
A Practical Parallel Algorithm for Solving
Band Symmetric Positive Definite Systems
of Linear Equations

ILAN BAR-ON
Courant Institute of Mathematical Sciences

We give a practical parallel algorithm for solving band symmetric positive definite systems of linear
equations in O(m* logn) time using nm/log n processors. Here n denotes the system size and m its
bandwidth. Hence, the algorithm is efficient. For tridiagonal systems, the algorithm runs in O(logn)
time using n/log n processors. Furthermore, an improved version runs in O(log m log n) time using
nm*/(log m log n) processors.

Categories and Subject Descriptors: G.l.O [Numerical Analysis]: General-parallel algorithms;
G.1.3 [Numerical Analysis]: Numerical Linear Algebra--linear systems, matrix inuersion; G.4
[Mathematics of Computing]: Mathematical Software--algorithm analysis, efficiency

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Band Systems of linear equations, Gaussian elimination, parallel
algorithms

1. INTRODUCTION
Sparse symmetric positive definite systems of linear equations arise in many
important applications such as the finite element method, see [22]. These systems
are very large and sparse since they result from the discretization of continuous
problems. Furthermore, they can be brought to an almost narrow banded stmc-
ture, see [6], and hence the importance of an efficient parallel algorithm.

In this paper, we give a practical parallel algorithm for solving band symmetric
positive definite systems of linear equations that runs in O(m log n) time using
nm/logn processors. Here, n denotes the system size and m its bandwidth. Our
algorithm improves many suggested partitioning algorithms such as those of
Lawrie and Sameh [121, Dongarra and Sameh [3], and Meier [13] by a factor of
sqrt(n/m)/logn. Our algorithm is parallel, oriented through all stages, whereas
the above algorithms are parallel in their first stages only. For other parallel-
oriented algorithms, see Bar-On and Vishkin [l], and Galil [5]. Moreover, an
improved version of the algorithm presented in Section 3 runs in O(logn logm)

This research was supported in part by the Tenesys Design System Limited, Haifa, Israel.
The author’s current address is: P.O. Box 07735, Ahuza, Haifa, Israel.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 009%3500/87/1200-0323 $01.50

ACM Transactions on Mathematical Software, Vol. 13, No. 4, December 1987, Pages 323-332.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F35078.35079&domain=pdf&date_stamp=1987-12-01

324 l Han Bar-On

time using nm2/(log n log m) processors; for as good as the currently known lower
time bound algorithms for direct methods, see Csanky [2], and Eberly [4]. The
present algorithm competes with the odd-even reduction algorithm first formu-
lated by Hackney [8]; see also [9, 16, 181 and [lo]. Furthermore, it improves the
running time of the Pan and Reif algorithm [15] by a factor of logm.

In our model of parallel computation, all processors have access to a common
memory. Simultaneous reading from the same location is allowed, but simulta-
neous writing is not. This model is sometimes called the concurrent-read
exclusive-write parallel random access machine, see [21].

2. PARALLEL SOLUTION OF BAND SYMMETRIC POSITIVE DEFINITE
SYSTEMS OF LINEAR EQUATIONS

Let Ax = b be a system of linear equations where A,, is a band symmetric positive
definite (s.p.d.) matrix, that is,

Using block structure notation we get:

where we assume for simplicity that m divides n. Here, Ai, Lip Ui are square
submatrices of order m, and Li, Vi are lower and upper triangular, respectively.

We regard A as a tridiagonal matrix with elements being submatrices of order
m, so that, by row i, we mean the m X n submatrix:

(0 Vi-1 Ci Li 0).

We ignore the vector b in the computation that follows. Suffice to say that all
operations applied to the rows of A should be applied to the rows of b.

2.1 The Parallel Elimination Procedure

Let p = n/4m be the number of processors. We assign processor i, i = 1, . . . , p
to the block structured submatrix,

Ti =

L

Uri - 1 Cri Lri
Uri Cri+l Lri+l

Uri+l Cri+2 Lri+2
Uri+B Cri+3 Lri+3 1 i=l . * 9 P

ri = 4;; - 1) + 1

= (0 RiTfQi 0)

Here, Tf is a 4m X 4m s.p.d. submatrix, Ri, Qi submatrices of order 4m X m, and
we assume for simplicity that p = 2t, t some positive integer.
ACM Transactions on Mathematical Software, Vol. 13, No. 4, December 1987.

A Practical Parallel Algorithm l 325

Step 0. Each processor diagonalizes its corresponding T? principal submatrix
by Gaussian elimination (see Figure 1):

[

0 E: VP 0 0 0 F! 0

T; = * 0 *o 0 *
0 o* 0

0 dP 0 0 0 wp I;: 0 I

i= 1,p

where EP, FP, GP, HP and “*” denote some matrices of order m x m.

Step k = 1 . . . t = logp. We define
T~I-~ T1 = T;,;; I I i=l , -**, P/2 k.

Tf’ =
G&21 O...O we1

21-l H;g?l

E;;l V&T’ 0 . . . 0 F&T1
*

G$l 0 . . . 0 W;;’ H;;l

We eliminate E!j;l, H&Z1 in parallel, as follows. We subtract Et;l * (W$Jl)-’
times the last row of T$z?l from the first row of T$l, and at the same time we
subtract H!jz?l * (Vzi) k-1 -’ times the first row of T$l from the last row of T&Zl.
By parallel we mean that the processors of the middle rows perform the above
operations, respectively,

~$3~ = 2k(i - 1) + 2k-1, p&l = 2k(i - 1) + 2k-’ + 1

using the elements values of step (k - 1). Clearly, some elements should be copied
before the computation starts. However, the complexity of this operation is
negligible as compared to the other operations, so we ignore it from now on. As
a result, we get the following submatrices:

[

* v’?l 0 2r-1 . . . 0 FkZ 2r 1

T; = : 8 . . . 8 "~ZI .

. . .

&

26

8 . . : ; 1 ;

Gk-1 0
2r . . . 0 &;;1 * 0 1

We now subtract, in parallel, G$l * (R$?J’ times the last row of T%$ from the
last row of T!;l, and F$?l * (S$‘)-l times the first row of TE;’ from the first
row of T&Zl, using the same processors, respectively, we get (see Figure 2):

i

El V; 0 . . . 0 F?
TF = *

G; O...O Wf H; 1
of the same form as the submatrices of the previous step. Clearly, in each
step the number of submatrices is halved, so after logp steps there remains one
submatrix of the above form.

Correctness. Clearly, Vf’, I@ are positive definite, and hence V&y’, W&2l, since
they are, respectively, the same.

ACM Transactions on Mathematical Software, Vol. 13, No. 4, December 1987.

326 l llan Bar-On

‘* *

* * *

* * *

* * *

* * *
* * *

* * *

* *

Fig. 1. Eliminatior 1 step 0, with n = 16, m = 1.

* *
* *

* *
* *
* * *
** *
* **
* * *

* * *
** *
* **
* * *

* *
* *
* *
* *

r* 0 * \

i* *
* *

*o *

o* *

~

** *
* **

0 * *
* * 0 >
** *
* **
* *o
* o*

* *
* *

* c 0 *,

Fig. 2. Elimination steps 1, 2.

t 0 0
* *

* *

*o *

o* *
** *

ii
* *

*o
o* 0
** *
* **
* *o
* o*

* *
* *

0 0 *

Suppose w.1.g. Si,:’ becomes singular. In T?, the row of SE;’ contains zero in
all columns corresponding to rows of Tf! beside the diagonal element itself. Let
P denote the nonsingular matrix corresponding to the operations done on the
rows of A, then PAPt is positive definite. Since no operation is applied to rows
of Tf and to rows outside it, the corresponding column’s operations applied to
the row of S$’ subtract multiples of SE;‘. Hence, the diagonal element becomes:
S&lx, where X is some matrix of order m. Clearly, S$;’ can not be singular.

2.2 The Parallel Substitution Procedure

By the end of the elimination algorithm we get a new system, Ttlx = c, where

ACM Transactions on Mathematical Software, Vol. 13, No. 4, December 1987.

A Practical Parallel Algorithm l 327

0 0
*
*

*o 0
o* 0
** *
* **

0 *o
0 o*

*
*

0
0

0

0
0
*
*

*0
o*
* *
* *

0 *

Fig. 3. Substitution steps 1, 2.

0 0
* 0

* 0
*o 0
o* 0
o* 0
0 *o
0 *o 0
0 o* 0

o* 0
0 *o
0 *o
0 o*

0 *
0 *

0 0 *

We can therefore obtain the following solutions:

Xl = (vy * Cl xp/z = (RY * c,/z
xq/2+1 = (W’ * c,/2+1 x, = (w;,-l * c,

where xi, ci denote vectors of length m, and q = n/m. Clearly, processor 1 finds
the solution for x1, processor p/2 the solution for q/2, and so on. We now proceed
to substitute these solutions to get new ones.

Step k, k = 1, . . . , t = logp. For i = 1, . . . , 2k - 1, we substitute

%7/2”+1 in rows (2i - l)q/2k+‘, (2i - l)q/2k+1 + 1
&q/Z” in rows (2i + l)q/2k+‘, (2i + l)q/2k+1 + 1.

We then obtain the solutions (see Figure 3):

xq/p+l = (R:-k)-’ * cq/.9+1.

Again, the substitution in the above rows and the computation of the corre-
sponding solutions are done by the respective processors. Clearly, by the end of
step t, we get the complete solution x.

Complexity of the Algorithm. The complexity of the elimination procedure is
dominated by the time to invert a m X m matrix. We invert a positive definite
m X m matrix in time O(m) using m2 processors (see, [ll, 161 and [23]). We
invert a general nonsingular matrix by Gaussian elimination with partial pivoting
[7]. Here, we take as pivot the maximum element (in absolute value) among at
most m elements, and, using m2 processors, it takes 0(1) time, (see, [17, 201.
Hence, the total complexity remains O(m) time using m2 processors.

Let P = nm/4 = (n/4m) * m2 be the number of processors. We now assume
that each of our n/4m original processors consists of m2 processors capable of
multiplying and inverting a matrix of order m in O(m) time. Clearly, each step
of the elimination procedure takes 0 (m) time for a total of 0 (m log n) time. In
the substitution procedure all inverses are already known, and we essentially
compute matrix vector multiplications of order m, each taking O(log m) time

ACM Transactions on Mathematical Software, Vol. 13, No. 4, December 1987.

328 l llan Bar-On

with m2 processors. Since there are at most three nonzero entries in each row,
and log p 5 O(log n) steps, the substitution procedure takes O(log m log n) time.
The total complexity of the algorithm is therefore O(m logn) time using
P = nm/4 processors. However, we can improve the efficiency as follows.

We divide the rows of A into submatrices of m * log n consecutive rows each,
that is,

Ti= ‘\
i

Uri - 1 Cri Lri
\ \

‘\ USi - ClCsi”Lsi

= (0 * T; * 0),

ri = (i - 1) * logn + 1

Si = i * logn

and we assign m2 processors to each such submatrix, for a total of nmllogn. We
then diagonalize the principal submatrix, T$, arriving at the submatrices:

OE: VP , , o...o~o...o

i

*

\ i O ’
0 GP O...O Wp HP O...O 1

applying a method such as Gaussian elimination. Clearly, V?, @ are positive
definite, and we proceed as before, but for a final step, where we compute the
above inbetween solutions. The complexity is therefore the same, but for an
additional 0 (m log n + log n log m) time. Hence,

O(nm’/p) time, for p 5 nm/logn processors,

and the algorithm is efficient, that is,

Ep = (Td’.‘.)/p = O(bm2/(nm2/p))/p) = O(l).

3. AN O(logm logn) EFFICIENT PARALLEL ALGORITHM

We give, respectively, efficient O(log2n), O(logn log m) time-parallel algorithms
for inverting a symmetric positive definite matrix of order n, and solving a band
s.p.d. system of linear equations.

Inverting a Symmetric Positive Definite Matrix. Let A,, be a symmetric posi-
tive definite matrix, that is,

C, D, Q are of order (n/2) X (n/2),

where we assume for simplicity that n = 2” for some integer s > 0. Since A is
s.p.d., so are C, D ([19]). Let us eliminate Q, Q” by applying the following
nonsingular matrix P to A, that is,

A'=pA=
ACM Transactions on Mathematical Software, Vol. 13, No. 4, December 1987.

A Practical Parallel Algorithm l 329

where C’ = C - QD-‘Q” and D’ = D - Q”C-‘Q are again s.p.d. Clearly, the
inverse of A is given by

A-’ = A’-‘P = (‘0’ D:.ml) * (-BJc-’ -“p-l).

Given C-‘, D-l, we compute D’-l (similarly, C’-l) as follows:

D’-1 = (D - Q”C-‘Q)-’ = (I - D-‘Q”C-‘Q)-‘D-1

= (I - X)-‘D-l
X = D-‘Q”C-‘Q = D--1/2(D--1/2QtC-*QD-*/2)D*/2

= G-l(R’C-lR)G G = D1/2, R = QD-1/2e

Hence, X is similar to a nonnegative symmetric matrix, and therefore all its
eigenvalues are nonnegative. Furthermore, the largest eigenvalue of X is less
than unity, otherwise:

xz = AZ x 2 1 for some vector 2 ()0

(D’z, z) = (D(I - X)z, z) = (1 - X)(Dz, z) 5 0

and D’ is not positive definite, a contradiction. Therefore, Xk + 0 as k + co, and
the following series converges (see [14]),

(I - X)-l = I + X + X2 + X3 + . . . = 5 Xk = S, + RM
k=O

M-l

s, = 1 xk RM = i Xk
k=O k=M

Furthermore, let N = RV’R, then,

11 N)I = q < 1,]I Xk]I =]I G-lNkG]I 5 K(G) * qk,

where]I * I] denotes the spectral norm, and K(G) the condition number of G, that
is,]I G I] * (I G-l I]. Then,

11 (1 - x)-l - SM 11 = 11 RM 11 5 jM 11 x Ilk 5 K(G) & .

Hence, SM is a good approximation for M large enough. For example, if q 5 f and
c = K(G), then

11 (I - x)-l - SM 11 5 2c * (;)“,

and M = 2t is a good choice when c is not too large, t being the machine precision.
Moreover,

log M/2

s, = fl (I + x’**j),
j=O

n denotes the product of the factors

and SM is computed in O(log M * logn) = O(logn) time.
Applying the algorithm recursively, we finally compute the inverse of s.p.d.

submatrices of order less than or equal to log n, which we do directly by Cholesky
decomposition [ll]. We then proceed as above.

ACM Transactions on Mathematical Software, Vol. 13, No. 4, December 1987.

330 ’ Han Bar-On

Let P = n3/log2n be the number of processors, then the last step takes
O((r~/2)~/(P/2)) = O(log%/4) time. The step before the last takes
O((r~/4)~/(P/2~)) = O(log2n/42), and so on. In general, the step before the
last takes O(max((n/2”“)“/(P/2’“), log n/2’+‘)) I O(max(log2n/4’+‘, logn)), and
clearly the first step of inverting the above submatrices of order logn takes
O(logn) time. Hence, the total complexity for inverting an s.p.d. matrix of
order n is

O(n3/p) time, for p 5 n3/log2n processors,

and the algorithm is efficient.
Consider the submatrix

(

0 * 0 . . . 0 wg;_‘, H$21 0 0 . . .
0 0 . . . Ek:’

2r Vk’ 0 . . . 0 * 0)

of Section 2.1, which we denote for simplicity by

(

* 0
0 ***

0 WH 0 0
0 E V O...O ‘i’) * . . .

Eliminating H, E, we get the submatrix

(

0 * 0 . . . OR 0 0 . . . 0 * 0
o*o...ooso...o*o)

where R, S denote the corresponding submatrices, as above. We now apply to the
columns of A the same operations done to its rows, excluding the last one
corresponding to the elimination of H, E. We then get the submatrix

(

0 * * R’O 0 . . . 0 * 0
0 * 0 * *:. . 1 OOS’* . . . *O’

Applying the last column operation, we get the principal submatrix

R’ 0

()C

I - W-‘Et

) (

R’ -R’ W-1Et

0 S’ -V-1Ht I = -S’V-‘Ht
) S’ ’

which is symmetric and positive definite-since it is the same principal sub-
matrix as that of PAPt, where P denotes the elementary operations done on the
rows of A. From the preceding discussion of s.p.d. matrices, we see that the
eigenvalues of

,‘-l(-,‘V-l,t),‘--1(-R’W-lEt)

are all real nonnegative numbers less than 1. Hence,

X(EW-‘HV-‘) = X(V-‘H’W-‘E’) < 1,

where X(*) denotes the largest eigenvalue in absolute value.

,‘j’-’ = (V - EW-lH)-l = V-l(I - (EW-lHV-‘))-’

= v-1(1 - x)-l u-v < 1,

and the inverse of S can be computed as before.
ACM Transactions on Mathematical Software, Vol. 13, No. 4, December 1987.

A Practical Parallel Algorithm l 331

Let P = nm’/(logm logn) be the number of processors, then the elimination
procedure takes

log n/4m

C O(max((m3/(P * 2k/4(n/m))), logm)) = O(logm logn) time,
k=O

and similarly the substitution procedure takes
log n/4m

2 O(max((m2/(P/2k+‘)), logm)) = O(logm logn) time.
k=l

Therefore, the complexity of the algorithm for band s.p.d. systems is

0 (nm”/p) time for p 5 nm’/(logm log n) processors,

and it is efficient.

4. CONCLUSION

We have presented a practical parallel algorithm for solving band symmetric
positive definite systems of linear equations faster than the sequential algorithm
by a factor of nmllogn. Moreover, we have shown that with enough processors
its running time is the best currently known lower time bound for direct methods.

Our algorithm competes with the previously known odd-even reduction algo-
rithm, which has the same complexity. However, there are some differences that
deserve attention: In the odd-even algorithm the diagonal submatrices are
modified repeatedly, whereas in our algorithm the off-diagonal ones are. Whether
this has any numerical significance requires more theoretical and experimental
analysis. Furthermore, the odd-even algorithm has only one variance correspond-
ing to the maximum number of processors p = n/m, whereas our algorithm can
be adjusted to any number of processors.

We have made some comparison tests with the sequential Gaussian elimination
algorithm. For relatively small matrices n s 500 and randomly chosen data, the
results were as good as the sequential method. However, a systematic analysis of
the algorithm’s numerical properties is beyond the scope of this paper.

REFERENCES
1. BAR-ON, I., AND VISHKIN, U. Optimal parallel generation of a computation tree form. ACM

Trans. Program. Lang. Syst. 7 (Apr. 1985), 348-357.
2. CSANKY, L. Fast parallel matrix inversion algorithms. SIAM J. Comput. 5, 4 (Dec. 1976),

618-623.
3. DONGARRA, J. J., AND SAMEH, A. H. On some parallel banded systems solvers. Parallel Comput.

1 (1984), 223-235.
4. EBERLY, W. Very fast parallel matrix and polynomial arithmetic. In Proceedings of the 25th

FOCS Conference (1984), 21-30.
5. GALIL, Z. Optimal parallel algorithms for string matching. In Proceedings of the 16th Annual

Symposium on the Theory of Computing (Apr. 1984), 240-248.
6. GEORGE, J. A., AND LIU, J. W. Computer Solution of Large Sparse Positive Definite Systems.

Prentice-Hall, Englewood Cliffs, N.J., 1981.
7. GOLUB, G. H., AND VAN LOAN, C. F. Matrix Computations. Johns Hopkins University Press,

Baltimore, Md., 1983.

ACM Transactions on Mathematical Software, Vol. 13, No. 4, December 1987.

332 l Han Bar-On

8. HOCKNEY, R. W. A fast direct solution of Poisson’s equation using Fourier analysis. J. ACM
12 (1965), 95-113.

9. HELLER, D. A survey of parallel algorithms in numerical linear algebra. SIAM Reu. 20, 4 (Oct.
1978), 740-777.

10. HOSHINO, T., KAMIMURA, T., IIDA, T., AND SHIRAKAWA, T. Parallelized AD1 scheme using
GECR (Gauss-Elimination-Cyclic-Reduction) method and implementation of Navier-Stokes
equation in the PAX computer. In Proceedings of the 26th FOCS Conference (1985), 426-433.

11. KUMAR, S. P., AND KOWALICK, J. S. Parallel factorization of a positive definite matrix on an
MIMD computer. Proceedings of the 1984 ZCPP (1984), 410-416.

12. LAWRIE, H. D., SAMEH, H. A. Complexity of a parallel banded system solver. ACM Trans.
Math. Softu. 10,2 (June 1984), 184-195.

13. MEIER, U. A parallel partition method for solving banded systems of linear equations. Parallel
comput. 2 (1985), 33-43.

14. ORTEGA, J. M. Numerical Analysis, A Second Course. Academic Press, New York, 1972.
15. PAN, V., AND REIF, J. Efficient parallel solution of linear systems. In Proceedings of the 26th

FOCS Conference, (1985), 143-152.
16. SCHENDEL, U. Introduction to Numerical Methods for Parallel Computers. Ellis Horwood

Limited, 1984.
17. SHILOACH, Y., AND VISHKIN, U. Finding the maximum merging and sorting in parallel com-

putation model. J. Algorithms 2, 1 (1981), 88-102.
18. STONE, H. An efficient parallel algorithm for the solutions of a tridiagonal linear system of

equations. J. ACM 20, 1 (Jan. 1973), 27-38.
19. STRANG, G. Linear Algebra and Its Applications. Academic Press, New York, 1980.
20. VALIANT, L. G. Parallelism in comparison problems. SIAM J. Comput. 4, 3 (Sept. 1975),

348-355.
21. VISHKIN, U. Synchronous parallel computation-a survey. TR-71, Dept. of Computer Science,

Courant Institute, New York, Univ., 1983.
22. WEAVER, H., JR., AND JOHNSTON, P. R. Finite Elements for Structural Analysis. Prentice-Hall,

Englewood Cliffs, N.J., 1984.
23. WING, O., AND HUANG, J. W. A computational model of parallel solution of linear equations.

IEEE Trans. Cornput. C-29, I (1980), 632-638.

Received December 1986; revised July 1987; accepted September 1987

ACM Transactions on Mathematical Software, Vol. 13, No. 4, December 1987.

