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We give a practical parallel algorithm for solving band symmetric positive definite systems of linear 
equations in O(m* logn) time using nm/log n processors. Here n denotes the system size and m its 
bandwidth. Hence, the algorithm is efficient. For tridiagonal systems, the algorithm runs in O(logn) 
time using n/log n processors. Furthermore, an improved version runs in O(log m log n) time using 
nm*/(log m log n) processors. 
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1. INTRODUCTION 
Sparse symmetric positive definite systems of linear equations arise in many 
important applications such as the finite element method, see [22]. These systems 
are very large and sparse since they result from the discretization of continuous 
problems. Furthermore, they can be brought to an almost narrow banded stmc- 
ture, see [6], and hence the importance of an efficient parallel algorithm. 

In this paper, we give a practical parallel algorithm for solving band symmetric 
positive definite systems of linear equations that runs in O(m log n) time using 
nm/logn processors. Here, n denotes the system size and m its bandwidth. Our 
algorithm improves many suggested partitioning algorithms such as those of 
Lawrie and Sameh [ 121, Dongarra and Sameh [3], and Meier [13] by a factor of 
sqrt(n/m)/logn. Our algorithm is parallel, oriented through all stages, whereas 
the above algorithms are parallel in their first stages only. For other parallel- 
oriented algorithms, see Bar-On and Vishkin [l], and Galil [5]. Moreover, an 
improved version of the algorithm presented in Section 3 runs in O(logn logm) 
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time using nm2/(log n log m) processors; for as good as the currently known lower 
time bound algorithms for direct methods, see Csanky [2], and Eberly [4]. The 
present algorithm competes with the odd-even reduction algorithm first formu- 
lated by Hackney [8]; see also [9, 16, 181 and [lo]. Furthermore, it improves the 
running time of the Pan and Reif algorithm [15] by a factor of logm. 

In our model of parallel computation, all processors have access to a common 
memory. Simultaneous reading from the same location is allowed, but simulta- 
neous writing is not. This model is sometimes called the concurrent-read 
exclusive-write parallel random access machine, see [21]. 

2. PARALLEL SOLUTION OF BAND SYMMETRIC POSITIVE DEFINITE 
SYSTEMS OF LINEAR EQUATIONS 

Let Ax = b be a system of linear equations where A,, is a band symmetric positive 
definite (s.p.d.) matrix, that is, 

Using block structure notation we get: 

where we assume for simplicity that m divides n. Here, Ai, Lip Ui are square 
submatrices of order m, and Li, Vi are lower and upper triangular, respectively. 

We regard A as a tridiagonal matrix with elements being submatrices of order 
m, so that, by row i, we mean the m X n submatrix: 

(0 Vi-1 Ci Li 0). 

We ignore the vector b in the computation that follows. Suffice to say that all 
operations applied to the rows of A should be applied to the rows of b. 

2.1 The Parallel Elimination Procedure 

Let p = n/4m be the number of processors. We assign processor i, i = 1, . . . , p 
to the block structured submatrix, 

Ti = 

L 

Uri - 1 Cri Lri 
Uri Cri+l Lri+l 

Uri+l Cri+2 Lri+2 
Uri+B Cri+3 Lri+3 1 i=l . * 9 P 

ri = 4;; - 1) + 1 

= (0 RiTfQi 0) 

Here, Tf is a 4m X 4m s.p.d. submatrix, Ri, Qi submatrices of order 4m X m, and 
we assume for simplicity that p = 2t, t some positive integer. 
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Step 0. Each processor diagonalizes its corresponding T? principal submatrix 
by Gaussian elimination (see Figure 1): 

[ 

0 E: VP 0 0 0 F! 0 

T; = * 0 *o 0 * 
0 o* 0 

0 dP 0 0 0 wp I;: 0 I 

i= 1, . . ..p 

where EP, FP, GP, HP and “*” denote some matrices of order m x m. 

Step k = 1 . . . t = logp. We define 
T~I-~ T1 = T;,;; I I i=l , -**, P/2 k. 

Tf’ = 
G&21 O...O we1 

21-l H;g?l 

E;;l V&T’ 0 . . . 0 F&T1 
* 

G$l 0 . . . 0 W;;’ H;;l 

We eliminate E!j;l, H&Z1 in parallel, as follows. We subtract Et;l * ( W$Jl)-’ 
times the last row of T$z?l from the first row of T$l, and at the same time we 
subtract H!jz?l * (Vzi ) k-1 -’ times the first row of T$l from the last row of T&Zl. 
By parallel we mean that the processors of the middle rows perform the above 
operations, respectively, 

~$3~ = 2k(i - 1) + 2k-1, p&l = 2k(i - 1) + 2k-’ + 1 

using the elements values of step (k - 1). Clearly, some elements should be copied 
before the computation starts. However, the complexity of this operation is 
negligible as compared to the other operations, so we ignore it from now on. As 
a result, we get the following submatrices: 

[ 

* v’?l 0 2r-1 . . . 0 FkZ 2r 1 

T; = : 8 . . . 8 "~ZI . 

. . . 

& 

26 

8 . . : ; 1 ; 

Gk-1 0 
2r . . . 0 &;;1 * 0 1 

We now subtract, in parallel, G$l * (R$?J’ times the last row of T%$ from the 
last row of T!;l, and F$?l * (S$‘)-l times the first row of TE;’ from the first 
row of T&Zl, using the same processors, respectively, we get (see Figure 2): 

i 

El V; 0 . . . 0 F? 
TF = * 

G; O...O Wf H; 1 
of the same form as the submatrices of the previous step. Clearly, in each 
step the number of submatrices is halved, so after logp steps there remains one 
submatrix of the above form. 

Correctness. Clearly, Vf’, I@ are positive definite, and hence V&y’, W&2l, since 
they are, respectively, the same. 
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Fig. 1. Eliminatior 1 step 0, with n = 16, m = 1. 
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Fig. 2. Elimination steps 1, 2. 

t 0 0 
* * 

* * 

*o * 

o* * 
** * 

ii 
* * 

*o 
o* 0 
** * 
* ** 
* *o 
* o* 

* * 
* * 

0 0 * 

Suppose w.1.g. Si,:’ becomes singular. In T?, the row of SE;’ contains zero in 
all columns corresponding to rows of Tf! beside the diagonal element itself. Let 
P denote the nonsingular matrix corresponding to the operations done on the 
rows of A, then PAPt is positive definite. Since no operation is applied to rows 
of Tf and to rows outside it, the corresponding column’s operations applied to 
the row of S$’ subtract multiples of SE;‘. Hence, the diagonal element becomes: 
S&lx, where X is some matrix of order m. Clearly, S$;’ can not be singular. 

2.2 The Parallel Substitution Procedure 

By the end of the elimination algorithm we get a new system, Ttlx = c, where 
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0 0 
* 
* 

*o 0 
o* 0 
** * 
* ** 

0 *o 
0 o* 

* 
* 

0 
0 

0 

0 
0 
* 
* 

*0 
o* 
* * 
* * 

0 * 

Fig. 3. Substitution steps 1, 2. 

0 0 
* 0 

* 0 
*o 0 
o* 0 
o* 0 
0 *o 
0 *o 0 
0 o* 0 

o* 0 
0 *o 
0 *o 
0 o* 

0 * 
0 * 

0 0 * 

We can therefore obtain the following solutions: 

Xl = (vy * Cl xp/z = (RY * c,/z 
xq/2+1 = (W’ * c,/2+1 x, = (w;,-l * c, 

where xi, ci denote vectors of length m, and q = n/m. Clearly, processor 1 finds 
the solution for x1, processor p/2 the solution for q/2, and so on. We now proceed 
to substitute these solutions to get new ones. 

Step k, k = 1, . . . , t = logp. For i = 1, . . . , 2k - 1, we substitute 

%7/2”+1 in rows (2i - l)q/2k+‘, (2i - l)q/2k+1 + 1 
&q/Z” in rows (2i + l)q/2k+‘, (2i + l)q/2k+1 + 1. 

We then obtain the solutions (see Figure 3): 

xq/p+l = (R:-k)-’ * cq/.9+1. 

Again, the substitution in the above rows and the computation of the corre- 
sponding solutions are done by the respective processors. Clearly, by the end of 
step t, we get the complete solution x. 

Complexity of the Algorithm. The complexity of the elimination procedure is 
dominated by the time to invert a m X m matrix. We invert a positive definite 
m X m matrix in time O(m) using m2 processors (see, [ll, 161 and [23]). We 
invert a general nonsingular matrix by Gaussian elimination with partial pivoting 
[7]. Here, we take as pivot the maximum element (in absolute value) among at 
most m elements, and, using m2 processors, it takes 0( 1) time, (see, [ 17, 201. 
Hence, the total complexity remains O(m) time using m2 processors. 

Let P = nm/4 = (n/4m) * m2 be the number of processors. We now assume 
that each of our n/4m original processors consists of m2 processors capable of 
multiplying and inverting a matrix of order m in O(m) time. Clearly, each step 
of the elimination procedure takes 0 (m) time for a total of 0 (m log n) time. In 
the substitution procedure all inverses are already known, and we essentially 
compute matrix vector multiplications of order m, each taking O(log m) time 
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with m2 processors. Since there are at most three nonzero entries in each row, 
and log p 5 O(log n) steps, the substitution procedure takes O(log m log n) time. 
The total complexity of the algorithm is therefore O(m logn) time using 
P = nm/4 processors. However, we can improve the efficiency as follows. 

We divide the rows of A into submatrices of m * log n consecutive rows each, 
that is, 

Ti= ‘\ 
i 

Uri - 1 Cri Lri 
\ \ 

‘\ USi - ClCsi”Lsi 

= (0 * T; * 0), 

ri = (i - 1) * logn + 1 

Si = i * logn 

and we assign m2 processors to each such submatrix, for a total of nmllogn. We 
then diagonalize the principal submatrix, T$, arriving at the submatrices: 

OE: VP , , o...o~o...o 

i 

* 

\ i O ’ 
0 GP O...O Wp HP O...O 1 

applying a method such as Gaussian elimination. Clearly, V?, @ are positive 
definite, and we proceed as before, but for a final step, where we compute the 
above inbetween solutions. The complexity is therefore the same, but for an 
additional 0 (m log n + log n log m) time. Hence, 

O(nm’/p) time, for p 5 nm/logn processors, 

and the algorithm is efficient, that is, 

Ep = (Td’.‘.)/p = O(bm2/(nm2/p))/p) = O(l). 

3. AN O(logm logn) EFFICIENT PARALLEL ALGORITHM 

We give, respectively, efficient O(log2n), O(logn log m) time-parallel algorithms 
for inverting a symmetric positive definite matrix of order n, and solving a band 
s.p.d. system of linear equations. 

Inverting a Symmetric Positive Definite Matrix. Let A,, be a symmetric posi- 
tive definite matrix, that is, 

C, D, Q are of order (n/2) X (n/2), 

where we assume for simplicity that n = 2” for some integer s > 0. Since A is 
s.p.d., so are C, D ([19]). Let us eliminate Q, Q” by applying the following 
nonsingular matrix P to A, that is, 

A'=pA= 
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where C’ = C - QD-‘Q” and D’ = D - Q”C-‘Q are again s.p.d. Clearly, the 
inverse of A is given by 

A-’ = A’-‘P = (‘0’ D:.ml) * (-BJc-’ -“p-l). 

Given C-‘, D-l, we compute D’-l (similarly, C’-l) as follows: 

D’-1 = (D - Q”C-‘Q)-’ = (I - D-‘Q”C-‘Q)-‘D-1 

= (I - X)-‘D-l 
X = D-‘Q”C-‘Q = D--1/2(D--1/2QtC-*QD-*/2)D*/2 

= G-l(R’C-lR)G G = D1/2, R = QD-1/2e 

Hence, X is similar to a nonnegative symmetric matrix, and therefore all its 
eigenvalues are nonnegative. Furthermore, the largest eigenvalue of X is less 
than unity, otherwise: 

xz = AZ x 2 1 for some vector 2 ( )0 

(D’z, z) = (D(I - X)z, z) = (1 - X)(Dz, z) 5 0 

and D’ is not positive definite, a contradiction. Therefore, Xk + 0 as k + co, and 
the following series converges (see [14]), 

(I - X)-l = I + X + X2 + X3 + . . . = 5 Xk = S, + RM 
k=O 

M-l 

s, = 1 xk RM = i Xk 
k=O k=M 

Furthermore, let N = RV’R, then, 

11 N )I = q < 1, ]I Xk ]I = ]I G-lNkG ]I 5 K(G) * qk, 

where ]I * I] denotes the spectral norm, and K(G) the condition number of G, that 
is, ]I G I] * (I G-l I]. Then, 

11 (1 - x)-l - SM 11 = 11 RM 11 5 jM 11 x Ilk 5 K(G) & . 

Hence, SM is a good approximation for M large enough. For example, if q 5 f and 
c = K(G), then 

11 (I - x)-l - SM 11 5 2c * (;)“, 

and M = 2t is a good choice when c is not too large, t being the machine precision. 
Moreover, 

log M/2 

s, = fl (I + x’**j), 
j=O 

n denotes the product of the factors 

and SM is computed in O(log M * logn) = O(logn) time. 
Applying the algorithm recursively, we finally compute the inverse of s.p.d. 

submatrices of order less than or equal to log n, which we do directly by Cholesky 
decomposition [ll]. We then proceed as above. 
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Let P = n3/log2n be the number of processors, then the last step takes 
O((r~/2)~/(P/2)) = O(log%/4) time. The step before the last takes 
O((r~/4)~/(P/2~)) = O(log2n/42), and so on. In general, the step before the 
last takes O(max( (n/2”“)“/(P/2’“), log n/2’+‘)) I O(max(log2n/4’+‘, logn)), and 
clearly the first step of inverting the above submatrices of order logn takes 
O(logn) time. Hence, the total complexity for inverting an s.p.d. matrix of 
order n is 

O(n3/p) time, for p 5 n3/log2n processors, 

and the algorithm is efficient. 
Consider the submatrix 

( 

0 * 0 . . . 0 wg;_‘, H$21 0 0 . . . 
0 0 . . . Ek:’ 

2r Vk’ 0 . . . 0 * 0 ) 

of Section 2.1, which we denote for simplicity by 

( 

* 0 
0 *** 

0 WH 0 0 
0 E V O...O ‘i’ ) * . . . 

Eliminating H, E, we get the submatrix 

( 

0 * 0 . . . OR 0 0 . . . 0 * 0 
o*o...ooso...o*o ) 

where R, S denote the corresponding submatrices, as above. We now apply to the 
columns of A the same operations done to its rows, excluding the last one 
corresponding to the elimination of H, E. We then get the submatrix 

( 

0 * * R’O 0 . . . 0 * 0 
0 * 0 * *:. . 1 OOS’* . . . *O’ 

Applying the last column operation, we get the principal submatrix 

R’ 0 

( )C 

I - W-‘Et 

) ( 

R’ -R’ W-1Et 

0 S’ -V-1Ht I = -S’V-‘Ht 
) S’ ’ 

which is symmetric and positive definite-since it is the same principal sub- 
matrix as that of PAPt, where P denotes the elementary operations done on the 
rows of A. From the preceding discussion of s.p.d. matrices, we see that the 
eigenvalues of 

,‘-l(-,‘V-l,t),‘--1(-R’W-lEt) 

are all real nonnegative numbers less than 1. Hence, 

X(EW-‘HV-‘) = X(V-‘H’W-‘E’) < 1, 

where X(*) denotes the largest eigenvalue in absolute value. 

,‘j’-’ = (V - EW-lH)-l = V-l(I - (EW-lHV-‘))-’ 

= v-1(1 - x)-l u-v < 1, 

and the inverse of S can be computed as before. 
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Let P = nm’/(logm logn) be the number of processors, then the elimination 
procedure takes 

log n/4m 

C O(max((m3/(P * 2k/4(n/m))), logm)) = O(logm logn) time, 
k=O 

and similarly the substitution procedure takes 
log n/4m 

2 O(max((m2/(P/2k+‘)), logm)) = O(logm logn) time. 
k=l 

Therefore, the complexity of the algorithm for band s.p.d. systems is 

0 (nm”/p) time for p 5 nm’/(logm log n) processors, 

and it is efficient. 

4. CONCLUSION 

We have presented a practical parallel algorithm for solving band symmetric 
positive definite systems of linear equations faster than the sequential algorithm 
by a factor of nmllogn. Moreover, we have shown that with enough processors 
its running time is the best currently known lower time bound for direct methods. 

Our algorithm competes with the previously known odd-even reduction algo- 
rithm, which has the same complexity. However, there are some differences that 
deserve attention: In the odd-even algorithm the diagonal submatrices are 
modified repeatedly, whereas in our algorithm the off-diagonal ones are. Whether 
this has any numerical significance requires more theoretical and experimental 
analysis. Furthermore, the odd-even algorithm has only one variance correspond- 
ing to the maximum number of processors p = n/m, whereas our algorithm can 
be adjusted to any number of processors. 

We have made some comparison tests with the sequential Gaussian elimination 
algorithm. For relatively small matrices n s 500 and randomly chosen data, the 
results were as good as the sequential method. However, a systematic analysis of 
the algorithm’s numerical properties is beyond the scope of this paper. 
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