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Abstract

In this paper we put forward a design for a multicom-
puter system based on a network of workstations which
we call COMA-BC. It has a common address space in
which a shared variables programming model can be
used. The management of the shared address space is
performed in a similar way to that in existing multipro-
cessor COMA systems. To be exact, the shared address
space is divided into blocks, and their copies reside in
the attraction memories of the workstations.

The key piece in this system is the coherence cache
protocol that we have developed. The goal of the proto-
col is to minimize the number and size of the messages
travelling through the network so that the parallel appli-
cations can be executed without creating inconsistencies
in the different copies of the blocks residing in the dif-
ferent nodes of the system.

The proposed system has not been built, but a simula-
tion environment has been specifically developed. This
environment allows the simulation of the execution of
parallel standard applications in COMA-BC. This sim-
ulation environment is driven by execution. Using the
results and a simple analytic madel, results have been
obtained concerning the performance of the execution
of standard parallel applications in termns of accelera-
tion and efficiency. These results show the viability of a
COMA-BC system as a way of exploiting parallelism at
a low cost using workstations.

1 Introduction

COMA-BC [20] is a multicomputer systern based on a
set of workstations connected within a standard shared
medium network. This network has only one physical
line which is used to send and receive all the information
exchanged in the system. COMA-BC is a shared merm-
ory system with physically distributed memory modules.
The different processors use the same address space and
a fraction of this space is common for all of them [16).

Each workstation in COMA-BC is standard UNIX-type.

The idea of a multicomputer system based on a net-
work of workstations is not original [17, 2], but COMA-
BC has new features consisting of the imanagement of
the shared memory using the saine techniques used in
COMA rmulticomputers [11].

The design target of COMA-BC is to miniinize the
communication time in parallel workloads. The use of
a standard local area network supposes that the comn-
munication time depends on two factors: the number of
interchanged messages and their size. In the COMA-BC
design the main concepts underlying COMA multipro-
cessors have been used to enable cormnunication with a
small number of small messages.

The shared memory space in COMA-BC is divided
into blocks. Each workstation (system node) can have
access to a copy of each block. Tlese copies are sent
through the LAN to the nodes that need the informma-
tion. The blocks have no home nodes, that is, there
is no node where the information of each block resides
permanently. Each node has a copy of the block, but
it is just a copy. Thus, the local memnory of each node
can be considered a cache of the shared address space;
this local memory is called attraction memory (AM), us-
ing the usual terminology of the multiprocessor COMA
systern . The memory blocks stored in the attraction
memory are cache copies of the blocks of the shared ad-
dress space. That is why we call thein "cache blocks”.
In the same way as in a COMA multiprocessor, the only
physical location of the shared address space is the set of
attraction inemories, that is, the set of cache inemories
of the system.

When one processor tries to use a specific location of
the shared space there are two pausibilities: either a local
copy is stored in the local attraction memory or there
is no local copy in the attraction memory. 1f a copy is
not available then a.cache miss happens. That miss is
always related to a read or write memory operation.

Oue cache block can have multiple copies in different
nodes; that is why one of the key clements in the de-
velopment of COMA-BC is its coherence protocol. It is



responsible for maintaining the coherence of the infor-
mation stored in the different cache copies of each block
of the shared space. This coherence protocol is a cache
coherence protocol. The COMA-BC protocol developed
is invalidation-based and uses a hybrid snoopy and di-
rectory scheme. The reason for using this technique is to
best exploit the characteristics of the shared medium lo-
cal area network in two ways: 1) each node can see every
block movement through the network, 2) each node can
send a message that is received simnultaneously by all the
nodes. The coherence directories are used to eliminate
race conditions. A detailed description of the directories
systemn is given later in this paper.

A COMA-BC system can be built in two different
ways: 1) with standard workstations, in which the man-
agement of access to the shared address space is car-
ried out by software running in the local workstation,
2) with modified workstations using a specifically de-
signed memory controller that manages every access to
the shared space and every action related to the coher-
ence protocol.

In order to check the correctness of COMA-BC, simu-
lation and verification studies have to be done on three
levels: 1) Verification of the coherence protocol for sys-
tems with 2 and 3 nodes. 2) Simulation of the system
with coloured Petri Nets and with other models based
on finite state machines, up to 100 nodes. 3) Simulation
based on a synthetic workload using Ptolemy.

A multiprocessor simulation system has been specifi-
cally developed for measuring the capacity of a COMA-
BC system. This simulation system is program driven;
a significant number of standard parallel applications
have been executed on it. The applications belong to
the SPLASH-2 parallel benchmark. The real execution
of such applications has permitted a series of interesting
indexes to be obtained: such as, the number of accesses
to the shared address space, the nuinber of access misses,
the number of network messages needed and the size of
the named messages. At the same time a simple analytic
model has been developed to provide temporal indexes
(speedups) using the results from the simulation system.
The analytic model uses the results of the multiproces-
sor simulation as inputs together with the data relative
to the processing speeds of the nodes and the description
of the physical characteristics of the local area network
used to build COMA-BC.

The results obtained show that COMA-BC can be
used as a platform for exploiting parallelisin with a stan-
dard LAN interconnecting workstation.

This article is organized as follows: firstly a detailed
description of COMA-BC is given. Secondly, due to its
importance, the functioning of the COMA-BC coher-
ence protocol is specified. Thirdly, the simulation and
verification procedure of the correctness of COMA-BC is
explained. Fourthly, the multiprocessor simulation en-
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Figure 1: COMA-BC Architecture

vironment is described, giving special emphasis to the
performance indexes obtained from the COMA-BC siin-
ulation. After that the analytic inodel is studied which
allows us to obtain performance results in terms of ac-
celeration for the various standard parallel applications
executed in the simulator. Finally, the experimental re-
sults obtained are explained and discussed and the main
conclusions of this work are summarized.

2 Description of a COMA-BC
System

The architecture of a COMA-BC system appears in fig-
ure 1. COMA-BC systems are made up of a set of nodes
connected by a common 1nediumn interconmection net-
work. The nodes are workstations. The network is a
standard LAN. The coherence messages are sent and re-
ceived using the network. Each node lLias a processor
that uses the information contained in its local inemory.
The local memory of each node is divided in two parts:
exclusive and attraction memory. Exclusive inemnory
contains the text of the local processor programs and
the data that is used exclusively by the local processor.
Attraction memory plays the role of a cache memory in a
shared address space; the data needed for several nodes
is stored in this address space. The exclusive memory
works in the same way as the main memory of an ordi-
nary computer; that is the reason why we focus on the
description of the attraction memory.

As mentioned above, attraction memories are the
physical support, and the ouly physical support, of the
shared address space of the different nodes. In addition,
each attraction mmemory works as a cache of the shared
space. Each attraction memory works as a cache of the
said space, but there is no other memory component in
the systein, apart from the attraction memories, that
act as a physical support. Accordingly, that shared ad-
dress space must be managed using the same rules as
those used in COMA multiprocessors. In this kind of
gvstermn, information does not reside permanently in the



same host node, but the information moves through the
system, residing in the nodes that most frequently access
that information. All the nodes have the same charac-
teristics for accessing and managing the information.

The shared address space is divided into cache blocks.
Each attraction memory is divided into a set of frames,
each of which can store one cache block. The relation-
ship between blocks and frames is established by a direct
mapping. In COMA-BC each attraction memory can
store one copy of the whole shared address space. This
is due to an initial design decision that tends to minimize
the number of necessary operations in the network thus
making a replacement mechanism unnecessary. The dis-
advantage of this decision is that the attraction memo-
ries do not make up pieces of memory that can be joined
together to form a larger cormmon space.

3 COMA-BC Protocol

The COMA-BC cache coherence protocol has been espe-
cially designed to be able to manage the cache coherence
in the COMA-BC system while taking into account an
important design restriction: the interconnection sup-
port is a standard shared medium local area network
with one physical line interconnecting computers. The
best example of this kind of network is an Ethernet net-
work.

The COMA-BC protocol is built on the basis of as-
signing a state to each copy of a cache block (from now
on simply a ”copy”).This state is used to indicate that
the information contained in the copy is valid, and can
be read directly by the processor, or that the information
contained in the copy is not valid because a copy of it
has been written on another node by the corresponding
processor. If the information is not valid and the proces-
sor tries to read it, then the coherence controller detects
a cache miss and it should request a valid copy. State
information is also used by the coherence controller to
indicate whether a processor can write on a copy without
coherence violation. COMA-BC protocol uses five states
for each copy. These states are: 1) Invalid, 2) Clean, 3)
Dirty, 4) Invalid awaiting RRI (briefly 1ARRI), and 5)
Invalid awaiting RRB (briefly IARRB).

The COMA-BC protocol is invalidation based. This
means that when a node writes a copy, its coherence
controller sends a message through the network in such
a way that every other node in the system receives the
message and invalidates its own copy. This behavior
is specially well adapted to shared medium networks
that are able to send broadcast information with just
one message. In addition, every coherence controller re-
ceives all messages sent through the network by every
node; this means that it receives all of the coherence in-
formation for every copy of a cache block and uses it to
maintain state and directory information updated. This

is usual in snoopy bus coherence protocols.

Besides the state information of each copy, the
COMA-BC protocol uses the concept of the owner node
of a block. The only processor that can write over a copy
is the owner node processor. Each coherence controller
manages a directory containing the owner nodes of ev-
ery block of the shared space. The ownership councept
is dynamic, changing in the execution of the programs
to those nodes that need to write ou each block. When
a non owner node needs to write over its copy, it must
first ask the owner in order to get the ownership of the
block; to do this it uses directory information to locate
the owner. When a node gains ownership, it can write
over its copy. Accordingly, the directory managed by
each coherence controller has as many entries as blocks
in the shared space and each entry stores just one num-
ber from 1 to n, where n is the nunber of nodes in the
systemn. To this end, each node in a COMA-BC systemn
has one assigned nuimnber that does not change and is
used to identify each node in the coherence directories.
A node will consider itself to be tlie owner of a block
when its own node number appears in the correspond-
ing directory information. The protocol must guarantee
that just one node is the owner of each block.

4 Validation of the COMA-BC
Protocol

The study to validate the COMA-BC protocol has to be
carried out on three levels: 1) Different simnulations have
been done using Petri Nets and other models based on
finite state machines. 2) The verification of the prato-
col for systems with 2 and 3 nodes has been done. 3)
The simulation of the global operation of COMA-BC
has been performed. We shall now cornment on each of
these three levels.

1) Simulations of the protocol using Petri Nets.
Firstly, the protocol has been formalized using Colored
Petri Nets [13]. Using this formalization the initial de-
sign errors were easily detected and corrected. The de-
velopient of this forinalization was done using the De-
signCPN [10] software.

2) Verification of the protocol. The verification of the
protocol has been carried out using the method of ex-
pansion of states applied to a COMA-BC model based
on a finite states machine. The said study has been car-
ried out using the software tool Mury [7] version 3.0.
Due to the problem of the explosion of states inherent
to this type of verification, the simulation could only
be performed for two and threc nodes. For these, as
the verification is an exhaustive technique, the appear-
ance of protocol errors has been completely ruled out.
For systens larger than three nodes, the samme software
ti:ol has been used with the same finite states machine



model in order to obtain simulation results with up to
100 nodes. There were no detected errors in the normal
working of the protocol.

3) Global simulation of the system. Finally, a global
sirnulation of the system has been carried out using the
simulation tool Ptolemy. In this third phase of the val-
idation, the simulation was driven by synthetic work-
loads. Basically, using the simulation environment, the
different elements of the COMA-BC system have been
reproduced, including the processor, the coherence con-
troller, the network interface and the intercommunica-
tion network. Basing ourselves on the experiments car-
ried out, we have been able to rule out the existence
of working errors in the system, considering it globally,
where these errors are due to design faults in the COMA-
BC protocol.

5 The COMA-BC Multiproces-
sor Simulation Environment

The prototype of a COMA-BC system has not been
built. Thus, to get results concerning the performance
of the proposed system it has been necessary to build a
multiprocessor simulation environment which, together
with an analytical model, allows the simulation of stan-
dard parallel applications and, finally, to obtain perfor-
mance indexes of the parallel execution in terms of ef-
ficiency and speedup. In this section, we shall explain
the multiprocessor simulation environment and in the
following section we shall comment on the characteris-
tics of the analytic model used.

The developed simulation environment is based on
carrying out a working simulation of COMA-RBC driven
by the execution of standard parallel applications [6,
15, 3]. The said sinulation is performed using stan-
dard workstations connected via a 10 Mbps Ethernet
network. Each workstation reproduces one COMA-BC
node executing its part of the parallel application and
generating all the memory references to the shared ad-
dress space that a real COMA-BC systern would gen-
erate. Each workstation executes two processes which
implement the simulation and which we shall call the
functional emulator and the architecture emulator, rep-
resenting the application and the coherence controller
respectively.

The architecture ernulator is a process that reproduces
the functions of a COMA-BC coherence controller. It
receives requests for access to the shared address space,
manages access misses and executes all the protocol ac-
tions needed to maintain the systemm coherence.

The functional emulator is a process that simulates
the execution of the part of the parallel application that
is executed in a particular COMA-BC node. When this
functional emulator is executed, in reality, what is ex-

ecuted in the workstation processor is the part corre-
sponding to the parallel application, as the functional
ernulator builds itself by instrumenting every access to
the shared address space [8]. To be exact, this instru-
mentation consists in detecting all accesses to the mem-
ory address that are inside the shared space and to re-
place them with a function call that sends a message
to the architecture emulator. Once the functional em-
ulater has sent the request, it waits until it is resolved.
This instrumentation is implemnented by expanding the
source code of the parallel application. To do this the
tool Pegaxo [12] is used. This expanded source code can
be assembled and linked to the destination workstation
and the resulting executable code is what makes up, in
fact, the functional emulator.

The described simulation environment allows the ex-
ecution of parallel applications developed in C with the
programiming style based on the usec of the Argonne [18]
PARMACS macros. Pegaxo expands the PARMACS
macros and replaces each memory access by an invoca-
tion to a certain procedure. Pegaxo lias been developed
for HPPA and SunSPARC architectures. 1t is important
for this expansion process that the processors used as the
base for the simulation are RISC architectures because
it reduces the complexity of analyzing the source code
as the set of mermory access instructious is very siinple.

To manage the various parallel processes involved in
the simulations (that is: pairs of functional-architecture
emulators in the different nodes) and to impleinent the
comrnunications between them, PVM has been used.
PVM allows the sending and receiviug of protocol events
between the different architecture emulators (there is
one architecture emulator on each workstation) and the
sending and receiving operations between the functional
and the architecture emulators on each workstation.

The main drawback of PVM in this simulation is that
the messages it uses to access the network (that is, those
that reproduce the protocol events between nodes) cau-
not be broadcast messages, they must have oue partic-
ular node destination. Then, it is impossible to send
events with just one access to the shared medium of the
network. To avoid this problem, each architecture enu-
lator simulates the sending of 2 PVM message with the
protocol event to each one of the remaining architecture
ermulators and waits for the confinnation from each one
of themn.

As explained before, the COMA-BC multiprocessor
simulation allows us to obtain indexes of how parallel ap-
plications really behave in a COMA-BC system. These
indexes are obtained from a series of statistical variables
updated during the cxecution of the simulation; some of
them are updated by the functional emulator and otliers
by the architecture emmulator. The information obtained
fromn these statistical variables is finally reduced to a set
of indexes as follows: 1) i: total number of executed



instructions. 2) m: total nurnber of read and write exe-
cuted instruction. 3) s: total number of read and write
instructions sent to the shared address space. 4) e: to-
tal number of events or messages interchanged using the
network to manage access misses. 5) l,: average size
of messages interchanged in the network, expressed in
bytes per message. These indexes are obtained for each
one of the workstations in the parallel simulation envi-
ronment, and thus refer to how each parallel branch of
the application has been executed.

6 Analytical Model

A simple analytic model has been developed to obtain
performance results of the parallel applications execut-
ing in a COMA-BC system. This model is based on the
consideration that all the workstations in COMA-BC are
physically identical. The said analytical model has both
input and output data. The input data of the model can
be divided into two subsets: 1) The results obtained in
the multiprocessor sirnulation through the colection of
statistical variables explained in section 5. 2) The pa-
rameters describing the physical characteristics of a real
COMA-BC system. Inside the second group there are
two more subsets: i) Parameters describing the physical
characteristics of the processor, including the duration
of the processor cycle time (7) and the number of cycles
needed to execute each instruction. ii) Parameters de-
scribing the behavior of the interconnection network of
the workstations; which have been chosen representing
the behaviour of the interconnecting system by means
of the model LogP [4].

Using the analytic model, execution time of a paral-
lel application in a COMA-BC system can be obtained.
This index represents the execution time of the same
application in a real COMA-BC system with the same
number of processors as used in the simulation. Us-
ing this index, significant performance indexes, such as
speedup and efficiency for each parallel workload for the
different processors, can be obtained.

The total execution time of the parallel application
is calculated frorn the beginning of the execution of the
code, supposing that this is simultaneous for all the pro-
cessors, up to the moment the parallel code ends. As the
different workstations can execute parts of the workload
of different sizes, the execution time T(n), in a set of n
workstations, is defined as the biggest of all the execu-
tion times calculated for all the workstations. Note that
in the simulation phase, the output data described in
section b refers to each workstation involved. From this
point, these results refer to the workstation which has
the biggest workload.

The analytic model obtains the total execution tine

in a set of n workstations as the sum of two tenns:
T(n)=1t:.+t,

where t. represents the time spent to execute that part of
the workload that does not refer to the communication
through the network. However, t, represents the tiine
taken in communications through the network that are
necessary to execute the workload.

To calculate t,, the tiine speut in the execution of
each instruction is considered as being divided into three
parts: 1) a fixed time for each instruction which we call
t;; 2) an extra fixed tiwne £, if the instruction is a read
or write to memory instruction; 3) another extra fixed
time t,, if the read or write to memory falls inside the
shared address space. Then:

t. = it; + mt,, + st, = (ic; + mey, + 8¢,)T

These three terms ¢;, ¢,p and ¢, represent the times t;,
t,. and t, expressed in number of clock cycles of the
processor. They constitute the three input parameters
of the model and they describe the number of cycles
necessary to execute each instruction. They must be
adjusted (the same as 7) as a Function of the physical
architecture of the workstations used.

To calculate ¢, that same time is considered to include
all the operations necessary to execute, using the net-
work, all the read and write instructions carried through
the shared address space and that have generated cache
misses. In other words, the time ¢, refers to all the 1nein-
ory references that need the network to be completed.
t, can be expressed siinply as

t, = ew

, where w represents the averapge tiine needed to send
an event or message through the network. In order
to calculate w we use a representation of the network
based on the LogP model. To be exact, the frequency
of the messages is supposed to be low enough as to ig-
nore the time term between two consecutive messages
("gap”) [14]. Then w can be expressed as:

w= Ou(lm) + o, (lm) + L(ln) = a + by,

where o,(l), o-(l) and L(l), are respectively, the fixed
cost of sending a message, the fixed cost of receiving a
message and the latency of the network for messages of |
byte. The terms a and b are the input parameters of the
model that describe the behavior of the interconnection
network. The term [,,, represents the average size of the
messages interchanged, as mentioned above.

7 Experimental Results

The execution of six applications of Splash-2 [21] has
been siinulated. Specifically LU, Ocean, FFT, Radix,



Barnes-Hut and Radiosity. The workload for each ap-
plication is the standard which is described in [21].

The execution of the named applications has been
done in a simulated COMA-BC system with 2, 4, 8 and
16 workstations. To execute the parallel simulation, the
same number of workstations as simulated nodes has
been used, all of them connected with a 10 Mbps Ether-
net network. A functional emulator and an architecture
emulator is executed on each workstation. The results
obtained are detailed in the table 1. These results corre-
spond to the workstation that had to execute the biggest
workload in the simulation; that is, the node that lim-
its the total execution time of the application. All the
simnulation experiments were carried out using a block
size of 256 bytes. The reason is that this size allows us
to obtain a compromise between spatial locality and the
access miss rate [20].

With these simulation results and using the analytic
model proposed in the previous section, an estimation
of the execution time, speedup and efficiency can be ob-
tained for a specific COMA-BC systemn. The COMA-BC
system proposed is based on workstations with a cycle
time of r 7 ns, that is, a clock frequency of 167 MHz.
In accordance with the data obtained from standard ar-
chitectures, the values for the rest of the parameters
are: ¢; = 1 cycle, ¢, = 2 cycles and ¢, = 10 cycles.
There are five possibilities for the interconnection net-
works: a) Ethernet network at 10 Mbps with the stack
of TCP/IP protocols, b) Ethernet network at 10 Mbps
without TCP/IP and with active messages, c) Fast Eth-
ernet at 100 Mbps, d) FDDI network with active mes-
sage layer [19] and e) Myrinet network [1] (ATM with
fast messages). Each of these methods of interconnec-
tion can be assigned input parameters, which we call a
and b, for the analytic model. These two parameters are
obtained from the bibliography [14, 19, 9] and are de-
tailed in the table 2. Finally, feeding the results from the
simulation and the parameters that describe the specific
COMA-BC system into the analytic model, speedup and
efficiency data is obtained (table 3).

From the results obtained, it can be concluded that
a COMA-BC system with a fixed low cost of sending
and receiving messages to the network and low latency
in transmissions to the network is viable for obtaining
speedup in the execution of parallel applications over
a network of workstations. Unfortunately, there are
no other performance results referring to simnilar sys-
tems, that is, systems based on a network of worksta-
tions with a prograinming model of shared variables.
There are results, however, of speedup for multipro-
cessor systems with similar memory management, such
as SGI-Challenge and Origin2000 [5]. Comparing with
these systems, the speedups obtained in the best of the
cases considered for COMA-BC (a Myrinet network) are
about half that of the speedups of the aforesaid systems.

This is not much in absolute terms but it can be cousid-
ered a good result, if we take into account that they have
been obtained using a system costing much less than half
that of the former and using standard resources (work-
station, interconnection network).

It is clear that the counstruction of a COMA-BC sys-
tem based on an interconnection network with high fixed
costs of sending-receiving messages and low bandwidth
is not viable; such systems could be an Ethernet at 10
Mbps or Fast-Ethernet at 100 Mbps with TCP/IP. If
the fixed cost of sending a message is reduced, the re-
sults iinprove considerably, as can be observed when,
in the Ethernet 10 Mbps network, the TCP/IP stack is
substituted for active mnessages.

8 Conclusions

We have shown that COMA-BC is an example of how
a distributed shared memory system over a network of
workstations can be iinplemented. We have also estab-
lished the usefulness of applying the concepts of COMA
multiprocessors to the design of COMA-BC. The idea of
having only ”cache copies”, that is, copies of the cache
blocks that migrate to those nodes that nced them at
each instant has been seen to be useful for carrying out
this design. Moreover, having separated the concept of
cache block of the shared space with respect to the pages
of virtual memory, the size of the blocks used is small,
thus less time is needed to travel through the intercon-
necting network.

The simulation study shows the viability of the pro-
posed system for exploiting parallelism in a network of
workstations. In the frst version, it is not passible to
use a standard network in COMA-BC because of the
loss of performance. To be exact, we have shown that it
is not possible to use a standard Ethemet network with
the TCP/IP protocol stack. It is necessary to use lower
latency networks and protocol stacks with lower costs
of sending and receiving messages, such as the protocol
stack of active messages.

Finally, it is necessary to emphasize that the key con-
cept in COMA-BC is the cache coherence pratocol, be-
cause it manages the coherence of the block copies in
the different workstations without an excessive increase
of traffic in the network. This is a difficult task because
the proposed systern is not hierarchical and because a
shared mediuin interconnection network is used.



Aplication | N.proc i m s e Im
LU 2 111.120.576 | 9.532.517 9.455.220 4.740 93,19
4 61.426.112 | 5.319629 | 5.276.108 | 5.877 | 96,57
B 35.601.344 | 3.126.284 | 3.097.428 | 7.850 | 99,87
16 22.216.460 | 2.087.982 ( 1.991.933 | 12.244 | 104,19
Ocean 2 717.016.960 | 85.066.107 | 76.334.645 | 86.482 | 91,60
4 366.595.168 | 43.372.635 | 38.971.205 | 180.019 | 93,35
8 190.834.640 | 22.602.074 | 20.283.136 | 168.036 | 99,71
FFT 2 117.054.488 | 7.720.275 | 6.635.076 | 32.352 | 87,50
4 58.921.556 | 3.899.197 | 3.354.554 | 34.887 | 93,61
8 20907.108 | 1.995.776 | 1.720.205 | 34.776 | 98,39
16 15.638.624 | 1.100.263 942.759 37.334 | 103,26
Radix 2 334.413.600 | 35.459.178 | 11.317.628 | 82.748 | 96,73 |
4 168.359.968 | 17.862.344 | 5.775.935 | 58.873 | 111,23
8 85.498.006 | 9.087.985 | 3.023.299 | 52.396 | 112,29
16 48.170.856 | 5.209.282 | 2.080.522 | 55.677 | 128,68
Barnes-Hut 2 001.257.408 | 139.745.300 | 82.960.168 | 100.758 | 89,70 |
4 450.539.424 | 69.787.588 | 41.469.285 { 116.681 | 99.20
B 245.949.632 | 37.058.161 | 22.926.158 | 127.303 | 112.48
Radiosity 2 508.701.008 | 51.124.661 | 18.256.955 | 306.004 | 91.83
4 297.416.416 | 20.905.983 | 7.623.726 | 230.898 | 94.37
8 150.688.000 | 11.969.352 | 4.515.872 | 188.231 | 98.94

Network a (us) | b (us)
Ethernet-10 Mbps TCP-1P 200 | 0.8 |
Ethernet-10 Mbps active messages 15 0.8
Ethernet-100 Mbps TCP-1P_____ 200 0.08
FDDI acrtive messages 15 0.08
Myrinet 10 0.026

Table 1: Experimental results obtained in the simulation of the execution of several Splash-2 applications

Table 2: Input parameters for the analytic model to the characterization of the interconnection network

Aplication :;:Ecr Et.hl:-'IDMbps act.msgs. ps _f:;ge;dn;];s FDDI Myrinet
%ins E(n) n (@) [S(m) | E(m) [ S(m) | E(u) | S(n) [ E(n)
LU 2 099 [ 049 | 142 [ 0.71 | 1.13 | 056 | 1.72 | 0.86 | L.:8 | 0.89
4 1.3 | 028 | 198 | 0.49 | 1.38 | 0.34 | 2.87 | 0.71 | 3.06 | 0.76
8 104 013 | 2.19 | 0.27 | 1.35 | 0.16 | 4.16 | 0.52 | 4.76 | 0.59
16 074 ) 004 | 1.76 | 0.11 | 100 | 0.06 | 467 | 0.20 | 6.04 | 0.37
Ocean 2 064 | 032 | 1.15 | 057 | 0.77 | 0.38 | 1.60 | 0.84 | 1.82 | 091
4 039 | 0090 | 094 | 023 | 052 | 0.13 | 2.26 | 0.56 | 2.81 | 0.7
8 044 | 005 | 112 | 0.14 | 06 | 0.07 | 3.25 | 0.4 | 442 | 0.55
FFT 2 026 | 0.13 | 062 | 031 | 033 | 0.16 | 1.28 | 0.64 | 1.52 | 0.76
4 025 | 006 | 066 | 0.16 | 034 | 0.oB | 1.8 | 045 | 24 0.6
8 026 | 003 | 069 | 0.08 | 0.35 | 0.04 | 2.31 | 028 | 3.43 | 042
16 024 | 001 | 065 | 004 | 0.34 | 002 | 25 | 015 | 41 | 025
Radix 2 026 | 013 | 060 | 020 | 0.34 | 0.17 | 1.28 | 0.64 | 1.53 | 0.76
4 036 | 0.09 | 083 | 020 | 05 | 0.12 | 2.17 | 0.54 | 2.76 | 0.69
8 043 | 0.05 | 103 | 0.12 | 06 | 007 | 3.19 | 0.39 | 443 | 0.55
16 039 | 002 | 092 | 0.05 | 0.58 | 0.03 | 353 | 022 | 55 | 0.4
Barnes-Hut 2 065 ]| 032 | 1.17 | 058 | 078 | 0.30 | 1.68 | 0.84 | 1.8 0.9
4 068 | 017 | 145 | 036 | 088 | 022 | 281 | 0.7 | 321 | 08
8 064 | 008 | 1.47 | 0.18 | 0.89 | 0.11 39 | 048 | 4.91 | 0.61
Radiosity 2 0.17 | 0.08 | 046 | 023 | 023 | 0.11 | 1.28 | 064 | 1.:3 | 0.86
4 023 | 005 | 063 | 0.15 | 0.31 | 0.07 | 1.95 | 048 | 28 0.7
8 026 | 003 | 0.64 | 0.08 | 0.39 | 0.04 | 1.67 | 020 | 2.17 | 0.27

Table 3: Performance results expressed as speedups and efficiency for several Splash-2 applications in COMA-RBC
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