2202.11813v1 [cs.CR] 23 Feb 2022

arxXiv

AirGuard - Protecting Android Users From Stalking Attacks By
Apple Find My Devices

Alexander Heinrich
Secure Mobile Networking Lab
Department of Computer Science
TU Darmstadt, Germany
aheinrich@seemoo.de

ABSTRACT

Finder networks in general, and Apple’s Find My network in par-
ticular, can pose a grave threat to users’ privacy and even health
if these networks are abused for stalking. Apple’s release of the
AirTag—a very affordable tracker covered by the nearly ubiquitous
Find My network—amplified this issue. While Apple provides a
stalking detection feature within its ecosystem, billions of Android
users are still left in the dark. Apple recently released the Android
app “Tracker Detect,” which does not deliver a convincing feature
set for stalking protection. We reverse engineer Apple’s tracking
protection in iOS and discuss its features regarding stalking de-
tection. We design “AirGuard” and release it as an Android app
to protect against abuse by Apple tracking devices. We compare
the performance of our solution with the Apple-provided one in
i0S and study the use of AirGuard in the wild over multiple weeks
using data contributed by tens of thousands of active users.

CCS CONCEPTS

« Security and privacy — Software reverse engineering; Privacy
protections; - Computer systems organization — Embedded
systems; Redundancy; Robotics; « Networks — Network reliabil-

ity.

KEYWORDS

Privacy, location tracking, stalking, reverse engineering, Bluetooth

1 INTRODUCTION

Apple’s release of the AirTag in April 2021 drastically changed
the application domain of so-called “key finders” or “trackers,” i.e.,
battery-operated devices that can be attached to personal items of
importance and allow to locate these items if lost, misplaced, or
stolen.

While the first generation of finders by different manufacturers
was typically directly linked to the user’s smartphone and, hence,
limited in range and capabilities, the current finders operate using
large-scale finder networks such as Apple’s Find My network [6, 37].

In the case of loss or theft, the owner can receive a detailed
location report of the device. AirTags are linked to Apple IDs and
the owner can then view the location in the Apple Find My app on
an iPhone, Mac, or Apple Watch (i.e., linked to the same Apple ID).
The accuracy of these reports in practice is around 30 m in urban
environments [21].

Apple’s privacy-first approach to the Find My network delivers
leading security and privacy properties for finder networks. It was
found to protect the location privacy of the legitimate AirTag owner
against outsiders as well as against Apple’s ecosystem [21]. The

Niklas Bittner
Secure Mobile Networking Lab
Department of Computer Science
TU Darmstadt, Germany
nbittner@seemoo.de

Matthias Hollick
Secure Mobile Networking Lab
Department of Computer Science
TU Darmstadt, Germany
mbhollick@seemoo.de

security and privacy of many other finder systems was in a dismal
state prior to the release of the AirTag [36].

However, AirTags can also be used for nefarious purposes. Given
the diminutive size of only 3 cm, they can be easily hidden, thus
allowing for tracking or stalking unsuspecting victims. The ubiq-
uitous nature of the Find My network, combined with its high
accuracy and low entry cost, lowers the bar for abuse. The media
reacted promptly with articles linking AirTags with domestic abuse
and stalking attempts [13, 18, 28]. Moreover, exposed individuals
such as celebrities, activists, or critical journalists might further
be targeted by paparazzi, secret services, or oppressive regimes,
respectively. AirTag abuse is not limited to stalking or domestic
abuse, but they are also used to identify the parking location of valu-
able cars, allowing to steal the cars thereafter [25, 28]. Some of the
known abuse cases were uncovered due to the automatic tracking
protection feature offered by Apple devices such as iPhones. The
tracking protection identifies suspicious AirTags in the user’s sur-
roundings and notifies the user when a device has been following
them for a prolonged period [28].

AirTags can potentially endanger all non-Apple users in the afore-
mentioned abuse scenarios because other smartphone ecosystems
like Google’s Android do not include compatible and mandatory
tracking protection. It took Apple more than six months before
releasing an Android app called “Tracker Detect” on December
11, 2021, to remedy this issue partially. Unfortunately, this app is
ill-suited for the purpose and not usable in practice, as it requires
the user to perform repeated manual scans to find a tracking device
hopefully (see Section 2.3). As a result, Apple’s current efforts leave
all non-Apple users wide open for abuse.

Our goal is to provide non-Apple users with comprehensive
anti-tracking protection. We emphasize automatic operation and
prioritize user interface design to support non-experts. Lastly, our
solution eschews including features that could be used for abuse.

Our key contributions are:

(1) We reverse-engineer Apple’s tracking protection in iOS.

(2) We design, build and release the open-source! Android app
AirGuard to protect people from AirTag abuse.

(3) We evaluate AirGuard and compare it against the tracking
protection implemented in iOS.

(4) We analyze an anonymous dataset generated by AirGuard
users to analyze tracking attacks in the wild.

This paper is structured as follows: Section 2 introduces the Find
My network that powers AirTags and other Find My devices. In
Section 3, we reverse-engineer the tracking detection in iOS. We

!https://github.com/seemoo-lab/AirGuard

https://orcid.org/0000-0002-1150-1922
https://orcid.org/0000-0002-9163-5989
https://github.com/seemoo-lab/AirGuard

explain how trackers are detected and when the system notifies
the user. In Section 4, we introduce our app AirGuard. We describe
its features, highlighting the user interface design and the tracking
detection algorithm. Section 5 evaluates AirGuard in three scenarios
and compares it to the iOS tracking detection algorithm. In Section 6,
we analyze the data from our user study. We present how many
Find My devices are in use and how many users of our app have
been notified about a potential tracker. We conclude our work in
Section 7.

2 BACKGROUND AND RELATED WORK

This section describes the essential operation of Bluetooth item
finders with a finder network, discusses details of Apple’s Find My
network, characterizes several stalking protections in place, and
introduces work on analyzing Apple wireless services and other
Bluetooth item finders.

2.1 Bluetooth Device Finders

Many Bluetooth-based item finders, or key finders, are now using
finder networks aiding to find lost or misplaced trackers [8, 35].
Those networks are generally based on apps from item finder man-
ufacturers. Any user of the app helps to find lost or stolen item
finders. In principle, whenever an item finder is discovered via
Bluetooth with the app, the app automatically reports the current
location to the manufacturer, who then sends a notification of the
discovered device to the item finder’s owner. The ability to locate
lost devices and the accuracy of reported locations mostly depends
on the number of Android app users. iOS apps cannot scan for
Bluetooth devices in the background, limiting the functionality of
the finder network.

This area has gained much new attention since Samsung and
Apple have created their Bluetooth item finders. Both companies
created enormous finder networks that utilize active smartphones
as finder devices [31].

Several researchers analyzed key finders from manufacturers like
Tile, TrackR, and Nut for privacy and security. Two new privacy-
preserving and end-to-end encrypted key finder protocols have
been proposed [19, 36].

2.2 The Find My Network

We summarize the features of the Find My network in this section.
We describe its custom Bluetooth Low Energy (BLE) advertisement
format and the working of the device finders available. For addi-
tional details on the Find My network and its cryptography, we
refer to [21]. The authors also created OpenHaystack to build cus-
tom AirTag-like key finders [20]. Selected details about the Find
My network have also been published by Apple [7].

We define the terminology used throughout this paper as follows:

e Finder devices (e.g., iPhones, iPads, Macs) aid in finding lost
or stolen devices.

o The Find My network is a network of finder devices.

e Find My accessories are small devices that can be found
through Apple’s Find My network, including AirTags, Air-
Pods, the Chipolo Spot ONE, and other third-party devices
certified by Apple.

Apple’s servers Owner iPhone

(4) Download and decrypt 0

location reports

T (3) Upload encrypted

location reports (1) Initial setup

and pairing

@

Find My key finders

(2) Broadcast

Bluetooth advertisements
with public key

<

Finder devices

Figure 1: Simplified Find My network workflow. Adapted
from [21].

o Find My capable Apple devices are mainly devices with a
screen, including iPhones, iPads, MacBooks, and other Apple
devices, which also participate in the Find My network.

Figure 1 shows a simplified representation of the Find My net-
work workflow. The following steps are performed to recover mis-
placed or stolen devices: (1) The Find My accessories get initialized
with an elliptic curve P-224 private-public key pair and a random
secret. Those initial keys are called master beacon keys. Beginning
with the private-public key pair, the devices can create an infinite
number of rotating key pairs by utilizing a key derivation function
and the known random secret. (2) When the accessory loses its BLE
connection to the owner’s iPhone, it emits the current public key
using BLE advertisements. For Find My devices: these devices emit
their current public key when they lose the internet connection (i.e.,
a MacBook without WiFi) (3) Finder devices, which discover such
a Find My accessory, extract the public key, generate an ephemeral
private-public key pair, and perform a one-sided key exchange
using elliptic curve Diffie-Hellman. The generated shared secret
is then used to encrypt the finder’s geolocation. The encrypted
location and the finder’s public key are uploaded to Apple’s servers.
(4) The owner can now use the Find My application to download
and decrypt the location reports. For this, the owner device per-
forms the other side of the key exchange by using the ephemeral
public key of the finder and the private key of the Find My acces-
sory, resulting in the same shared secret and allowing the owner to
decrypt the location report.

For decryption purposes, the master beacon keys of all devices
are synchronized in an encrypted form using iCloud. Utilizing the
end-to-end encrypted iCloud keychain, any device signed in with
the same Apple ID can decrypt the master beacon keys and generate
the same private and public keys that were used in the BLE adver-
tisements [21]. So far, it has not been detected that Apple violates
the promise not to access the users’ private keys [21]. Therefore,
Apple should not be able to decrypt location reports.

2.2.1 BLE advertisement format. A public key on the elliptic curve
P-224 can be compressed to 28 bytes length. Apple used some tricks

Table 1: Find My network advertisement format
(with zero-index bytes). Adapted from [21].

Bytes Content
0-5 BLE address ((p;[0] | (0011 < 6)) || pi[1..5])

6 Payload length in bytes (30)
Advertisement type (0xFF for manufacturer-specific data)
8-9 Company ID (0x004C)

10 Find My network type (0x12)

11 Data length in bytes (25)

12 Status (e.g. battery level)
13-34 Public key bytes p;[6..27]

35 Public key bits p; [0] > 6

36 Hint (0x00 on iOS reports)

to pack all bytes in one standard BLE advertisement while maintain-
ing their common Type Length Values (TLV) based advertisement
structure [21].

The first six bytes of the public key form the BLE address. Since
the address needs to be identified as a static address, the first two
bits must be set to @b11. The 22 remaining bytes are stored in
the advertisement’s manufacturer data. The manufacturer data
follows Apple’s standard encoding: The first two bytes are set to
the company ID of Apple, the next byte is fixed to 0x12, which
identifies that this advertisement is used for Find My. The next byte
defines the length of the message. Then, the remaining bytes are
filled with the public key, a status byte, and a hint byte resulting in
the structure shown in Table 1.

2.2.2 AirTag and Find My accessories. Apple opened up the Find
My network such that accessories by other manufacturers can be
located by it. Those accessories are available in as key finders [16],
bikes, or headphones [8]. The AirTag was the first device to inte-
grate Ultra-Wide Band (UWB) to allow short distance ranging and
directional finding.So far, other accessories are not allowed by Ap-
ple to implement similar functionalities [5]. Many details about the
internals of the Apple AirTag, how to modify the AirTags Firmware,
and how to interact with it via Bluetooth have been revealed in [1].

Find My accessories have four states in which they operate [8]:

(1) Unpaired
(2) Connected
(3) Nearby
(4) Separated

In the unpaired state, the accessory is waiting to be paired and
initialized by an iPhone, iPad, or iPod touch. When the accessory is
paired, it stays connected with one of the owner devices (i.e., linked
to the same Apple ID). If the accessory disconnects from the owner
iPhone, it switches into the nearby state. In this state, it advertises
the first part of the current public key in the BLE address, but it
does not advertise the second part in the manufacturer data. There-
fore, nearby finders cannot forward the accessory’s location. After
15 min, the accessory transitions from the nearby state into the
separated state. Now; it starts advertising the payload described in
Section 2.2.1, and finder devices can report the accessory’s location.
The accessory can always transition back to the connected state

from the nearby state and the separated state if an owner device is
in proximity.

2.3 Find My Stalking Protection

2.3.1 Accessories. All small Find My accessories have to imple-
ment simple stalking protections. If the accessories stay separated
for three days, they start playing a sound when they recognize
movement. After a sound is played, the accessories will remain
silent for at least six hours [5]. There are already manuals on the in-
ternet showing how an AirTag can be modified to disable the sound
feature altogether [2]. In addition, those modified versions are now
sold online as well, which lowers the bar for abusive use [23].

2.3.2 iOS. Since the release of the AirTags, iOS has contained a
tracking detection that identifies when a Find My accessory has
followed the user and sends a tracking alert. The user can view a
route of the tracking device that has followed him, play a sound on
the device, and get information on how to deactivate it. This system
has been evaluated through extensive testing, and several ways to
bypass it have been discovered in [30]. We reverse-engineer the
implementation in Section 3 and evaluate AirGuard against it in
Section 5.

2.3.3 Android. In December 2021, Apple released an app called
“Tracker Detect” on the Google Play Store [10]. This app was Apple’s
answer to numerous concerns about location tracking attacks on
Android users by AirTags [13, 25, 28]. It allows a user to perform a
manual BLE scan for Find My accessories. If the app finds such a de-
vice nearby, the user has to wait 10 min before they can play a sound
on the device to find it. This restriction is purely software-based, dis-
covered AirTags could play a sound immediately. Furthermore, the
app contains several guides on how to deactivate known trackers.

Tracker Detect only offers an insufficient number of features.
The app cannot perform automatic background scans, and it cannot
warn users that a tracker has followed them for a while. Addition-
ally, self-made Find My tags will not be detected.

2.4 Apple Wireless Services

Researchers have analyzed multiple wireless services used by Apple
devices. AirDrop and Apple’s custom WiFi communication layer
have been analyzed for security and privacy in [33, 34]. Many of
Apple’s wireless services are summarized under the term Continuity.
Those heavily rely on BLE and have been analyzed for privacy issues
in [14, 29, 32]. The security of Bluetooth on iOS and the cellular
baseband have been analyzed using fuzzing techniquesin [22, 26]. In
2019, UWB was added as a new wireless technology in iPhones. The
usage of UWB in combination with the U1 chip has been analyzed
in [17]. UWB provides accurate distance measurements that are
secure against relay attacks. The technology is planned to be used
to unlock cars [9]. Nevertheless, a first attack resulting in a distance
reduction has been published [27].

3 10S TRACKING DETECTION

i0S 14.5 added support for the Apple AirTag. This update also
included an automatic tracking detection [11]. According to ex-
periments by Mayberry et al., the tracking detection is triggered
by an AirTag that sends BLE Find My advertisements while the

user is moving, and the AirTag is in proximity to the user’s iPhone.
When an AirTag or another Find My accessory is marked as “suspi-
cious,” the user will receive a notification. The reception of such a
notification can take up to several hours [30]. We reverse-engineer
the tracking detection implemented in iOS and demonstrate our
results in this section. Our analysis is based on i0S 15.2, released
on December 13, 2021. This detection is available on iPhone, iPad,
and iPod Touch.

3.1 Methodology

We use a combined dynamic and static analysis method to reverse-
engineer the tracking detection. All these analyses are performed
manually, and we rely on tools to facilitate them.

Dynamic analysis. Our goal was to reverse-engineer the current
implementation of the automatic tracking detection in iOS. At the
time of writing, no jailbreak supports iOS 15.2 or newer. Therefore,
our dynamic analysis is based on system logs.

The tracking detection is executed by the locationd daemon
linking the TrackingAvoidance framework. Daemons are Ul-less
processes that the operating system runs to handle tasks, including
location processing, Bluetooth, WiFi, and more. Frameworks in iOS
are dynamically linked, extending the functionality of processes.
Both binaries use the system logs to output detailed information:
Advertisements received, MAC addresses of Find My accessories,
reasons for classifying a device as suspicious, and locations where a
tracker has been detected. Apple provides several debug profiles
to increase the log verbosity [12]. We installed the Bluetooth, Lo-
cation Services, and AirTag profile for this analysis. We use the
logs to understand the general behavior of the TrackingAvoidance
framework and to identify entry points for a static analysis.

Static analysis. We base the static analysis on disassembling and
decompiling the binary of the TrackingAvoidance framework. As
the strings in the system logs must be part of the binary, we use
those to identify relevant functions in the TrackingAvoidance
framework. The locationd and the TrackingAvoidance frame-
work are written in Objective-C, which leaves all method names
readable for our inspection. Our static analysis mainly focuses on
the algorithms that classify a Find My accessory as a tracker.

3.2 System Overview

The tracking detection on iOS is a complex combination of several
system services that communicate through XPC, Apple’s cross-
process communication. In Figure 2, we highlight the components
interacting with each other. Many Apple services, e.g., Continuity
[29, 32], the COVID-19 exposure notification framework [4], and
the Find My network require periodic scans for BLE advertisements.
Therefore, bluetoothd performs these scans and forwards the re-
sults to different system daemons. All BLE advertisements using
the Find My format are first forwarded to the searchpartyd. This
daemon is handling the discovery of lost devices and sends the
encrypted location reports to Apple’s iCloud servers such that the
owner can locate and find their devices [21]. After processing the ad-
vertisement, the searchpartyd forwards it to the locationd. This

iii CoreBluetooth— €% searchpartyd—l

€ bluetoothd €2 locationd

IOBluetooth === Tracking
Family L1 Avoidance

Notification

Bluetooth

Find My

Figure 2: Simplified representation of the iOS tracking de-
tection using components such as apps (&), daemons (¢>),
frameworks (i), and drivers (§¥)

Table 2: Different event states added to TAStore.

System States User Activities Vehicluar States

Display on Static Vehicular
DeviceUnlockedSinceBoot Pedestrian Non Vehicluar
HasKoreaCountryCode Vehicular

Wifi unknown

LocationServices

BatterySaver

HighThermal

AP

daemon utilizes the TrackingAvoidance framework, which han-
dles the detection of trackers following the owner of the iPhone/i-
Pad. If this framework has classified a device as suspicious, it tells
the searchpartyd to emit a notification. After opening the notifi-
cation, the user is forwarded to the Find My app to view a detailed
report about the discovered tracker.

3.3 Collecting Events for Tracking Detection

In the TrackingAvoidance framework, all Find My advertisements
received are checked if they relate to the current user. All devices
logged in with the same Apple ID pre-compute the private and
public keys of all devices linked to this account. Those keys are
then stored in a read-protected directory on disk for quick look-
ups [21].

Non-owner advertisements are added to a TAStore. Besides BLE
advertisements, the store receives all kinds of events that are par-
tially used to classify if the person is being tracked. These events
include regular location updates, user activity events, system state
events, and vehicular states. Table 2 shows a list of all known event
states.

3.4 Classification of Tracking Devices

We identified three algorithms implemented by the TrackingA-
voidance used to identify suspicious devices. The first one is the
general detection, which is executed regularly and iterates over
all devices saved in the TAStore. Significant location changes, so-
called visits, set off the other two. We identified the default values

for many parameters in the framework. However, the actual values
may change during execution, and as they are not logged, we cannot
inspect them.

3.4.1 General detection. Every two to five minutes, the locationd
runs a classification on all devices from which advertisements have
been received in a recent time frame (default: 15 min). The algo-
rithm defines a threshold duration (default: 10 min) and a threshold
distance (default: 840 m) for which the devices had to follow the
person.

The classification of all devices follows the pseudo-code shown
in Algorithm 1. Essentially, it checks if any device exceeds both
thresholds, if the recent user activity is somehow plausible and if,
additionally, a people density scan measurement is used. We could
not find clear indications if the people density scan was performed
during our dynamic analysis. In iOS 15.2, the people density scan
does not seem to be activated. For every suspicious device, iOS sends
a notification to the user.

Algorithm 1 General Filter that classifies suspicious devices.

devices < TAStore.devices

for device in devices do
isInVehicle « TAStore.lastVehicularState.isInVehicle
peopleDensity « TAStore.lastPeopleDensity
userActivity < TAStore.dominantUserActivity
walkingSpeed «— TAStore.walkingSpeed
dist « device.distanceTravelled
dur « device.durationTravelled
isDriving < isInVehicle | peopleDensity
isDriving < isDriving & (userActivity = vehicular)

isWalking < (userActivity = pedestrian)
isWalking « isWalking&(walkingSpeed < MAX_SPEED)
validMovement « isDriving | isWalking
minDistTravelled < dist > THRESHOLD DISTANCE
minDurTravelled < dur > THRESHOLD DURATION
result « validMovement
result <« result & minDistTravelled
result « result & minDurTravelled
if result = 1 then
mark device as suspicious
end if
end for

3.4.2 Visit-based detection. The public CoreLocation framework
implements the CLVisit objects, informing an app that a person
is currently “visiting” a specific location. Those objects contain an
arrival and a departure time, and they are generated when the user
arrives or leaves a location. Apple does not specify the duration a
person needs to be at a location to generate a CLVisit [3]. Based on
these objects, the TrackingAvoidance framework observes user
visits and combines this information with BLE advertisements saved
to the TAStore.

The first algorithm, TADetectionTypeVisit is simple. It creates
an intersection between the devices seen at the last visit and the

Table 3: Different device types in iOS TrackingAvoidance

Device Type Bits Category Example

Other 0b00 Apple devices iPhone, Mac, iPads
D (Durian) 0b01 AirTags AirTag

H (Hawkeye) 0010 3rd Party Chipolo ONE Spot
HELE 0b11 Headphones AirPods Pro

current visit. All devices in this intersection are marked as suspi-
cious devices. No other checks are performed. The distance and the
duration that the device has traveled with the user are stored.

The second algorithm, TADetectionTypeSingleVisit uses the
intersection created before and performs extra checks on the de-
vices. If all checks are evaluate to true, the device will be marked as
a suspicious device. For each device, the algorithm checks:

(1) Has the last advertisement been received recently (default:
in the last 5 min)?

(2) Is the device traveling with the user for a longer distance
than the threshold distance (default: 420 m)?

(3) Is the device traveling with the user longer than the threshold
duration (default: 300 s)?

The dynamic analysis has shown that both algorithms are in
active use to classify a device as a suspicious device. Interestingly,
the threshold distance in the TADetectionTypeSingleVisit uses
only half the distance than the general detection.

3.5 Tracking Device Categories

In i0S 15.2, the system identifies four different device types named
Other, D, H, and HELE. Bit 2 and 3 of the status byte in the BLE
advertisement categorize the devices. We identified categories for
each type and listed them in Table 3.

Devices that are marked as “Other” are, in most cases, Apple
devices such as MacBooks that lost their internet connection and
are now sending Find My advertisements [21]. Apple sets the status
byte to 0x@0. Note that such devices are marked as “irrelevant” for
tracking in the system logs. Previously Heinrich et al. created a
tag that copied the behavior of a MacBook with Find My, which
essentially creates a tracker that evades Apple’s tracking detection,
an issue initially discovered and reported by Mayberry et al. [20, 30].
Using our reverse-engineering approach, we can confirm that this
issue persists in iOS 15.2.

3.6 Notifications

At what time a notification is delivered is defined by several factors.
When the user has returned home and and the suspicious devices
continue to appear during the BLE scans, the system sends out a
notification promptly. If the user is not returning home, the noti-
fications are delayed. In this case, the TrackingAvoidance marks
suspicious devices as “staging” Every staging phase contains an
end date. After the staging has ended, the locationd can either
send a notification immediately or prolong the staging phase. We
could not identify the trigger that determines when a notification is
sent if the user does not return home. The evaluation in Section 5.2
shows that it can take several hours.

3.7 Discussion

Apple’s TrackingAvoidance framework implements a tracking de-
tection that leverages the information from many different sources
and frequent (every 1 — 5min) BLE scan intervals. Many of those
features are not available to third-party applications. The downside
of this framework is that Apple neglects the fact that any BLE ca-
pable device can be transformed into a Find My network tracker
by mimicking the behavior of an iPhone as demonstrated by the
OpenHaystack framework [20]. Users will not get a notification for
those trackers.

Apple’s tracking detection identifies trackers early on. However,
it also delays the delivery of notifications. The only way to reli-
ably get a notification is by returning to the home location, which
essentially gives the home location away to the attacker. A possi-
ble reason why notifications are delayed is that Apple wanted to
minimize the risk of false positives.

At last, Apple’s Bluetooth API disallows access to Bluetooth
scans in the background. Removing those limitations could allow
third-party developers to create apps that detect trackers from other
manufacturers.

4 AIRGUARD

After the AirTag release, Apple left Android users without tracking
protection for over six months until December 2021. The design
and implementation of AirGuard started in April 2021, and the
first public version was released in August. The automatic tracking
protection is intended to work similarly to the one implemented
in iOS. Using regular BLE background scans, AirGuard detects all
kinds of Find My capable tracking devices, including self-made ones.
In less than 45 min users receive a notification about the tracker and
guidance on finding it. In this section, we introduce AirGuard and
its tracking detection algorithm. We then explain how we designed
the user interface to cater to non-expert users.

4.1 Tracking Detection

The tracking detection of AirGuard is a combination of timed BLE
background scans and a detection algorithm that classifies malicious
devices as location trackers.

4.1.1 Bluetooth scanning. The app uses the Android Work Man-
ager to schedule recurring background tasks to perform the tracking
detection. In these tasks, the app performs a BLE scan and runs
our tracking detection. In Android, such tasks can be executed at
maximum every 15 min, which limits the time to detection.

During a scan, the app filters the results for Find My advertise-
ments in the separated state (see Section 2.2). AirGuard fetches the
current geolocation and stores all advertisements received together
with the location in a local database. When Find My accessories are
in the nearby state, they cannot be located by finders, and therefore
AirGuard ignores them.

To achieve high reliability on detecting trackers, the scan dura-
tion is set to 8 s and the scan Android scan mode to low latency.
More details on these parameters are listed in Appendix A.1.

4.1.2 Tracker classification algorithm. After every scan, the app
runs our detection algorithm, which iterates over all devices in the
database. Generally, AirGuard identifies different devices based on

their BLE MAC address. As the MAC address is formed by using the
current public key, it does not change until the public key changes.
For every device, the algorithm performs the following checks:

(1) Have the device’s advertisements been received for longer
than the minimum duration of 30 min.

(2) Has the device been discovered at least three times.

(3) Has the device traveled with the user for a minimum distance
of 400 m.

(4) Has there already been a tracking alert in the last seven
hours? AirGuard limits the number of notifications to one
per device every for this duration.

(5) If all checks evaluate to true, a notification will be delivered
to the user immediately.

In general, our algorithm is a simplified version of Apple’s gen-
eral tracking detection as described in Section 3.4.1. We use a mini-
mum distance and a minimum duration to limit the number of false
positives when warning a user. Therefore, an AirTag of a neighbor
or a family member does not result in a notification.

Since we identify devices based on their BLE MAC address, they
will be recognized as a new device when the public key changes.
Our main targets are Apple AirTags, and other Find My accessories.
According to the specification, Find My accessories update their
public key once a day around 4 a.m. local time [5].

4.1.3 Notifications. AirGuard delivers tracking alerts as Android
notifications. In the current implementation, the notifications are
delivered early. Early notifications should help users to identify a
potential tracker quickly and even before they return home and
might reveal their home location to someone else.

When users open the notification, they get a detailed overview of
the locations where the tracking device has been detected. Figure 3a
shows a screenshot of the user interface presented to the user when
a tracking notification is opened. Here, the user can play a sound
on the device, ignore it, send feedback, and mark this notification
as a false alarm. The feedback is basic information on where the
tracking device has been hidden (car, bike, backpack, clothes), and
it will be sent to the developers if the user has agreed to share data.

4.2 Manual Scanning

Finding a tracking device can be difficult, especially if they are self-
made or modified such that the AirTags cannot play a sound [23].
In this case, a user can manually initiate a scan process and see an
automatically updating estimated distance of all potential tracking
devices in the vicinity. Figure 3b shows a screenshot of this process.
AirGuard estimates a distance based on the received signal strength
indicator (RSSI) and sample measurements with an AirTag. Preci-
sion varies due to the design of Bluetooth. If the device does support
playing a sound, this can also be performed from here without any
artificial waiting period.

4.3 User Experience

The app’s main view is a dashboard, as shown in Figure 3c. This
dashboard should allow non-experts to identify their personal risk
at one glance. The main element is the risk level card, which repre-
sents the user’s risk of being tracked in three colors:

19:24:48 SN N e) 13:44 @

Manual Scan

FindMy Device 9 aspr @

E8:D4:19:61:C8:24

AirTag

EF:B6:0E:

FindMy Device 9 aser

CB:55:7C:7C:1B:8C

Play Sound Feedback

N
Ignore Device
fications for

-

H

ag with your phone via

Dashboard

(b) User performing a man-
ual scan to find trackers.

(a) Information after a track-
ing alert.

18:46 1 O 1346 1 @0
Dashboard Risk evaluation

Tracker detected Locations tracked 3

228

High risk 4

Q Detected 1 tracker during the last 14 3
days

® Last tracker discovered at Dec 28,

2021 14:07:41 Other devices found

@ Last scan: Jan 3, 2022, 6:34:44 PM 70

Dates detected

Feb 1, 2022, 1:44:02 PM
Jan 30, 2022, 3:36:02 AM
Jan 30, 2022, 3:36:02 AM

How does the app work?

@ The app scans with Bluetooth for
devices that follow you

If a device has followed you to
Q@ multiple locations, the app has
recognized it.

Find and deactivate an AirTag

You get a notification when you are at 4) Play a sound and find it
L) risk. Also the card above changes its
color to orange or red @® Perform a manual scan and locate it

by distance

X : @ wanual scan # Remove the battery
| got a notificatio .,

s
FH ; o =a

Dashboard Dashboard

(d) Details on how trackers
follow the user.

(c) User with a high risk of
being tracked.

Figure 3: Screenshots of AirGuard.

(1) Green (Low): no tracking device following the user has been
detected in the last 14 days.

(2) Orange (Medium): one or multiple devices have been de-
tected that followed the user for less than 24 hours.

(3) Red (High): one device or multiple devices have been de-
tected that followed the user for more than 24 hours.

Additional details on how many trackers were found and when the
last one has been detected are displayed as well. When the user taps
on the card, they get more details (see Figure 3d): the number of
locations that have been recorded with the tracker and the number
of Find My devices that have been found in total.

From here on, users can get more information by viewing a list
of all devices that have been marked as tracking the users’ location.
They can view all locations where the device has been detected
on a map and initiate the sound on Find My accessories. At last,
users can also view all Find My devices found by the app even if
they have not followed them. Expert users who want to validate the
tracking detection behind AirGuard highly requested this feature.

5 EVALUATION

This section evaluates and compares AirGuard to the i0S tracking
detection by testing them in three scenarios. The focus is set on:
devices that can be detected, placements of the devices, the time
it takes until the user is notified, and the number of locations that
have been until a notification was sent.

Attacker model. We define our attackers as people with basic
technical knowledge who have access to an Apple device and buy an
off-the-shelf tracker by Apple or a Find My certified manufacturer.
We include attackers who can use the manuals of OpenHaystack
to create a self-made tracking device. Using this device, they try to
track the location of their victim. Advanced attackers with large

resources who can modify the firmware of AirTags or write custom
firmware for self-made tags are out of scope. Those attackers already
have access to many different tracking technologies like GPS-based
trackers.

5.1 Setup of the Experiments

To evaluate our app and the iOS tracking detection, we use the
following devices: for the iOS tracking detection, we use an iPhone
12 mini that runs iOS 15.2. Find My and the Find My Network are
activated on the iPhone. For the AirGuard tracking detection, we
use a Samsung S21 Ultra 5G. AirGuard uses the following settings:
location access in the background is granted, battery optimization
is disabled. Before each test, we clear the database of AirGuard.

We test the app against three different devices: an Apple Air-
Tag [6], a Chipolo ONE Spot [16], and a self-made OpenHaystack
tag [20]. The AirTag and the Chipolo tag follow Apple’s reference
implementation of the Find My accessories [8]. During the eval-
uation experiments, all tags were kept in a separate state. The
self-made OpenHaystack tags essentially copy the BLE messages
of a lost iPhone. They keep a static public key and do not update
it. We use the following placements for our testing: In a pocket of
a victim’s coat, inside a backpack, and attached to a car. The first
two placements are ideal for tracking a person’s movement. The
currently available devices can be easily hidden inside a backpack,
making it difficult for a victim to discover them. Tagging vehicles
has been chosen because of recent media coverage of thieves at-
taching AirTags to high-end cars to track vehicles back to their
parking location [25, 28].

5.2 Results

We divide the results of our evaluation into sections based on the
placements of the trackers and summarize the results in Table 4.
We utilize all three trackers in all scenarios to identify how the
different systems recognize different tracking devices.

Pocket. For the trackers’ pocket position we were able to receive
tracking notifications in 35 minutes with AirGuard, which is much
faster than it took iOS to send a notification. Even though iOS did
recognize the tracking devices early on and continued to scan for
them in frequent intervals, the system decided to delay the tracking
notification. In this evaluation the notification was sent exactly
when we returned to the iPhone’s home location.

Backpack. For the backpack position of the trackers, AirGuard
took 31 minutes to locate the trackers and send a notification. For
i0S, it took more than 4 hours to send a notification. Both devices
were recognized early on and linked to over 70 locations. Again,
the main reason for iOS to delay notifications is the user’s current
location. We did stay away from the home location for 6 hours in
this scenario.

Car. News reports mention that the fuel cap is a commonly used
position by attackers who do not have access to the inside of the
car [15]. We glued an AirTag and a Chipolo ONE Spot to the inside
of the fuel cap. For space reasons, we placed the OpenHaystack
tag inside the car. We took two 30 minute rides with the prepared
car and stayed away from the car for 3 hours and 30 minutes in
between. AirGuard sent a tracking notification during the second
ride, when the trackers are detected for the third time. The iOS
tracking detection never sent a notification, not even after returning
to the iPhone’s home location.

5.3 Discussion

Our evaluation shows that AirGuard detected all three trackers in
all scenarios. The app uses an aggressive detection algorithm, which
resulted in a notification after three discoveries for all scenarios.

Car. Unfortunately, the iOS tracking detection failed to detect
trackers that were not permanently close to the user in our car
scenario. Based on our results in Section 3, we try to identify the
reason for these missed notifications. The general detection algo-
rithm only uses the advertisements received in the last 15 min. If the
user now stays out of the vicinity for more than 15 min, the trackers
will be forgotten by i0S. However, the threshold duration of 10 min
and the threshold distance of 840 m have been exceeded in our test
twice. We expect the default values to change during execution and
based on user behavior. If this has been the case, it would explain
why no notification has been delivered. Media reports have men-
tioned that people have been notified of AirTags on the car [28].
A straightforward mitigation would be to integrate all received
advertisements of the current day in the tracking detection.

Notifications. The i0S’ tracking detection delivers notifications
much later, depending on the user’s location. Apple has announced
to mitigate this issue in an update [24]. Furthermore, the evaluation
has confirmed that self-made tags with OpenHaystack will not be
detected [30].

Table 4: Tracking Detection Results

Tracker position — Tracker Time to notifi- Locations with

cation tracker until
notification

ios
Pocket AirTag 1h 45m 14s 35
Pocket Chipolo 1h 45m 14s 28
Pocket OpenHaystack - -
Backpack AirTag 4h 14m 23s 87
Backpack Chipolo 4h 14m 23s 74
Backpack OpenHaystack - -
Car AirTag - -
Car Chipolo - -
Car OpenHaystack - -
AirGuard
Pocket AirTag 35m 20s 3
Pocket Chipolo 35m 20s 3
Pocket OpenHaystack ~ 35m 20s 3
Backpack AirTag 30m 49s 3
Backpack Chipolo 30m 49s 3
Backpack OpenHaystack ~ 30m 49s 3
Car AirTag 4h 18m 11s 3
Car Chipolo 4h 18m 11s 3
Car OpenHaystack 4h 18m 11s 3

Scan opportunities. One weakness of AirGuard is the limited scan
opportunities the Android operating system grants it. Therefore,
AirGuard finds fewer locations with a tracker. As a comparison,
iOS detected the AirTag at 35 locations in 1h 45 min in the pocket
scenario and AirGuard detected it at seven locations.

False positives. The limited scan opportunities and the inten-
tional early notifications can also lead to false positives. During
our evaluation, we did not experience any false notification, but we
can imagine several scenarios that would trigger one: (1) Travelling
in a train or airplane next to an AirTag in separated state (e.g.,
due to Airplane mode) AirGuard will issue a notification. (2) GPS
drifts. When using AirGuard indoors and the smartphone fails to
get a good GPS signal or fails to receive a location update based
on WiFi signals, the location might drift away for more than our
minimum distance. If an AirTag is close in this case, it will appear
to be following the user, and the app may send a notification.

Those false positives may not be harmful to most users because
the user can then match the reported locations to a specific event
based on the provided map. However, the risk score of the app will
increase to medium if the user receives only one false positive in
14 days. We keep possible solutions for this for future work.

Fast rotating trackers. AirGuard and the iOS tracking detection,
do not detect specially modified tracking devices, which rotate their
public key more than once an hour [30]. As the public keys are
unlikable, the device would be detected as a new device after a
key rotation. Attackers require advanced technical knowledge to
deploy such an attack and cannot buy such devices off the shelf.

Issued tracking notifications

Discovered trackers

I Other Apple devices
I Find My accessories

Figure 4: Device type distribution for discovered trackers as
well as issued tracking notifications.

—50

[Notification - Accessory
I Notification - Lost Apple
I No Notification - Accessory
I No Notification - Lost Apple

RSSIin dBm
oL 4
S S S

1 1 1

-90

Figure 5: Mean RSSI comparing tracking devices with nor-
mal devices.

6 USER STUDY

Since the first release of AirGuard, users have been able to share
anonymized data. The shared data allows identifying potential
problems of the app and getting hints on the prevalence of tracking
attacks in the wild.

Provided data. We ask all users if they are willing to share anony-
mous data with us during the app setup. If they agree, the app
will regularly upload received advertisements, devices, tracking
notifications sent, and optional user feedback. Before the data is
sent, all personally identifiable information is removed, such as the
BLE MAC address and the BLE payload. Therefore, if two different
users receive the same advertisement, we store it as two different
advertisements. With over 120 000 active users, of which over 30 000
donated anonymized data, we created a dataset with more than
8600000 Find My advertisements received.

Limitation. We limit the evaluation of our data to a six-week
time frame starting on December 15, 2021, and ending on January
26, 2022, as we changed our data collection framework with an
update on December 11, 2021.

6.1 Discovered Devices

We can separate the devices that AirGuard found into two groups:
Find My accessories (e.g., AirTags) and Find My capable Apple
devices (e.g., MacBooks) as defined in Section 2.2. Self-made tags
copy the behavior of Apple devices and are therefore assigned to

the same group [20]. In total, users have discovered over 3 million
devices that use Find My in our defined time frame. Only about
160 000 were Find My accessories. All devices together caused 2494
notifications for 1325 users. As shown in Figure 4, 29% of all notifi-
cations were caused by Find My accessories, while they represent
only 4% of all devices found.

Figure 5 shows the mean RSSI based on the device type and if
the device issued a tracking notification. The app captures the RSSI
for all advertisements received by AirGuard users. It hints at how
close a sending device is to the user during the reception, but it
does not allow precise distance measurements. The dataset has two
takeaways: (1) Devices that trigger a notification are closer to the
user. (2) Accessories are closer to the user than Apple devices.

Limitations. From the current dataset, it is impossible to state if
notifications have been initiated on purpose by users who wanted
to test AirGuard, how many of the notifications were caused by
self-made tags, and how many Apple devices were falsely classified
as malicious trackers. Although self-made tags offer a seven-day
location history not available in the Find My app, they are less
accessible and require a manual setup. This implies that most Apple
devices have been false positives because using an iPhone or a
MacBook to track someone’s location is impractical. Moreover,
users can report a false alarm actively, and during our evaluation,
97 notifications were marked as false alarms, and 85 of those were
caused by Find My capable Apple devices

As AirGuard needs to recognize a device for at least 30 min,
these notifications signify that not all Apple devices stick to the
15 min public key update interval identified in [21]. If Apple devices
do not permanently keep that interval, it would also explain why
Apple refrained from warning users if such a device follows them. A
simple update to limit the number of false positives in AirGuard and
integrate this group of devices in iOS would be to require a longer
minimum duration for lost Apple devices to cause a notification.

6.2 Location Tracking Prevalence

The main goal of AirGuard is to serve as a tool that protects its
users from abuse through stalking by using an AirTag or a similar
Find My accessory. This section analyzes the data to discover hints
on the prevalence of location tracking in the wild. We limit the data
to only Find My accessories, such as AirTags and the Chipolo ONE
Spot. We do not cover self-made trackers and lost Apple devices
because they can cause more false positives (see Section 6.1).

As described in Section 4.3, the app calculates a user-based risk
level which is based on the time a user has been tracked. The risk
level always accounts for trackers detected in the last two weeks,
and it can be low, medium, or high.

Figure 6a shows the percentage of data donors marked with a
medium or a high-risk level. The number of data donors in a specific
risk level results from calculating every user’s risk level at the time
frames shown on the horizontal axis using a two-week sliding
window. We then calculate the percentage by dividing through all
active data donors. An active data donor is defined as a user who
has submitted any data during the two-week time frame. It shows
that around 0.2% of data donors are constantly ranked at a high
risk of being tracked. The percentage for medium-risk data donors

. IIII
‘Mm I
2 0.6
o B Medium risk
2 0.4 - HEM High risk
Zo.
o
S

A RN SR\ RN

VoAV
AU N N VNN NN
Risk analysis time frame (mm.dd)

(a) Percentage of data donors at a medium and high risk levels from
December 15, 2021 to January 26, 2022.

100000

10000

Lol

1000

Ll

100

of active data donors

Lo unl

10

vl

LI L L L L L L L L N B B B
NOITODPI RN DEAND & > Ao
Q%.\Q%‘.\» @.QQQ,.\QO,’-"\Q\ Q”\\Q A \(\'\'\P '\»q' \QQ \Q\W
A A A I T N N N Y N N D TS
Date (yy.mm.dd)

(b) Overall active data donors since the release of the app.

Figure 6: Statistics from data donors

Number of users

— W O

12345 10 15 20 25
Number of notifications

Figure 7: Density distribution over number of notifications
received per user.

varies from 0.6% to 0.8%. Interestingly, the fraction of users at risk
stays rather constant, even with a growing user base.

Figure 6b shows the number of active data donors since the
release of AirGuard. The first steep increase of new data donors
is related to a hacker news post. After a woman who has been a
victim of a tracking attack mentioned our app in a TikTok video?
AirGuard received a second steep increase.

Figure 7 shows a histogram over the number of notifications a
user has received. Most users receive only one notification, while
some individuals received up to 25 notifications in our six-week
observation period.

6.2.1
This can be that a tracker is marked as a false alarm or that the
user provides us with basic information where a tracker has been
hidden. During our evaluation, only five users reported the location
of identified trackers: one user declared that the tracking device was
placed in their backpack, and four others reported a tracker in or
on their car. Besides our feedback through the app, we also received

https://www.tiktok.com/@angel.edge95/video/7035276471237217541

User feedback. Users can give feedback on identified trackers.

reports from multiple users through reviews on the Google Play
Store or email. One user who wants to stay anonymous messaged
us via email: “I have found 2 Airtags attached to my car...Idon’t
really know what else to do or say. I just wanted to say thank you for
your app.” Several screenshots of the app showing tracking devices
found have been attached to this email.

7 CONCLUSIONS

We reverse-engineered the iOS tracking detection to analyze its
limits. Furthermore, we confirmed a way to bypass the detection
using self-made trackers in i0S 15.2, initially discovered in iOS
14.5. We designed, implemented, and released the Android app
AirGuard, an open-source anti-tracking solution against Find My
accessories. 120 000 active users show a high demand for automatic
tracking detection. The evaluation showed that AirGuard found
more actual trackers in different scenarios compared to the iOS
tracking detection. We analyzed a dataset generated by over 30 000
AirGuard users. In general, the dataset showed that the tracking
detection is triggered in practice and several user reports confirmed.
We hope our work leads to better tracking protection mechanisms
implemented by tracker manufacturers directly.

REFERENCES

[1] 2021. Hardwear.io NL 2021: Over The Air-Tag: Shenanigans With A Keyfinder by
Jiska , Fabian And Thomas. https://www.youtube.com/watch?v=nrsOkNG7jcA

[2] AirtagAlex. 2021. How to Remove the Speaker Coil from the Airtag (Make Your
Airtag Very Silent!) - YouTube. https://www.youtube.com/.

[3] Apple Inc. 2014. CLVisit | Apple Developer Documentation. https://developer.
apple.com/documentation/corelocation/clvisit

[4] Apple Inc. 2020. Exposure Notification | Apple Developer Documentation. https:
//developer.apple.com/documentation/exposurenotification

[5] Apple Inc. 2020. Find My Network Accessory Specification - Release
R1. https://images.frandroid.com/wp-content/uploads/2020/06/Find_My _
network_accessory_protocol_specification.pdf

[6] Apple Inc. 2021. AirTag. https://www.apple.com/airtag/

[7] Apple Inc. 2021. Apple Platform Security. Technical Report. 189 pages.

Apple Inc. 2021. Apple’s Find My network now offers new third-party find-

ing experiences. https://www.apple.com/newsroom/2021/04/apples-find-my-

network-now- offers-new-third-party- finding-experiences/

—_
o)

https://www.tiktok.com/@angel.edge95/video/7035276471237217541
https://www.youtube.com/watch?v=nrs0kNG7jcA
https://developer.apple.com/documentation/corelocation/clvisit
https://developer.apple.com/documentation/corelocation/clvisit
https://developer.apple.com/documentation/exposurenotification
https://developer.apple.com/documentation/exposurenotification
https://images.frandroid.com/wp-content/uploads/2020/06/Find_My_network_accessory_protocol_specification.pdf
https://images.frandroid.com/wp-content/uploads/2020/06/Find_My_network_accessory_protocol_specification.pdf
https://www.apple.com/airtag/
https://www.apple.com/newsroom/2021/04/apples-find-my-network-now-offers-new-third-party-finding-experiences/
https://www.apple.com/newsroom/2021/04/apples-find-my-network-now-offers-new-third-party-finding-experiences/

9]
[10]

[11

[12]

[13

[14]

[15]

[16

[17]

[18

[19]

[20]

[21]

[22

~
&

[24]

[25

[26

[27

[28]

[29

=
S

[31]

[32

Apple Inc. 2021. Explore UWB-based car keys - WWDC21 - Videos - Apple
Developer. https://developer.apple.com/videos/play/wwdc2021/10084/

Apple Inc. 2021. Tracker Detect - Apps on Google Play. https://play.google.com/
store/apps/details?id=com.apple.trackerdetect&hl=en&gl=US

Apple Inc. 2021. What to do if you get an alert that an AirTag or Find My network
accessory is with you. https://support.apple.com/en-us/HT212227

Apple Inc. 2022. Profiles and Logs - Bug Reporting - Apple Developer.
https://developer.apple.com/bug-reporting/profiles-and-logs/.

Albert Fox Cahn. 2021. Apple’s AirTags Are a Gift to Stalkers. Wired (May
2021). https://www.wired.com/story/opinion-apples-air-tags-are-a-gift-to-
stalkers/ Section: tags.

Guillaume Celosia and Mathieu Cunche. 2020. Discontinued Privacy: Personal
Data Leaks in Apple Bluetooth-Low-Energy Continuity Protocols. Proceedings
on Privacy Enhancing Technologies 2020, 1 (Jan. 2020), 26-46. https://doi.org/10.
2478/popets-2020-0003

Hartley Charlton. 2021. Apple’s AirTag Item Trackers Increasingly Linked to
Criminal Activity. https://www.macrumors.com/2021/12/31/airtag-increasingly-
linked-to-crime/

Chipolo d.o.o0. 2021. Chipolo ONE Spot. https://chipolo.net/en/pages/chipolo-
one-spot

Jiska Classen and Alexander Heinrich. 2021. Wibbly Wobbly, Timey Wimey —
What’s Really Inside Apple’s U1 Chip. Presentation at Black Hat USA 2021.
Geoffrey A. Fowler. 2021. Review | Apple’s AirTag trackers made it fright-
eningly easy to ‘stalk’ me in a test. Washington Post (May 2021). https:
//www.washingtonpost.com/technology/2021/05/05/apple-airtags-stalking/
Chinmay Garg, Aravind Machiry, Andrea Continella, Christopher Kruegel, and
Giovanni Vigna. 2021. Toward a Secure Crowdsourced Location Tracking System.
arXiv:2106.00217 [cs] (June 2021). https://doi.org/10.1145/3448300.3467821 arXiv:
2106.00217.

Alexander Heinrich, Milan Stute, and Matthias Hollick. 2021. OpenHaystack: a
framework for tracking personal bluetooth devices via Apple’s massive find my
network. In Proceedings of the 14th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec °21). Association for Computing Machinery,
New York, NY, USA, 374-376. https://doi.org/10.1145/3448300.3468251
Alexander Heinrich, Milan Stute, Tim Kornhuber, and Matthias Hollick. 2021.
Who Can Find My Devices? Security and Privacy of Apple’s Crowd-Sourced Blue-
tooth Location Tracking System. Proceedings on Privacy Enhancing Technologies
2021, 3 (July 2021), 227-245. https://doi.org/10.2478/popets-2021-0045

Dennis Heinze, Jiska Classen, and Matthias Hollick. 2020. ToothPicker: Apple
Picking in the iOS Bluetooth Stack. https://www.usenix.org/conference/woot20/
presentation/heinze

Michael Kan. 2022. ’Silent AirTags’ With Speakers Removed Pop Up on Etsy,
eBay. https://uk.pcmag.com/mobile-phone-accessories/138509/silent-airtags-
with-speakers-removed-pop-up-on-etsy-ebay Section: Mobile Phone Acces-
sories.

Alex Kirschner and Apple Inc. 2022. An update on AirTag and unwanted track-
ing. https://www.apple.com/newsroom/2022/02/an-update-on-airtag-and-
unwanted-tracking/

Rudy Koski. 2021. Discovery of AirTag tracking device prevents double theft of
truck. FOX 7 Austin (Dec. 2021). https://www.fox7austin.com/news/discovery-
of-airtag-tracking- device- prevents- double- theft- of- truck#95

Tobias Kroll, Stephan Kleber, Frank Kargl, Matthias Hollick, and Jiska Classen.
2021. ARIstoteles — Dissecting Apple’s Baseband Interface. In Computer Secu-
rity — ESORICS 2021 (Lecture Notes in Computer Science). Springer International
Publishing, Cham, 133-151. https://doi.org/10.1007/978-3-030-88418-5_7
Patrick Leu, Giovanni Camurati, Alexander Heinrich, Marc Roeschlin, Clau-
dio Anliker, Matthias Hollick, Srdjan Capkun, and Jiska Classen. 2021. Ghost
Peak: Practical Distance Reduction Attacks Against HRP UWB Ranging. CoRR
abs/2111.05313 (2021). https://arxiv.org/abs/2111.05313 arXiv: 2111.05313.
Ryan Mac and Kashmir Hill. 2021. Are Apple AirTags Being Used to Track People
and Steal Cars? The New York Times (Dec. 2021). https://www.nytimes.com/
2021/12/30/technology/apple-airtags-tracking-stalking. html

Jeremy Martin, Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis Fenske,
Lucas Foppe, Travis Mayberry, Erik C. Rye, Brandon Sipes, and Sam Teplov. 2019.
Handoff All Your Privacy: A Review of Apple’s Bluetooth Low Energy Continuity
Protocol. arXiv:1904.10600 [cs] (June 2019). http://arxiv.org/abs/1904.10600 arXiv:
1904.10600.

Travis Mayberry, Ellis Fenske, Dane Brown, Jeremy Martin, Christine Fossaceca,
Erik C. Rye, Sam Teplov, and Lucas Foppe. 2021. Who Tracks the Trackers?
Circumventing Apple’s Anti-Tracking Alerts in the Find My Network. In Pro-
ceedings of the 20th Workshop on Workshop on Privacy in the Electronic Society
(WPES °21). Association for Computing Machinery, New York, NY, USA, 181-186.
https://doi.org/10.1145/3463676.3485616

Samsung Electronics Inc. 2020. Find My Mobile | Apps & Services.
//www.samsung.com/my/apps/find-my-mobile/

Milan Stute, Alexander Heinrich, Jannik Lorenz, and Matthias Hollick. 2021. Dis-
rupting Continuity of Apple’s Wireless Ecosystem Security: New Tracking, DoS,
and MitM Attacks on iOS and macOS Through Bluetooth Low Energy, AWDL,

https:

and Wi-Fi. 3917-3934. https://www.usenix.org/conference/usenixsecurity21/
presentation/stute
Milan Stute, David Kreitschmann, and Matthias Hollick. 2018. One Billion Apples’
Secret Sauce: Recipe for the Apple Wireless Direct Link Ad hoc Protocol. In
Proceedings of the 24th Annual International Conference on Mobile Computing and
Networking (MobiCom °18). Association for Computing Machinery, New York,
NY, USA, 529-543. https://doi.org/10.1145/3241539.3241566
Milan Stute, Sashank Narain, Alex Mariotto, Alexander Heinrich, David Kre-
itschmann, Guevara Noubir, and Matthias Hollick. 2019. A Billion Open In-
terfaces for Eve and Mallory: MitM, DoS, and Tracking Attacks on iOS and
macOS Through Apple Wireless Direct Link. 37-54. https://www.usenix.org/
conference/usenixsecurity19/presentation/stute
Tile Inc. 2020. How Does the Tile Network Work? | Tile. https://www.thetileapp.
com/en-eu/blog/what-is-tile- network-community-find-lost-stolen-far-away
Mira Weller, Jiska Classen, Fabian Ullrich, Denis Wafimann, and Erik Tews. 2020.
Lost and found: stopping bluetooth finders from leaking private information. In
Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. ACM, Linz Austria, 184-194. https://doi.org/10.1145/3395351.
3399422
[37] XY Labs. 2014. XY - The secure iOS/Android Bluetooth tracking tag. https:
/Iwww.kickstarter.com/projects/xyfindit/xy- the- secure-tracking-tag

[33

[34

@
2

[36

A AIRGUARD - ADDITIONAL DETAILS
A.1 BLE Scan Parameters

Android’s BLE scans use two parameters that can enhance the
number of scan results or save energy: The scan duration and the
scan mode. To optimize our systems configuration, we tested all
combinations of those parameters with ten consecutive scans. We
tested a scan duration from 1s to 10s against all available scan
modes. Figure 8 shows the results of this evaluation with eight
tracking devices in range.

B SOUND ON ACCESSORIES

Whenever a tracker has been detected by the iOS tracking detection
or the Android App Tracker Detect, the user can play a sound on the
accessory. Playing a sound on a tracker significantly simplifies the
discovery of the device. The same functionality has been adopted
in AirGuard.

Apple has not documented how this action can be triggered. The
Find My network accessory specification defined a BLE Generic
Attribute Profile (GATT) protocol to play and stop a sound [5].
GATT protocols consist of services which can contain multiple
characteristics. In Apple’s specification, two opcodes are defined to
start and stop a sound if they are written to a specific characteristic.
The characteristic is still available on sold Find My accessories,

81 Scan mode
g Low Energy
E 6 1 Balanced
S
@ Low Latency ———
Q _—
~ 4
8
&
B 5 4
H*+
O -
T T T T T
2 4 6 8 10

Scan duration in seconds

Figure 8: Evaluation of different scan parameters

https://developer.apple.com/videos/play/wwdc2021/10084/
https://play.google.com/store/apps/details?id=com.apple.trackerdetect&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.apple.trackerdetect&hl=en&gl=US
https://support.apple.com/en-us/HT212227
https://www.wired.com/story/opinion-apples-air-tags-are-a-gift-to-stalkers/
https://www.wired.com/story/opinion-apples-air-tags-are-a-gift-to-stalkers/
https://doi.org/10.2478/popets-2020-0003
https://doi.org/10.2478/popets-2020-0003
https://www.macrumors.com/2021/12/31/airtag-increasingly-linked-to-crime/
https://www.macrumors.com/2021/12/31/airtag-increasingly-linked-to-crime/
https://chipolo.net/en/pages/chipolo-one-spot
https://chipolo.net/en/pages/chipolo-one-spot
https://www.washingtonpost.com/technology/2021/05/05/apple-airtags-stalking/
https://www.washingtonpost.com/technology/2021/05/05/apple-airtags-stalking/
https://doi.org/10.1145/3448300.3467821
https://doi.org/10.1145/3448300.3468251
https://doi.org/10.2478/popets-2021-0045
https://www.usenix.org/conference/woot20/presentation/heinze
https://www.usenix.org/conference/woot20/presentation/heinze
https://uk.pcmag.com/mobile-phone-accessories/138509/silent-airtags-with-speakers-removed-pop-up-on-etsy-ebay
https://uk.pcmag.com/mobile-phone-accessories/138509/silent-airtags-with-speakers-removed-pop-up-on-etsy-ebay
https://www.apple.com/newsroom/2022/02/an-update-on-airtag-and-unwanted-tracking/
https://www.apple.com/newsroom/2022/02/an-update-on-airtag-and-unwanted-tracking/
https://www.fox7austin.com/news/discovery-of-airtag-tracking-device-prevents-double-theft-of-truck#95
https://www.fox7austin.com/news/discovery-of-airtag-tracking-device-prevents-double-theft-of-truck#95
https://doi.org/10.1007/978-3-030-88418-5_7
https://arxiv.org/abs/2111.05313
https://www.nytimes.com/2021/12/30/technology/apple-airtags-tracking-stalking.html
https://www.nytimes.com/2021/12/30/technology/apple-airtags-tracking-stalking.html
http://arxiv.org/abs/1904.10600
https://doi.org/10.1145/3463676.3485616
https://www.samsung.com/my/apps/find-my-mobile/
https://www.samsung.com/my/apps/find-my-mobile/
https://www.usenix.org/conference/usenixsecurity21/presentation/stute
https://www.usenix.org/conference/usenixsecurity21/presentation/stute
https://doi.org/10.1145/3241539.3241566
https://www.usenix.org/conference/usenixsecurity19/presentation/stute
https://www.usenix.org/conference/usenixsecurity19/presentation/stute
https://www.thetileapp.com/en-eu/blog/what-is-tile-network-community-find-lost-stolen-far-away
https://www.thetileapp.com/en-eu/blog/what-is-tile-network-community-find-lost-stolen-far-away
https://doi.org/10.1145/3395351.3399422
https://doi.org/10.1145/3395351.3399422
https://www.kickstarter.com/projects/xyfindit/xy-the-secure-tracking-tag
https://www.kickstarter.com/projects/xyfindit/xy-the-secure-tracking-tag

Table 5: Characteristics to start and stop playing a sound on Find My accessories

Device Behavior Service Characteristic Value to write
AirTag Play sound 7DFC9000-7D1C-4951-86AA-8D9728F8D66C 7DFC9001-7D1C-4951-86AA-8D9728F8D66 OXAF
Accessories & AirPods Play sound FD44 4F860003-943B-49EF-BED4-2F730304427A 0x01 00 03
Accessories & AirPods ~ Stop sound FD44 4F860003-943B-49EF-BED4-2F730304427A 0x01 01 03

like the Chipolo ONE Spot, but the opcodes have changed. Also,
the AirTag supports the same functionality, but it uses an entirely
different BLE characteristic.

To identify the actual values of these non-owner sound charac-
teristics, we used two methods of reverse-engineering: i0OS system
logs and Android Bluetooth Host Controller Interface (HCI) snoop
logs.

We used an AirTag that triggered a tracking notification on iOS,
then we played a sound on the device and retrieved the system logs
of the locationd daemon at the same time. Fortunately, the logs
print the characteristic that needs to be accessed and the value that
needs to be written. In i0S 15.2, the AirTag only supports playing
a sound but not stopping it.

On Android, we activated the Bluetooth HCI snoop logs and
played a sound on the Chipolo ONE Spot using the Tracker Detect
app. The HCI logs contain all commands that are sent to the Blue-
tooth chip from the host (i.e., Android) system and the responses
from the chip (e.g., GATT characteristics used). We extracted the
values needed to start a sound and stop the sound.

The discovered values to play and stop sounds are listed in Ta-
ble 5.

C 10S TRACKING DETECTION

Figure 9 shows a screenshot from Apple’s Find My app. It shows a
path constructed by several points where the iPhone has seen the
AirTag as a tracking device.

Figure 9: Screenshot of an AirTag tracking an author dis-
played in the Find My App.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Bluetooth Device Finders
	2.2 The Find My Network
	2.3 Find My Stalking Protection
	2.4 Apple Wireless Services

	3 iOS Tracking detection
	3.1 Methodology
	3.2 System Overview
	3.3 Collecting Events for Tracking Detection
	3.4 Classification of Tracking Devices
	3.5 Tracking Device Categories
	3.6 Notifications
	3.7 Discussion

	4 AirGuard
	4.1 Tracking Detection
	4.2 Manual Scanning
	4.3 User Experience

	5 Evaluation
	5.1 Setup of the Experiments
	5.2 Results
	5.3 Discussion

	6 User study
	6.1 Discovered Devices
	6.2 Location Tracking Prevalence

	7 Conclusions
	References
	A AirGuard - Additional details
	A.1 BLE Scan Parameters

	B Sound on Accessories
	C iOS Tracking Detection

