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Regularization is a popular technique to solve the overfitting problem of machine learning algorithms. Most regularization technique
relies on parameter selection of the regularization coefficient. Plug-in method and cross-validation approach are two most common
parameter selection approaches for regression methods such as Ridge Regression, Lasso Regression and Kernel Regression. Matrix
factorization based recommendation system also has heavy reliance on the regularization technique. Most people select a single scalar
value to regularize the user feature vector and item feature vector independently or collectively. In this paper, we prove that such
approach of selecting regularization coefficient is invalid, and we provide a theoretically accurate method that outperforms the most
widely used approach in both accuracy and fairness metrics.
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1. INTRODUCTION

Overfitting is a commonly encountered problem in machine learning. When the number of parameters of the model is too
large, the regression models usually captures too much noise and fail to generalize to new dataset. To solve the
overfitting problem, there are many proposed algorithms in the machine learning field. For deep learning paradigms,
drop-out is a popular technique that aims to reduce the complexity of the model structure. In the context setting of
regressions, plug-in method and cross-validation approach are two classic techniques to compute the optimal

regularization parameters.

Recommender system is a machine learning application field that is worth billions of money. There have been a
tremendous amount of research publications in the field with innovative techniques such as deep learning models and



hybrid methods. In recent years, ensemble tree models have also emerged as a major methodology for recommender

system.

Regularization exists here and there in recommender system algorithms. For example, in the framework of matrix
factorization, regularization has been used to reduce the norm of user feature vectors and item feature vectors. Common
practice of selecting the regularization parameters have largely been ad-hoc, with a few notable exception. However,
most people select a single constant regularization parameter to penalize the user feature vector and item feature vector

together, or separate constants to penalize user feature vectors and item feature vectors by scalar-vector products.

In this paper, we prove that common practice of matrix factorization regularization has intrinsic flaws that cannot be
resolved theoretically. We propose to regularize the user feature vector and item feature vector with separate
regularization vectors. We use dot products of regularization vectors and feature vectors as the regularization term and
we show how to achieve the optimal regularization parameters. In the experiment section, we demonstrate that our

approach outperforms the common practice in both accuracy metric and fairness metric.

2 RELATED WORK

Recommender system is everywhere in modern day internet industry. Amazon, YouTube, Alibaba, Toutiao, TikTok all
rely on recommendation products to generate values and cut short the marketing budgets. Matrix factorization is a mature
and successful recommender system technology that has decade long history and mountainous applications in internet
companies. Algorithms such as Alternating Least Squares [1] and SVDFeature [2], MatRec [3], Zipf Matrix
Factorization [4], MatMat [5] and ZeroMat [6] are all variants of matrix factorization techniques.

Matrix factorization algorithms can be applied for context-aware recommendation [7], cold-start initialization [6],
debiasing [4], in addition to its old mission of reducing the sum of squared error of the user rating approximation. It is a
versatile algorithm that is worth of serious research even today. In this paper, we investigate into the regularization
problem of matrix factorization to provide a superior and solid framework that is competitive on both MAE and fairness
metrics.

Regularization is a popular technique not only used in matrix factorization but also regression [8][9] and ensemble tree
models. Optimal regularization parameter selection problem has largely been solved in regression algorithms and
incorporated into famous commercial softwares such as Stata. However, regularization problem outside of the regression

scope has mostly been overlooked.

3 MATRIX FACTORIZATION REGULARIZATION

Matrix factorization with regularization is a common practice in commercial context settings. The classic matrix

factorization with regularization is formulated as below :
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We know that optimal regularization parameter for regression model exists and can be solved using plug-in method or
cross-validation approach. We solve the optimal parameter value of 3 by taking partial derivative of 3 with respective to

L, we obtain the following formula :
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By setting this partial derivative to 0, we wish to find the minimizing value of . But what is interesting is the the value
of B here. We can actually solve for the value of 3 by letting the partial derivative to be 0 . We can compute 3 with M
equations since there are M partial derivatives with respect to the user feature vectors :
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It is pretty obvious the equation system is not solvable for constant value of B in general. To see this point more clearly,

we can rewrite the partial derivative equation as follows :

Solving for the value of 3, we obtain :

1
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It is obvious there is no single nonzero constant 3 for all different values of u; , otherwise we would have the following
conclusion: Every single user’s matrix factorization prediction value list for all his items weighted by approximation
residuals is the norm of his user feature vector scaled by the same constant factor. This just sounds too idealistic and
simplistic to us for us to believe this is true in real world commercial environments. Shouldn’t the weighted sum have
something to do with the item feature vector as well, rather than just the norm of the user feature vector scaled by a

constant ? Why [ is a constant for all different values of user feature vectors ?

We have shown that a single regularization parameter to penalize the norm of both user feature vector and item feature
vector is an ill-posed problem. Penalizing the user feature vectors and item feature vectors using 2 constants does not
change our conclusion, because we illustrated our idea using only partial derivative of user feature vector penalized by a
constant above, the logic can be applied in the 2 regularization constant settings without any modification to our writings

above.



Now we consider the following regularization approach and proves that it is also an ill-posed problem:
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We have the following equation by taking partial derivative with respect to the user feature vector:
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Once again, we are very reluctant to believe the validity of this formula because the sum of estimated user ratings of a
single user weighted by approximation error has something to do only with the user feature vector nomr and has nothing
to do with the item feature vector. The formula doesn’t look right to us.

In this paper, we propose a new regularization framework as follows:
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, where 3j and  are regularization vectors.

Using Stochastic Gradient Decesnt to solve for optimal values of parameters including the regularization vectors, we
obtain the following formulas:

If we solve for the vector [ using the partial derivative of the user feature vector as before, we would obtain the
following formula :
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The complexity of the formula makes us more willing to believe the validity of our regularization framework. We test
our new framework of regularization on the LDOS-CoMoDa dataset [10] and the MovieLens dataset [11] to compare
against the constant regularization framework. We show that our approach yields superior performance on both dataset

and both the accuracy and fairness metrics.

4 EXPERIMENT

LDOS-CoMoDa data-set contains 121 users and 1232 movies with contextual information. We do not take advantage of
the contextual information and just use the user rating matrix values for testing. We compare our new regularization
framework (green color) against the constant regularization coefficient framework (blue color). We do grid search on the
gradient descent learning steps and constant regularization coefficients and obtain the following results in MAE and
Degree of Matthew Effect [4]:

Fig. 1 Comparison between Fig. 2 Comparison between
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From the experiment results, we notice our new framework produces a much smoother surface of MAE scores and the
MAE scores are much better than the constant parameter choice. The best MAE goes to 0.68, which is quite competitive
compared with most recommender system algorithms. As for Degree of Matthew Effect, our algorithm is competitive as

well, as illustrated in Fig. 2.

The MovieLens small dataset contains 610 users and 9724 movies. We conduct our experiments and illustrate the results
below (Fig.3 and Fig. 4):
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Our observation from MovieLens small dataset is the same as LDOS-CoMoDa dataset. Our new framework achieves a

best MAE score of 0.62, which is much better than the old regularization framework. Our method is also superior by

fairness metric Degree of Matthew Effect.

We test our algorithms on large scale dataset for performance analysis. We use MovieLens 20M data set that consists of
138493 users and 26744 items. Our framework produces an MAE of 0.77 while the best MAE of constant regularizer is

0.80. Our framework produces smoother surface and more robust result overall. When evaluated in fairness metrics, the

two frameworks are comparable.
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5 DISCUSSION

We notice an interesting phenomenon for regularization frameworks: When we try to solve for regularization coefficients,
whether they are constants or vectors, the assumption that regularization coefficient values are positive is contradictory

to the minimization goal of the loss function. This interprets the reason why regularization solves the overfitting problem.

But on the other hand, this poses problems for our computation. We are optimizing in two opposite directions if we
consider the regularization coefficients as variables to be optimized. If we apply the classic plug-in method to compute
for the optimal values of regularization coefficients, the formulas look pretty weird, because the optimal values of user
feature vector and item feature vector will lead to a zero valued regularization coefficient. This makes the parameter
estimation of regularization coefficients using plug-in method a very difficult problem.

If we do not apply plug-in method, but consider regularization coefficients as variables, we would first need to answer
the theoretical question whether the system of equations we try to solve is a well-posed problem, and what should we do
if it is not. We notice there are literature on regularization of regression problems, but we need to pay more attention to
other machine learning domain as well.

6 CONCLUSION

In this paper, we discuss the validity of popular regularization techniques of matrix factorization based recommender
system. We prove by mathematical calculation that the common practice of regularization is not valid. We propose a
different regularization technique that resorts to vector dot products to penalize the complexity of user feature and item
feature vectors. We prove in the experiment section that our method outperforms the common practice in both MAE
metric and Degree of Matthew Effect metric.

In future work, we would like to explore the possibility of finding the optimal form of regularization and selecting the

best parameters. We believe our method could be generalized to other algorithms such as ensemble tree models.
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