.48
ARTFCY Syn + − 5000 5 26.78 33.48

executed 500 epochs with learning rate 10−4 if the best parameter setting is not specified. For the kernel-based
baselines, we tuned C ∈ {10−3, 10−2, 10−1, 1, 101, 102, 103} in SVM classifiers. The number of iterations for
WL-subtree was set to 4.

We followed the hyperparameters and detailed learning process in an official PyTorch implementation of
GNTK and RWNN. [7, 28] For the datasets that are not mentioned in GNTK paper, we followed the setting of
IMDB-BINARY, with the number of layers ∈ {2, 4}. For the datasets that are not mentioned in RWNN paper
[28], we followed the hyperparemeter setting upon the category (social/bio) of the benchmark dataset. We also
ran the experiment on synthetic datasets (TRIANGLES, ARTFCC, ARTFCY) based on the experiment setting
for social network dataset of [28]. We reported the results of p-step RWNN variants (p-step RWNN) with random
walk parameter p = 1, 2, 3.

We performed 10 times of 10-fold cross-validation. For TRIANGLE dataset, we chose hyperparmeters based
on the fixed train/validation/test split (First 30000 graphs for training, next 5000 graphs for validation, last
10000 graphs for testing) as designed in [21].

4.3.3 Results

We reported the average of test accuracies and their standard deviations with our proposed algorithms in Table
2 and Table 3. NEAR, GIN, DGCNN, PSCN, RWNN variants, GNTK, and WL were executed for all datasets
with the same splits, and RetGK was executed on TRIANGLES and our two toy example datasets. Available
results of RetGK were reported directly. GNTK failed to generate a gram matrix for TRIANGLES dataset, so
the test accuracy was not available and this is denoted as out of memory (OOM) in Table 3. We highlighted
the best results for each benchmark dataset in Table 2 and Table 3.

Table 2: Graph classification results for 6 bio-informatics benchmark datasets

COX2 PROT FRANK MUTAG PTCMR NCI1

WL 81.3 75.1 74.2 85.8 61.8 84.3
RGK 81.4 78.0 76.7 90.3 62.5 84.5
GNTK 82.3 74.1 62.1 87.6 62.7 83.3

DGCNN 78.2(6.8) 72.9(4.4) 68.7(2.1) 83.8(7.7) 56.3(8.0) 71.8(2.6)
PSCN 74.0(6.5) 67.3(4.2) 57.7(2.1) 82.7(7.1) 59.4(9.6) 70.0(2.3)
1-step RWNN 81.9(5.4) 74.0(4.5) 63.1(2.6) 83.7(8.1) 57.8(8.4) 67.1(2.7)
2-step RWNN 81.4(5.9) 74.6(4.3) 68.1(2.6) 87.0(6.7) 57.9(8.5) 71.3(2.4)
3-step RWNN 82.0(5.9) 74.4(4.3) 67.9(2.3) 87.1(7.6) 58.0(9.5) 74.6(2.3)

GIN-0 80.3(6.9) 73.8(3.9) 68.6(2.3) 84.2(7.9) 56.6(7.9) 80.7(2.0)
NEAR-c 81.2(6.8) 74.0(4.0) 70.2(2.0) 85.0(8.5) 56.9(8.0) 81.0(1.9)
NEAR-e 80.8(6.4) 74.7(4.4) 70.6(2.1) 85.6(8.3) 57.8(8.0) 81.0(2.0)
NEAR-m 80.9(6.6) 74.3(4.0) 70.8(2.2) 85.1(8.3) 57.6(8.1) 80.8(1.8)
NEAR-h 82.0(6.1) 75.4(4.1) 70.2(2.4) 85.7(8.6) 57.3(9.7) 80.9(1.9)
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Table 3: Graph classification results for 2 social-network benchmark datasets and 3 synthetic benchmark datasets

IMDB-B IMDB-M TRIANG ARTFCC ARTFCY

WL 71.5 51.9 45.3 32.9 28.3
RGK 72.3 48.7 59.1 99.0 47.0
GNTK 73.6 50.9 OOM 64.1 69.7

DGCNN 67.8(5.1) 44.0(4.8) 48.5(3.0) 42.0(2.4) 35.1(1.9)
PSCN 65.0(5.4) 44.9(3.5) 59.2(3.6) 98.0(0.6) 38.3(2.1)
1-step RWNN 70.6(4.7) 47.5(4.3) 99.8(0.5) 35.4(2.0) 35.5(1.9)
2-step RWNN 71.0(5.1) 48.0(4.1) 97.5(2.3) 35.3(1.9) 35.4(2.0)
3-step RWNN 70.9(4.7) 47.8(4.1) 93.8(4.3) 35.4(2.3) 35.4(2.0)

GIN-0 72.8(4.3) 51.0(3.8) 75.2(2.6) 32.2(2.9) 27.1(3.4)
NEAR-c 72.9(4.6) 51.1(4.3) 78.7(2.9) 97.6(0.9) 39.7(2.0)
NEAR-e 72.9(4.3) 51.2(4.0) 78.2(4.2) 97.9(0.6) 40.4(2.1)
NEAR-m 73.7(4.3) 50.8(3.8) 79.7(3.2) 97.9(0.7) 40.2(2.1)
NEAR-h 73.5(4.4) 50.8(3.9) 80.5(3.5) 97.8(0.7) 40.2(2.4)

Although most of the state-of-the-art results were attained from the kernel-based methods, our proposed
model NEAR achieved the compatible results from the GNN-based baselines, and slightly improved the bench-
mark results of previous GIN-0 model. We remark that due to the small size of the dataset, a high variance is
observed among the test accuracies. As a consequence, it is hard to statistically claim that the result on the
real-world benchmark datasets is significantly improved by NEAR. However, a direct comparison with GIN-0
and our NEAR variants shows that our neighborhood-relation encoding indeed improved the model capacity of
GIN-0. Our combined model with GIN-0 and NEAR improved the results for comparable datasets, especially
for synthetic datasets which have a high demand for catching a detailed difference in 1-hop neighborhood. Thus,
we can conclude that the edge-aggregating framework can be orthogonally combined with GIN and increase the
capacity of the model.

5 Conclusion

We proposed NEAR, a new GNN framework that aggregates edges in the neighborhood and enables to encode
the local structures to hidden vectors. We constructed a family of graphs with the same neighborhoods and
distribution of labels but with different local structures. By using the proposed edge-aggregating framework
with GIN models, we showed that NEAR has the ability to encode local structures and we obtained exemplary
results for several graph classification tasks. Our proposed algorithm NEAR shows a better model capacity to
deal with both local structures of graphs and node labels/attributes. Possible future work would be finding a
more powerful and computationally efficient function g(hu, hz) and a neighborhood edge multiset function φ
that can represent connections in a neighborhood. Additionally, encoding edge labels/attributes with NEAR
and GNN layers would be fruitful for more complex graph classification tasks and graph embedding.
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