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In recent years, digital twins have been pervading diferent application domains ś from manufacturing to healthcare ś as an
approach for virtualising diferent kinds of physical entities (things, products, machines). The dominant view developed in
the literature so far is about the virtualisation of individual physical assets, in a closed-system perspective. In this paper, we
introduce and explore a broader perspective that we call Web of Digital Twins (WoDT), in which the digital twin paradigm is
exploited for the pervasive softwarisation of possibly large-scale interrelated physical realities. A WoDT can be conceived as
an open, distributed and dynamic ecosystem of connected digital twins, functioning as an interoperable service-oriented layer
for applications running on top, especially smart applications and multiagent systems. The paper introduces an abstract model
and architecture aimed to capture key aspects of the idea not bound to any speciic application domains or implementing
technologies, and discusses their adoption in engineering real-world systems. To this purpose, two concrete case studies
are considered, in the context of healthcare and smart mobility. Finally, the paper includes a discussion of a selected set of
research directions.

CCS Concepts: · Computing methodologies → Multiagent systems; · Software and its engineering → Designing

software; · Computer systems organisation→ Embedded and cyber-physical systems; · Information systems→World

Wide Web.

Additional Key Words and Phrases: Digital Twins, Web, Agents, MAS, WoDT

1 INTRODUCTION

In the last decade, the digital twin (DT) paradigm has been explored in diferent domains as an approach to
virtualise entities existing in the real world, creating software counterparts that provide smart services upon
them [16, 17, 28]. Such services may range from simple tracking of the actual state of the physical entity or
device, to smarter forms of monitoring in order to, e.g., detect and predict possible critical situations, optimise
performances, up to more general forms of augmentation of the capabilities of the physical counterpart. Relevant
examples can be found in the Industry 4.0 context [52], healthcare [24], smart cities [44]Ðthe interested readers
can refer to surveys available in the literature [28]. Despite the speciic domain and implementation, the models of
DT described in the literature share two main characteristics: (i) they typically concern virtualisation of individual,
standalone assets, in a closed-system perspectiveÐbeing them physical objects, products, machines, buildings;
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(ii) they are used for vertical applications, designed for speciic purposes. Beyond this view, the DT principles
and paradigm can be extended to the virtualisation of complex realities composed of interrelated assets, possibly
belonging to diferent domains and diferent organisations, in a more open-system perspective [27, 39]. Such a
stance, besides enabling technologies, calls for a proper conceptual model and framework, abstract enough to
capture key aspects in spite of concrete application domains and technologies, and yet expressive enough to be a
reference for the development of concrete architectures and technologies.

To this purpose, in this paper we introduce and discuss an approach in which the DT paradigm is meant to be
pervasively applied to virtualise large-scale, dynamic, possibly cross-domain physical realities of an organisation
and across diferent organisations, resulting in an open distributed ecosystem of connected DTs. We refer to
such an ecosystem as Web of Digital Twins (WoDT), being inspired by the main conceptual and architectural
principles of the Web, and considering the Web, and related technology stack and standards, as a natural
underlying deployment architecture and platformÐalthough not necessarily the only one. In this view, a DT
is not (necessarily) a vertical application: conversely, the WoDT of an organisation deines a service-oriented
software layer on top of which smart applications can be designed and integrated, exploiting functionalities to
access and interact with the interrelated physical assets as-a-service.
At the application level, a main kind of systems that can take advantage of WoDT as a service are intelligent

agents and multiagent systems (MASs) [20], that can exploit DTs as a virtual environment (or, application
environment [53]) enabling the access and interaction with the physical world. In this view, a DT functions irst
of all as a shared medium used by agents to perceive/observe and act upon the physical world. Besides, a DT may
provide further higher-level functionalities conceptually augmenting the basic ones provided by the physical
world, that could be exploited by agents to support their reasoning and decision making.

The remainder of the paper is structured as follows. We irst provide a broad overview and background about
DTs (Section 2), and their added value for reference contexts such as Internet of Things. Then, the main aim of the
paper is to provide a comprehensive account of the WoDT vision and approach. To this purpose, irst, we describe
an abstract model capturing key concepts and features (Section 3) and the general traits of architectures based on
that model (Section 4), including a discussion about their integration with multiagent systems architectures and
technologies. Then, we discuss the application of the model to two real-world concrete case studies (Section 5),
based on our previous work exploring the application of DTs in speciic domains, in particular healthcare, for
major trauma management [29], and in smart mobility scenarios [36]. Finally, we provide an overview of the
main research directions for the development of the WoDT vision and approach (Section 6).

2 BACKGROUND AND STATE OF THE ART

The scientiic literature has referred to DTs since 2003 when Michael Grieves introduced this concept with an
initial formulation in the aerospace ield by the National Aeronautics and Space Administration (NASA) [16, 17].
As reported in [28, 51], from there the concept has evolved and attracted growing attention, from manufacturing
industries to the Internet of Things and Cyber-Physical Systems contexts. In particular, [28] surveys and analyses
the state-of-the-art deinitions also investigating the common characteristics of a DT and the domains in which
they are currently being developed and adopted.
The original deinition introduced the core concepts associated with a DT, namely it is composed by three

dimensions: physical, virtual, and connection parts, where the virtual space represents the digital or software
representation and replication of the physical asset, and it is mapped to the physical space through the connection
part that exchanges information. Moreover, DT possibly includes models of the structure, functionalities, and
behaviour of the real counterpart [17, 32]. It can persist for the whole system life-cycle, and it is tightly linked with
the physical entity: a shadowing process enables the continuous update of DT’s internal state in near-real-time
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with data acquired on the physical system by diferent devices ś mainly sensors or other sources such as existing
IT systems (e.g. ERP, PLM) ś and transferred digitally [7].
Recent advancements in IoT, big data, and machine learning have also signiicantly contributed to the im-

provements in DTs regarding their real-time capabilities and forecasting properties. Collected data constitute the
so-called digital threads and are the grounding information on which simulation or machine learning algorithms
rely to make predictions, enabling failures to be anticipated, to optimise the system, to design novel features, to
ease and accelerate decision making, and to improve productivityÐ to mention some [43, 52]. According to this
deinition, the DT is not only a model of the physical asset, but it can autonomously evolve through simulation
and AI-enabled algorithms to understand the world, learn, reason, and answer to what-if questions. Furthermore,
whenever DTs encapsulate reasoning capabilities, the concept of DT has evolved into Cognitive Digital Twin
(CDT) [1, 13] that has been introduced in the literature to refer to those DTs that autonomously perform some
intelligent task within the context of the physical asset, related to e.g. smart management, maintenance, and
optimisation of performances. This corresponds to stage 4 DTs envisioned in [43], as extended DTs delivering
additional capabilities besides the physical asset ones, possibly including an autonomous part lanking the basic
DT ones. To support cognitive and analytical solutions, some works in literature propose the adoption of semantic
models and technologies to extract knowledge from data, building on speciic domain-driven ontologies. Semantic
relations among data may then be represented as knowledge graphs [42], enabling the exploitation of a set of
models and theories to enhance the DT with cognitive capabilities. As such, DTs attracted a multitude of speciic
approaches related to data analytics [41], behavioural modelling [45], ontology deinition [49], or speciic device
mirroring [46] and networking.
As clearly reviewed and pointed out also in [28], the literature is conceptually aligned on an idea and the

importance of DT in multiple ields, but there is not yet a shared set of properties and behaviours that can help to
create common background, language, and a unifying model for representing and properly work with DT across
multiple application domains. The fragmentation of existing solutions is mostly related to their speciicity for a
target sector and the missing detailed deinition of how DTs should be represented and operate. On the one hand,
the resulting trend generates innovative approaches in disparate ields. However, on the other hand, it limits the
real potential of uniformed DTs by creating an unnecessary substrate of heterogeneous proposals [50]. Currently,
it is almost impossible to create an ecosystem where devices, services, and users can eiciently cooperate through
a shared and interoperable DT vision. From this analysis, the deinition of a model that introduces concepts and
principles on top of which building a DT, crosscutting the diferent application domains and independent of
speciic technologies, emerges as an open issue.

The industrial world, particularly the Industrial Internet of Things Consortium, is proposing a shared reference
architecture [25, 47] taking into account DTs relationships, composition, and main services (e.g., prediction,
maintenance, safety). In the networking research ield, DTs are also recently adopted to support interoperability,
reduce heterogeneity by providing a dynamic application-driven layer on top of physical equipment [3]. Further-
more, the concept of network DTs appears also for the irst time as an informational draft [56] trying to deine
their role and main responsibilities to mirror network assets. Similar works have been done by the Robotics
and Robot Operating System communities [22, 23]. In this context, a set of platforms and solutions has been
developed by major industries. It is worth mentioning the vision of GE Digital1, Siemens2, and Azure Digital
Twin3. The latter, in particular, provides a comprehensive approach for designing and developing cross-domain
digital twins, including ś among the other features ś a language called DTDL (Digital Twin Deinition Language),
which makes it possible to describe graphs of DTs, representing both their properties and their relationships.

1https://www.ge.com/digital/applications/digital-twin
2https://new.siemens.com/global/en/company/stories/research-technologies/digitaltwin/digital-twin.html
3https://azure.microsoft.com/en-gb/services/digital-twins/
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This feature is an essential one also in the WoDT proposal, in which ś however ś a more open-system oriented
perspective is explicitly adopted, taking the Web and Semantic Web as main references.
The oneM2M organisation4 and the World Wide Web Consortium with Web of Things (WoT)5 are actively

working to provide uniform access and description of physical assets to achieve practical interoperability across
multiple application domains and deployments. Unfortunately, within these fundamental standardisation activities,
the deinition of the role of DTs is at an early stage, e.g. the WoT tries to introduce the concept mainly as a
cloud-driven interaction pattern instead of a fundamental tool to digitise and model physical assets. Market ready
DTs approaches are also mainly focused on legacy systems design, and providers like Amazon6, Google7, and
Bosch8 already proposed their siloed implementations and DT services.
The broader perspective brought by the WoDT proposal shares many points with the Gemini Principles

vision [27], on which the National Digital Twin (NTD) Programme developed in the UK is based. The NDT
programme is nationwide, but focused mainly on the built environment. The perspective of WoDT is even larger,
considering the opportunity of virtualising physical assets not limited to buildings or related physical objects.
In the literature, this pervasive vision has strong ainities with the idea of mirror worlds as introduced by D.
Gelernter in [15], and further explored and developed in the context of agents and multiagent systems in [40].
Following Gelernter, mirror worlds are łsoftware models of some chunk of reality” [15], that is: ła true-to-life mirror

image trapped inside a computer”, which can be then viewed, zoomed, analysed by real-world inhabitants with the
help of proper software (autonomous) assistant agents. Following [15], the primary objective of a mirror world is
to strongly impact the lives of the citizens of the real world, ofering them the possibility to exploit software tools
and functionalities provided by the mirror world, generically, to tackle the increasing life complexity. The same
vision applies to Web of Digital Twins, which could be considered a concrete approach to design and develop
mirror worlds under this perspective.

Finally, the literature already accounts for a fewworks that apply agents for modelling, designing, implementing,
or even exploiting DTs. In [2] BDI agents ś being BDI (Belief-Desire-Intention) a main model/architecture adopted
to implement knowledge-based intelligent agents [38] ś are proposed to represent DTs of real-life organisations
claiming that beliefs, desires, and intentions are suitable abstractions for characterising mental attitudes of
anthropomorphic organisations. A similar approach is proposed in [48] where agents are adopted as a metaphor
to revise the structure of a DT in an autonomous, behaviour-centred perspective encapsulating the inherent
agent’s perceptionśdecisionśaction cycle and intelligence. Compared to these works, WoDT is more focused on
exploring intelligent agents and MAS at the application layer, modelling a digital twins connected ecosystem as
an agent application environment [53].

3 THE WODT MODEL

In this section, we provide a description of the main concepts and principles deining the WoDT idea, abstracting
from speciic application domains and technologies. Nevertheless, to clarify the concepts, we will use examples
from concrete domains, the healthcare scenario in particular.

3.1 Overview

The WoDT idea is based on a background principle introduced in [39] to broaden the perspective about the
application of the DT paradigm:

4https://www.onem2m.org/
5https://www.w3.org/TR/wot-architecture/
6https://aws.amazon.com/it/iot/
7https://cloud.google.com/solutions/iot
8https://www.bosch-iot-suite.com/
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Fig. 1. The WoDT Layered View.

Every strategic physical asset of an organisation must have a corresponding digital twin, mirroring and

augmenting its functionalities and services at the digital level, resulting in an ecosystem of connected

digital twins.

AWoDT is meant to serve as a blueprint to shape that idea of ecosystem from a computational point of view. The
term physical asset (PA) mentioned in the principle is intentionally used as a broad term, to include any entity
that has some kind of manifestation and relevance in the physical world of the organisation, with a well deined
temporal lifespan9. It can include physical objects/resources, places, persons, but also activities and processes
carried on by people in places. For instance, in the context of the healthcare/clinical scenario later described
in Section 5, the organisation is a regional public health authority, involving multiple hospitals and structures
distributed on a regional land. In that context, examples of PAs range from vehicles and devices (e.g. an ambulance
or a vital signs monitor), building and places (e.g. a hospital, an operating room), persons (e.g. a patient), up to
activities and processes happening real-time on the ield (e.g. the management of a trauma, a surgery in the
operating room), as well as logical aggregated entities, such as a department or the global organisation itself (see
Figure 1).

In spite of speciic cases, a DT is meant to capture and represent at a proper level of abstraction the actual state
and functionality of the PA, possibly augmented by the digital layer, and what’s happening to it (as well as what
happened and what will happen). For a proper level of abstraction, here we mean two things:

• the DT deines amodel of the PA, so abstracting from aspects of the PA that are not relevant for its purpose;
• the representation provided by the DT is about concepts that concern the PA at the domain levelÐnot
technical aspects related to how its digitisation is being implemented.

Generally speaking, a DT could host multiple concrete models of the same PA, capturing diferent aspects. In this
paper we will refer to a single abstract model, that may be ground then to multiple concrete ones, without losing
generality.

WoDT as Open, Dynamic System of Linked Systems. Two characterising points of DTs in WoDT concern
dynamism and relationships. In particular:

9The deinition of entity used here is analogous to the one deined by the ISO 24760-1:2011: łentity is an item that has recognisably distinct
existence, e.g. a person, an organisation, a device, a subsystem, or a group of such items.”
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• The PAs part of a WoDT could include both entities that are stably part of the organisation, sharing the same
lifespan, and entities with a limited temporal existence, beginning to exist or to be part of the organisation
at some point in time and possibly ending or exiting the organisation at some other time. Correspondingly,
DTs bound to PAs could either be part of a WoDT since the beginning, or dynamically created and possibly
disposed.
• The PAs of an organisation are typically interrelated, and this set of domain-based relationships could
change dynamically. For instance, in the healthcare scenario, an ambulance belongs to a hospital and could
take part in a mission-related to an emergency event. In a WoDT, these relationships are meant to be
explicitly captured and represented at the DT level, by means of links among the DTs, similarly to link in
hypermedia-based environments (like the Web), and with some deined semantics based on domain-level
ontologies (like in the case of Semantic Web).

WoDT Distributed Knowledge Graph. The PAs of an organisation could be in relationship with PAs of other
organisations, or even the same PA could take part in diferent organisations with diferent roles. Accordingly,
a DT of an asset inside an organisation could be linked/related to DTs that are outside the organisation. This
implies the capability in WoDT to deal with the problem of interoperability, e.g. allowing to use multiple/diferent
ontologies, possibly cross-domain, in an open-system perspective. The semantic modelling of each virtualised
physical asset into a corresponding DT is an aspect of primary importance to foster interoperability and openness,
as well as the development of intelligent applications on top. To this purpose, each DT of a WoDT is meant to be
described by a knowledge graph (KG) [18, 19], interlinking domain knowledge and physical asset data in a uniform
graph representation. A WoDT is therefore represented by a Distributed KG (DKG) [21], linking independent KG,
possibly based on diferent domain-speciic ontologies ground to the related physical asset contexts. Semantic
Web technologies such as RDF and OWL are taken as the main reference for this aspect.

WoDT at the Application Level. From an application model point of view, a WoDT is meant to deine a cross-
application distributed base layer bridging the digital and physical levels and DTs could serve as-a-service diferent
applications, running inside or outside the organisation. In the healthcare scenario, for instance, the DT of the
ambulance could be useful for diferent speciic applications, e.g. one about maintenance of the vehicles and one
about the allocation of vehicles in the management of an emergency. Furthermore, the same DT can serve as a
traic management application prioritising emergency vehicles over private traic and public transportation. In
the most general case, for the same PA multiple and independent DTs can be available, each one with a diferent
model, specialised for diferent applications.

A main kind of applications that may beneit from the availability of WoDT is given by intelligent agents [54]
and multiagent systems [20], i.e. intelligent systems designed to autonomously perform tasks that need a lexible
interaction with the physical/socio-technical environments where they are situated. In this view, DTs can be
considered as shared and modular services that intelligent agents can exploit to perceive and observe the state
and events of PAs, based on the semantic models provided by the DTs in terms of knowledge graphs. Besides the
support for perceiving and observing, DTs may provide actions that allow agents to possibly afect, control and
manage the corresponding physical twins. In other words, from an intelligent agent perspective, a WoDT would
provide a distributed dynamic application environment [53] enabling, mediating and empowering the access to
the physical reality.

After this broad overview, in the remainder of the section we describe an abstract model for WoDT, to be
useful as a reference for designing and developing WoDT platforms and technologies.
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Fig. 2. A representation of three DTs of three diferent PAs (Ambulance, Mission, Patient), including an excerpt of their

models, in terms of properties, relationships and events that can be generated.

3.2 An Abstract Model

Each DT in WoDT is based on a model M of the corresponding PA, deining how the PA is represented at the
digital/software/virtual level. Such a representation is deined in terms of properties, relationships and events:

• Properties represent the observable attributes of the PA, as labelled data values (variables) that can change
dynamically according to the evolution of the PA state.
• Relationships represent relationships of the PA with other PAs, as links to other digital twins. Like properties,
even relationships can be observable, created dynamically and change over time. Diferently from properties,
they do not purely concern the local state of the PA, but they allow to refer other PAs, represented by the
corresponding DTs.
• Events represent relevant observable events that occurred at the PA, at the domain level.

A concrete model deines the actual properties and relationships used by the DT to represent the PA and the
events that it can dynamically generate. An example related to the healthcare case study is shown in Figure 2.

Given a modelM , the dynamic state SDT of a DT can be deined by a tuple:

SDT = ⟨P ,R,E, t⟩

where P is the current set of properties (including data values), R is the current set of relationships, E is the
sequence of events generated so far, and t is a logical timestamp representing the current time of the PA as
modelled byM .
Shadowing is the process to keep the DT state SDT synchronised to the PA state, according to the modelM .

Any update involves a sequence of three main steps (see Figure 3a):

(1) any relevant change of the state SPA occurring at the PA is captured by an event evPA;
(2) the event evPA is propagated to the DT;
(3) given a new event evPA, the state SDT of the DT is updated by means of a shadowing function ShadPA→DT

that depends on the modelM : S ′
DT
= ShadPA→DT (SDT , evPA).

In concrete systems, PAs can be complex entities, with a structured and distributed state. The shadowing process
then may involve multiple sources generating information lows and events. Sources can also include other DTs,
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Fig. 3. The Shadowing Process in the WoDT Model.

that is: a DT can shadow a high-level logical PA (e.g. the DT of an organisation) by aggregating information and
events provided by other DTs.

Besides mirroring the state, a DT may mirror also actions provided by the PA. A simple example is the DT of a
lamp, providing actions to switch the light on and of. Accordingly, the shadowing process propagates actions
requested on the DT down to the PA, eventually changing its state. This case too involves a sequence of three
main steps (see Figure 3b):

(1) an action aDT is requested on the DT, e.g. through the digital twin API;
(2) a new action request aPA for the PA is generated by means of a further shadowing function ShadDT→PA,

that is: aPA = ShadDT→PA (SDT ,aDT ), and propagated to the PA;
(3) the action request aPA is applied to the PA, determining a change of the PA state SPA.

It is worth remarking that an action request aDT does not directly change SDT . Changes to SDT are uniquely
caused by shadowing from PA to DTÐso, in this case as a result of the PA state change, after applying aPA.

Overall a WoDT is then a dynamic set of independent DTs, each one with its ownmodel and state, linked accord-
ing to the relationships deined at the PA level. A WoDT is then inherently asynchronous and decentralisedÐthe
DTs of a WoDT may have diferent and independent time models, and evolve independently and asynchronously.

3.3 A Semantic Model based on (Distributed) Knowledge Graphs

The abstract model deined above makes it quite straightforward to semantically describe an instance of DT
by a knowledge graph (KG) [19], and a WoDT as a Distributed KG. This is a key aspect of WoDT to enable
cross-application/domain interoperability, and support reasoning by intelligent systems running at the application
layer.

By using RDF as concrete representation language, the KG of each DT can be represented as an RDF resource
characterised by a unique IRI, using RDF triples to represent dynamic state information about properties,
relationships, events and time, as well as the static information of the DT. In triples about properties, the predicate
is the property name (identiier) and the object is the value of the propertyÐthat can be represented either by a
literal or the IRI of another resource (in a Linked Data perspective). In triples about relationships, the predicate
identiies the relationship name (identiier) and the object is the IRI of the linked DT, corresponding to the target
PA which is related to the source PA, mirrored by the linking DT.

ACM Trans. Internet Technol.
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:ambulanceA :status "busy" ;
  :position "POINT(-0.26310 51.46287)"^^geo:wktLiteral .
:eventE :code "SC01R" ;
  :mission : missionM ;
  :place "10, Park Avenue" .
:missionM :part-of :Event ;
  :status "at-place" ;
  :leader :rescuerR ;
  :vehicle :ambulanceA ;
  :patient :patientP .
:rescuerR :code "ABC123" ;
  :qualification "paramedic" . 
:patientP :diagnosis "trauma" ;
  :bloodPressure 110 ;
  :respiratoryRate 25 .
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Fig. 4. An example of a RDF-based KG (on the right) for a WoDT (on the let) in the healthcare context.

Figure 4 shows a representation of a portion of Distributed KG related to the DTs of a previous example,
represented in RDF. Each KG can be based on diferent ontologies, expressed in OWL, including both domain-
speciic ontologies and shared upper ontologies. For instance, the DTs in the healthcare context example and
case study can refer to FHIR RDF representation10 and FHIR OWL Ontology11.

Dynamically, the KG of a DT instance evolves according to the shadowing process, involving atomic updates of
the set of triples. The Distributed KG of a WoDT evolves by virtue of the asynchronous and concurrent evolution
of the individual KGs.

3.4 Interaction Model

The interaction model is about the primitives (API) that are provided at the application level to interact with DTs
and exploit the functionalities of a WoDT.
The irst core functionality is about making observable at the digital level any up-to-date information about

the current state of physical assets, as well as events relevant at the domain level. The interaction primitives are
then (i) to query and (ii) to track (observe) DTs, at two diferent levels: (i) individual DTs (ii) and graphs of DTs.

Both querying and tracking (observing) account for getting information about the current state SDT of a DT or
a graph of DTs. Querying is about one-shot requests and ś given the semantic modelling adopted here ś standard
semantic query languages like SPARQL12 can be used as reference to this purpose. Tracking is about subscribing
to either a DT or a graph of DTs to receive all observable events (that is, all relevant events occurred in the PA),
possibly iltered according to patterns speciied with the subscription. Subscription is meant to be dynamic, by
means of interaction primitives for start tracking (subscribing) and stop tracking (unsubscribing). Remarks:

• Queries and tracking cannot interfere or block the shadowing process. That is: updates from the physical
world have priority and are meant to be performed satisfying the requirements (in terms of e.g. latency,
responsiveness, etc) deined by the model. This is an important constraint for concrete architectures and
strategies to be adopted to design a platform supporting the WoDT model (Section 3).
• In the most general case, queries (and tracking) that involve a graph of DTs concern Distributed KGs, where
it cannot be assumed a-priori neither a unique reference time, nor a common model of time (which is
deined by the modelM of each DT).

10https://www.hl7.org/fhir/rdf.html, accessed in September 2021.
11https://w3c.github.io/hcls-fhir-rdf/spec/ontology.html, accessed in September 2021.
12https://www.w3.org/TR/sparql11-query/
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Besides querying and observing, a DT can mirror also the actions provided by the physical asset to com-
mand/control it. Therefore, interaction primitives may include application-speciic requests for asynchronously
executing actions/commands, shadowing those provided by the PA.
Finally, a last core functionality is about creating (and disposing) DTs. In a WoDT, the creation of a new DT

can occur in three conceptually diferent ways:

• statically, when a DT is instantiated and conigured by administrators. This typically concerns either
standalone systems or root DT of a possibly complex WoDT, where the other DTs are then created
dynamically;
• dynamically by shadowing, when a DT is created as efect of the shadowing of an existing DT (and PA),
possibly linking the new DT by means of some relationship (part of the R set, in the abstract model). In this
case the existing DT can be considered the parent of the new DT;
• dynamically by the application level, when a DT is created as efect of an action requested from the
application layer. It could concern the creation of a DT which is either unrelated to any existing DTs, like
in the irst case, or created in the context of an existing parent DT (linking it by some relationship).

3.5 Modelling Augmentation

A DT can be used not only to virtualise a PA, making its digital shadow accessible and exploitable, but also to
extend (augment) its functionalities by properly exploiting the digital/software layer [28]. For instance, the DT of a
room can provide a property about the number of people inside the room (by exploiting diferent kind of tracking
technologies), even if ś at the physical level ś there could not be any physical counter. An another example,
the DT of a patient can generate a warning event about the health state, given e.g. rules deined by medics,
possibly contextualised to the speciic situation. Event prediction and simulation ś which are main high-level
functionalities that are described in the literature for DTs ś can be conceptually framed as augmentation, since
they are not part of the functionalities mirrored from the PA, but exploit the modelM , the state SDT and possibly
other available data to generate information about the future states/behaviour of the PAs.

In the abstract model, augmentation can be represented by means of an augmented state SAU including a further
set of properties, relationships, and events besides the ones generated by shadowing the PA. The augmentation
behaviour can be modelled as an abstract functions Auдm part of the modelM too, like the shadowing functions
Shad , so that:

• an event evPA occurring at the PA level may trigger both the update of the state SDT , according to the basic
shadowing process, and the update of the augmented state SAU according to the augmentation function:
S ′
AU
= AuдmPA→DT (SAU , SDT , evPA);

• an action event aDT part of the augmented behaviour may cause the update of the augmented state into
a S ′

AU
and (possibly, not necessarily) generate an event aPA to be propagated to the PA, as in the basic

shadowing process: aPA = AuдmDT→PA (SAU , SDT ,aDT ).

In this modeling, the augmented state SAU is kept separated by the state SDT to remark the conceptual diference
between them: properties and relationships of the core state are strictly bound to the PA and its evolution, and
cannot be (directly) changed by the application layer, which is the case, instead, of the properties and relationships
of the augmented state.

4 BRINGING THE WODT MODEL INTO THE REAL WORLD

The WoDT model needs to be supported by an abstract DT’s life cycle and an adequate software architecture
to be efectively and eiciently deployed as an operational artefact. We thus provide here a plausible abstract
representation of both.
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Figure 5 depicts the envisioned DT life cycle. After startup, the DT moves to the Operating & Not Bound state
where all the internal modules are active but the DT is not yet associated with the PA. It is the binding procedure
that connects the two, according to the existing domain-speciic requirements. In the Bound state the DT is
correctly attached to its physical counterpart, hence is able to handle bidirectional events, interact with the PA,
and start the shadowing process in order to be efectively synchronised in terms of events and stateÐreaching
the Shadowed state.

Any error during synchronisation brings the DT into a new state denoted as Out of Sync, where it is unable to
handle events, to align its status, or to interact with the external world. Only once synchronisation is correctly
recovered (according to the deined model) the DT returns to the Shadowed state. During its life cycle, the DT can
be also stopped and moved to the Done state, where it is still active and accessible from external applications and
consumers (maintaining its memory and events log), but it is neither bound or synchronised anymore with the
PA. At the end of its life cycle, the DT can be inally dismissed and associated to the Stop state.

Given the WoDT model and the DT’s life cycle just described, we now present a WoDT blueprint architecture,
conceived by (i) making explicit the requirements put forth by the WoDT model, and (ii) devising out the abstract
architectural components, as well as their role and relationships, needed to fulil them.
It is worth remarking that the described architecture is by no means meant to serve as the unique reference

architecture for implementing an ecosystem of DTs, rather, as an abstract architecture where each component
(hence its functional and non-functional responsibilities) may be possibly realised by a slew of diferent existing
models and technologies. We tackled the problem of both platform and DTs’ complexity by decomposing them into
a set of manageable event-driven modules along with suitable adapters, with the aim of simplifying development,
maintenance, and scalability. This approach also reduces the barriers to adoption by not being bound to a speciic
target platform and domain-speciic solution. Finally, this lexibility and modularity also enable each component
to be deployed independently and dynamically according to the application scenario or the run-time context. For
example, DTs can be executed both on the Edge and in the Cloud, or can migrate among multiple processing
nodes. At the same time, the platform is responsible for maintaining the event-driven communication and the
distributed knowledge available.

4.1 An Architectural Perspective

By relecting on the model described in Section 3 we can devise out the following architectural requirements:
(i) it should be possible to create DTs and bind them to PAs dynamically, which in turn requires to dynamically
associate DTs and PAs with an addressable and discoverable unique identiier, and to provide the means to resolve
and discover such address; (ii) changes in the state of a PA, that is, PA events, should be captured and reiied
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Fig. 5. Abstract representation of the state and transitions of a DT’s life cycle.
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in a uniform representation, regardless of the heterogeneity of the source PAs, by the bound DT, whose state
may change in response as deined by the DT model(s); (iii) a labelled multi-graph (the knowledge graph) is
needed to track dynamic linking amongst DTs, and means to navigate and query such labelled multi-graph should
be provided; (iv) the shadowing process must guarantee proper synchronisation between the PA and the DT,
according to the constraints put forth by the DT model(s)Ðe.g. in terms of quality of service metrics, amongst
which timing constraints; (v) an operational speciication of the DT model(s) must be available for execution at all
times, to drive the processes of event capturing, state update, shadowing itself, linking, namely the whole inner
functioning of the DT; (vi) some services must be available independently of any DT, such as for DT creation and
querying; (vii) observation of DTs’ current and past state and augmented state, model(s), thread of captured events,
context in terms of linking sub-graph it participates to, and any other relevant data related to DTs functioning
must be available at all times, to external entities, regardless of their heterogeneity (e.g. web service vs. cognitive
agent); and (viii) interaction with the DT, and consequently the PA, in order to trigger actions and functions, also
regarding augmentation, must be possible at all times, and will spawn events giving feedback about the action
itself (e.g. results), and possibly generate state updates in the PA or the DT.

Based on these requirements, we deine the abstract architecture depicted in Figure 6 as the minimal architecture
fulilling all the requirements described above. Such architecture exposes (i) elements which are part of each DT
(e.g. Model Execution Engine), hence are conceptually łinside” of a DT, (ii) elements which are at the boundary
between DTs (e.g. Management Interface), (iii) elements which are the boundary between DTs and client entities
(e.g. Digital Adapter), and (iv) infrastructural elements which are not part of any DT (e.g. DT Manager), hence
are conceptually łoutside” of a DT.
First we irst focus on the inside of a DT, that is, what the components providing the functions that each DT

should be able to deliver autonomously are:

Physical Asset Adapter (PAA) The component in charge of capturing events ePA coming from the PA(s)
associated to the DT (due to, e.g., a change to the PA(s) state), as well as of delivering events ePA to the
PA(s), corresponding to actions to be carried out, as requested by applications through the Digital Adapter.
Despite heterogeneity of PAs, in terms of structure, purpose, behaviour, communication protocols, data
representation formats, and so on, such events must be mapped to a uniform representation eI so as to be
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seamlessly exchanged amongst diferent DTs, iltered, manipulated, aggregated, and possibly dispatched to
external entities. A fundamental aspect of this mapping is the preservation of some temporal information

about ePA, such that, for instance, causal relationships could be established amongst resulting eI , and
synchronisation status can be assessed. Such eI will be processed within the DT by the Binding & Shadowing
Module and the Model Execution Engine, as described below, thanks to the Event-driven Engine, which
drives the internal behaviour of each DT. In the case that the PA is mapped into another DT, events ePA are
already represented as eI , hence no further translation is required.

Binding & Shadowing Module (BSM) The łheart” of the DT, that is, the component in charge of both the
one-time binding process associating a DT with its PA, usually done at DT creation time and dismissed
when the PA is disposed, and the perpetual shadowing process meant to keep the DT and PA in synch. This
module interacts with the Event-driven Engine to dispatch events eI to the Model Execution Engine, and
operates according to the policies put forth by it regarding when and how to update the DT state and the
Knowledge Graph. Finally, this module also tracks and governs the lifecycle stages of a DT, from creation
and binding, to unbinding and disposal.

Event-driven Engine (EE) The łnervous system” of the DT, that is, the component binding together all the
other internal components of a DT, by enabling their reciprocal interaction through events eI . It is worth
emphasising here that we interpret the DT as an event-driven machinery conceptually, at the modelling
level; however, as already said, we do not constrain the DT to be actually implemented as such, hence the
EE in turn may be not, for instance, an internal or shared event bus, but anything else itting the job.

Model Execution Engine (MEE) The łbrain” of the DT, that is, the component in charge of governing other
components according to the model(s) deined by the DT designer. As such, it dictates which events to
capture, how they inluence the DT state and behaviour, the admissible linking operations on the KG, the
admissible actions on the corresponding PA, etc. Conceptually, through the MEE, the DT designer has the
means to make the model(s) she deined operational, that is, capable of afecting the behaviour of the DT at
run-time.

State Manager (SM) The component responsible for managing DT state updates, according to the policies
put forth by the MEE, the events dynamically captured, and the contextual conditions deined by the linking
relationships with other DTs. While doing so, particular attention should be devoted in leaving the DT in a
consistent state, in relation to the constraints possibly deined by the MEE model(s), at all times.

Knowledge Graph Engine (KGE) The component responsible for managing the KG of the DT, including
the links to the other DTs, as tracked by the relationships attribute. Also, it is in charge of serving

Cache & Storage (CS) The component providing to the DT those basic functionalities related to storage and
caching of data, for instance regarding state updates, KG updates, events caching, and so on.

Management Interface (MI) The set of functions a DT exposes to other DTs, the WoDT platform, and
external entities such as platform/administration tools and services, too. Queries about the lifecycle state
of a DT, and requests for linking to and creation of other DTs are all expected to be served through the MI.

Digital Adapter (DA) The component complementary to the PAA, that is, in charge of translating events
eI into DT events eDT , namely, events generated by the DT towards some external entity in response to
invocation of some MI functionÐe.g. the track operation to be notiied upon changing of DT (PA) properties
and the generation of observable events.

Augmentation Engine (AE) The module that allows the DT to extend its original capabilities (inherited
from the PA with the shadowing process) through the activation and execution of one or multiple functional
modules. Each AE module can operate with both eDT and ePA (e.g. exposing a prediction action and making
available predicted values of a property) according to the implemented augmentation function, and enables
the deinition of an additional set of properties, relationships, actions, and events exposed to the digital
world and accessible by external applications and services.

ACM Trans. Internet Technol.



1:14 • Alessandro Ricci, Angelo Croati, Stefano Mariani, Sara Montagna, and Marco Picone

CS

Start

Custom
Interaction

Update StatusPA 
Event

Exec. Model

DT Event

Update

CS
CS

Retrieve Shadowing 
Info

Shadowed

PA
Adapter

Bind. & 
Shad.

Knowledge 
Graph Engine

State 
Manager

Model Exec. 
Engine

Digital
Adapter

Management
Interface DTM

PA 
Change

Bind 3 2 1
4

5

6

7

Shadow

8

9 10

11
12 13

PA

Fig. 7. DT binding and shadowing, and status update.

Then we can consider the outside of a DT, that is, the components providing those functions that cannot be
delivered by an individual DT alone but should be supported by platform modules, or that may be anyway
practically convenient to have independently of individual DTs. The Distributed Knowledge Graph Engine

(DKGE) is in charge of providing the means to navigate the entire łweb of DTs”, that is, the labelled multi-graph
where all the linking relationships between DTs are tracked, without necessarily having prior knowledge about
the DTs already in the system. By doing so, the DKGE grants access to any of the DT of the platform, and to any
of its properties, events eI thread, and so on ś namely, to the whole DT tuple as seen in the model (Section 3)Ðby
routing and forwarding requests for data access to the DTs involved in any given query. The DT Manager

(DTM) is responsible instead to manage the DT lifecycle, from creation, and hence unique ID and discoverable
address generation, to DT disposal. The component also ofers typical lookup services such as white and yellow
pages to lookup DTs based on ID or speciic properties. The Communication Layer (CL) enables interaction
with external entities, whatever they are. Such a component represents the entry point to the WoDT platform, by
providing the API to interact with the DKGE, the DTF, and the DTs themselves, through the DA.
It is worth clarifying that the architecture just presented is purely logical, in the sense that we do not pose

any restriction on (i) implementation of its components, e.g. whether the DT Factory is a centralised registry
or a distributed hashtable, or whether the EE is fragmented in each DT, a globally available event bus, or a
combination thereof, and (ii) deployment of such components, e.g. whether the DT resides on the same host as
the PA or even the PAA, or where a DT should be placed across the Edge-Fog-Cloud spectrum. The reason for
not doing so is that such choices likely depend on many factors, such as (i) the target application domain, (ii)
the available computational resources and communication infrastructure, and (iii) the preferred technologies to
actually implement the components. Also, some of the components may be dynamically moved, or replicated,
or fragmented (akin to łsharding” for database technology) at run-time, thus imposing design-time restrictions
seems unnecessary and potentially limiting.

4.2 Interaction Flows

With the aim of clarifying the relationships between the DT’s architectural components we identiied in the
previous section, and provide further insights on DTs functioning with respect to external applications, we here
comment a few selected sequence diagrams explaining some of the main operational phases of a DT.
Figure 7 reports the internal DT operations related to PA’s binding and shadowing. Interactions unfold as

follows. (1) an external application (e.g. an agent) interacts with the DTM through the CL to create a new DT The
DTM then starts the DT, through the MI module, to shadow a target PA. (2) The MI initiates the procedure by
requesting to the BSM to perform coupling with the PA. (3) The BSM then interacts with the PAA to perform
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binding according to PA’s nature, communication protocols, and data formats. (4) The BSM also interacts with
the MEE to retrieve the shadowing information as a function of the DT’s model and the received PA’s state. For
example, a PA can expose multiple properties but only a subset will be shadowed through the deined DT’s model.
(5) The BSM keeps interacting with the PAA to complete the shadowing process, and inally (6) updates the KG
to keep track of the DT’s local view in terms of linking, which in turn uses the CS module to store the update
and, if required, update its thread. (7,8) Notiication of completion of the shadowing process is forwarded to the
MI and the DTM. The remaining steps in Figure 7 describe how the DT handles state changes coming from the
PA: (9) the PA generates an event associated with an internal change (or the PAA detects a variation on the PA),
hence the PAA notiies the BSM about the change and tracks it through the CS module; (10) the BSM generates a
new ePA; (11) the MEE executes the DT’s model according to the ePA, the current state, and any other relevant
information in the DT. Once the new state is correctly computed the MEE notiies the SM about the variation.
Finally, (12,13) the SM validates the state, updates the CS, and possibly generates a new eDT for the DAÐpossibly
delivered to external applications tracking the DT.
Figure 8 depicts how the query and track operations of the interaction model described in Section 3.4 are carried
out by the DT. In particular, in the case of a query operation (1), the DA takes care of transforming such a request
into a DT event (2), which is then forwarded to the KGE through the MEE (3). Once the query request reaches
the KGE, it is its sole responsibility to appropriately forward the query to the (possibly) linked DTs (not shown).
Then, once the query results are available, they are propagated back to the requesting application (4-6). In the
case of tracking (7), the low of interactions stops at the MEE (9), that simply keeps track that a new observer
should be associated with the updates coming from the shadowed PA. In fact, steps (10-14) are akin to steps (9-13)
already described for Figure 7, representing the shadowing process. What’s new here, is step (12) in which the PA
state change is notiied to the tracking application.
Finally, Figure 9 illustrates the internal DT operations necessary to trigger a speciic action on the PA as

requested by an application. If the action involves also a status change on the PA, a new ePA will be generated to
notify the variation. In particular: (1,2) the application acts on the DT to, e.g., modify the status of, or trigger an
action on, the PA through the DA; (3) the MEE analyses the action event, applies the DT’s model, and triggers
synchronisation with the BSM; (4) the BSM uses the PAA to forward to the PA the action; (5) the BSM generates
an ePA associated to the action; (6,7) the MEE analyses the event, applies the model, and then sends a new eDT
for action completion to the DA. Then, if the action on the PA causes a status change, the PAA notiies the
modiication with the same interactions already seen in previous igures.
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4.3 Integration with Agent-based Architectures and Platforms

As mentioned in Section 3.1, agent-based approaches are a main reference for modelling and engineering smart
applications and intelligent situated systems running on top of WoDT. In an agent-based view, a WoDT deines a
virtual environment where agents are logically situated, exploiting the WoDT interaction model to perceive and
act upon the PAs through the DTs. On the agent side, the integration with such a virtual environment can be
designed using two main conceptually diferent approaches:

• The irst one is based on agentiication of the virtual environment, that is: every DT is represented inside the
MAS by an agent functioning as its representative (or proxy), and this kind of agents provide an interface
based on the Agent Communication Language (ACL) ś e.g. FIPA ACL, based on speech acts ś for the other
agents of the MAS to interact with the DT. A concrete example of this approach is shown in Figure 10a,
based on JADE [4], a well known FIPA compliant platform [5]. In this case, the agent representing the
agentiied DT would encapsulate and hide the DA machinery to interact with the DT.
• The second one is based on modelling the WoDT virtual environment in terms of irst-class environment
abstractions on the agent side. For instance, in the A&A metamodel [34], each DT could be represented
as an artifact, being artifacts the basic entities used to modularise computational environments in A&A,
organised in workspaces. In this case, agents would interact with DTs perceiving their observable states,
events and performing actions by interacting with artifacts, i.e. perceiving/observing their observable
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properties (mapping the DT state) and executing operations (representing actions). Figure 10b shows a
concrete example based on JaCaMo [6], a MAS platform that supports artifact-based environments and
BDI agents, that can be programmed in Jason.

These two simple approaches are useful just to enable the integration at a technical/platform level between agents
and DTs. A deeper form of integration can be explored by considering that a WoDT is possibly a distributed
hypermedia-based environment, being based on an open distributed dynamic KG, which can be represented in
terms of Semantic Web technologies. In the literature, research on Hypermedia-based MAS [8] is exactly about
agents that are situated in a distributed hypermedia environment that they can navigate and use in pursuit of
their goals. Accordingly, a further way to understand and explore the design of agent-based applications running
on a WoDT is to view them as a special kind of Hypermedia based MASs, where the distributed hypermedia
environments in this case are meant to be virtualisations of physical assets.

Finally, architectures for designing intelligent agents ś such as the BDI one ś can be a relevant reference not
only for designing intelligent systems at the application level, but also at the Digital Twin Layer, as constituting
elements of Cognitive Digital Twins. As a speciic example, a CDT based on the BDI architecture can exploit the
sense-plan-act reasoning cycle to realise the shadowing process of a DT as well as the augmentation counterpart:
through the event-driven sensing, changes in the PA are mapped into beliefs, that can trigger the execution
of reactive plans realising the augmented behaviour, including pro-active tasks toward the achievement of
goals as deined by the stage 4 DT vision [43]. Vice versa, requests for action coming from applications may be
encapsulated in messages sent to the agent-based DT, that through appropriate plans triggers the needed actions
on its associated PA. Indeed the opportunities about exploiting intelligent agent architectures like BDI to design
CDTs are manifold, and although some early research activities are already started on the topic, much more will
be needed to comprehensively understand the extent and limits of agent-based DT modelling and engineering.

5 APPLYING WODT TO REAL WORLD CASE STUDIES

The vision described in Section 3 has been devised by generalising our experience in the design of real-world
systems in speciic domains, namely healthcare and smart city. In this section, we briely introduce these cases
and discuss their modelling using the WoDT vision.

5.1 The Case of Major Trauma Management

Major Trauma Management is one of the most challenging scenarios where physicians can be involved in the
healthcare context. Like other time-dependent pathologies, major traumas ask for a team of physicians with
strong heterogeneous expertise (called trauma team), to promptly identify a diagnosis and quickly provide medical
aid. In fact, patient health outcomes strongly depend on the irst hour of treatment. In broad terms, the whole
trauma management process can be conceptually split into three main stages:

Stage #1 – Emergency Call Management Following an emergency call to the Central Emergency Unit
(CEU), an operator collects information about the occurred event then plans and starts a irst-aid emergency
mission, involving a particular rescuer and a speciic vehicle;

Stage #2 – Pre-Hospital Management The rescuer reaches the patient with the aim of administering
him/her irst aid basic life support, deciding the severity of the trauma and, inally, transferring the
patient to the trauma centre;

Stage #3 – Trauma Management At the emergency room of the trauma centre, the patient is taken in
charge by a team of expert physicians called trauma team, led by its trauma leader, with the aim to do
everything is required to save patient’s life according to the severity of the occurred trauma.

Besides procedures that physicians have to accomplish to save patient’s life, this process requires in every stage
some collateral activities in order to (i) document the overall evolution of the ongoing trauma ś e.g., time tracks
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of procedures implementation and drugs administration, diagnostics results, and so on ś and, (ii) have continuous
monitoring of the real-time evolving state of the trauma processÐin particular, of the patient and other assets,
including the trauma teams members.
To support this scenario, and in particular these two latter collateral needs, a research project called Trau-

maTracker [10, 29] has been carried out in cooperation with an Italian Trauma Centre13 since 2017. Briely,
TraumaTracker has been designed and developed to support the trauma team at Stage #3 of the major trauma
management process. In particular, it acts as a personal assistant agent of the trauma leader to produce the trauma
documentation of the in-hospital stage and monitor the evolution of the ongoing medical procedures, possibly
producing alerts for the trauma leader. The TraumaTracker prototype is currently being used: to date, over 1600
trauma reports have been collected. Since its irst release, TraumaTracker has been constantly refactored and
updated according to a domain-driven design process. Recently it has also been extended to Stages #1 and #2,
refactoring its design towards a DT-oriented architecture [9, 39].

In this paper, we demonstrate how the mission-critical scenario of major trauma management can be designed
according to the WoDT approach (and model). Table 1 describes the details of a major trauma management
scenario, considering its evolution both in the physical and the digital worlds. To provide a better comprehension
of how the WoDT can be designed to support the scenario of this case study, in Figure 11 a graphical notation is
used to model relations among involved DTs and related PAs. This igure represents a kind of łarchitectural view”
of the relations among the PAs composing the scenario and the DTs modelling them. Moving from the top to
the bottom of this igure, for each stage a snapshot of DTs in execution in that stage is reported. In particular,
some of them are conveniently created with the purpose of shadowing emerging PAs in the evolution of the
scenario (e.g., the MissionDT at Stage #1, the TraumaTeamDT at Stage #2 or the ShockRoomDT at Stage #3). Other
DTs, instead, are in execution regardless of the speciic stage and scenario (e.g., the CentralEmergencyUnitDT
at Stage #1 or the HospitalDT at Stage #3) because they are part of the broader WoDT of the whole Local Health
Department. In other words, these latter DTs have been previously created in the context of other DTs, and they
are in continuous execution to support heterogeneous scenarios beyond the major trauma management one.

It is worth noting that some of them ś e.g. the PhysicianDT and RescuerDT at the Stage #1 ś can be coupled
to the same PA. This means that both DTs represent the same PA with diferent levels of specialisation. In this
case, the rationale behind this design choice is given by the speciic domain, that is: a physician working at
the local health department has its own DT created by the time when he/she was hired, representing his/her
digital counterpart as individual (the PhysicianDT); vice versa, when the physician acts as a rescuer in the
speciic context of a rescue mission he/she has to be coupled to a dedicated DT (the RescuerDT) conceived as a
specialisation of the previous DT having speciic properties (e.g., the identiier of the rescuer for that speciic
mission) according to the role played at that moment. This latter DT’s life span is limited to the duration of the
mission in which he/she is involved.
Software agents are not explicitly represented in Figure 11, to avoid cluttering. Nevertheless, they are the

proactive actors observing and acting upon DTs. For instance, the personal assistant agent of the trauma leader
ś as identiied in the TraumaTracker system ś is an agent which comes into play mainly at Stage #3 of this
scenario, when the trauma leader starts to coordinate the trauma team in performing medical procedures to save
patient’s life. In particular, considering, for instance the aim to producing relevant alerts related to the ongoing
trauma, such personal agent observes all the DTs shadowing the in-hospital macro phase (OngoingTraumaDT,
VitalSignsMonitorDT, ShockRoomDT, . . . ) and, potentially, it exploits the DisplayDT API to show the alert (e.g.,
about the fact that the patient heart rate is decreasing rapidly).

Figure 12 shows instead (a portion of) the KG of the WoDT and how it evolves, from stage to stage, according
to the evolution of the case study as described in Table 1. The KG is represented in RDF using the Turtle notation

13The łM. Bufalini” Hospital Trauma Centre, AUSL della Romagna, Cesena, Italy.
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Table 1. The evolution of a Major Trauma Management Scenario both in the physical and in the digital world.

Physical World Digital World

Stage
#1

An emergency call is taken by the unique health num-
ber, and the Central Emergency Unit (CEU) operator
collects the irst-contact information of the occurred
event (e.g., the place of the event, its status, the num-
ber of involved people, and their rough health sta-
tus). Then, for each involved victim, a new mission

is started with a speciic vehicle (e.g., an ambulance)
and a particular physician qualiied to act as rescuer.

A new DT for the event (EventDT) is created in the
context of the running DT coupled to the CEU. This
new DT includes the information collected by the
operator about the event. According to the rescue
process, also a DT for each mission (MissionDT) is
instantiated and linked to DTs of both the vehicle
(AmbulanceDT) and the rescuer (RescuerDT), dynam-
ically discovered exploiting the CEU DT.

Stage
#2

The emergency crew arrives at the event place and
interact with the patient, possibly identiied as a qual-
iied healthcare user with his health insurance card.
Here, the rescuer giving the irst-aid evaluates the
patient medical condition to establish a diagnosis (a
major/severe trauma, in this example). Accordingly,
a destination for the patient is decided (in this case,
the emergency department of the nearest hospital act-
ing as trauma centre). So, the patient is moved to the
destination by the emergency crew and, in the mean-
while, at the notiied trauma centre a new trauma team

(led by its trauma leader, typically an anaesthetist-
resuscitator) is dynamically composed and informed
about the incoming patient health conditions.

A new DT for the patient (PatientDT) tracking the
triage data collected by the rescuer is created and
linked to the MissionDT. In the case that the patient
is properly identiied (using his/her health id), the
corresponding DT (HealthcareUserDT) is discovered
and linked by the PatientDT. When the diagnosis
is a major trauma, a new DT for the trauma man-
agement process (OngoingTraumaDT) is created in
the context of the DT of the selected trauma centre
(TraumaCentreDT), and it is linked to the DT of the
patient, to start to collect information of the incom-
ing patient. Finally, the DTs of the physician of the
trauma team (TraumaTeamDT and TraumaLeaderDT)
are properly created and linked.

Stage
#3

The emergency crew arrives at the emergency depart-
ment and entrusts the patient to the trauma team. So,
the mission of the emergency crew ends as well as
the involvement of the rescuer. The trauma manage-
ment in-hospital process starts, possibly involving
multiple rooms and facilities of the hospital. For in-
stance, the main room where the trauma is managed,
called shock-room, is equipped with adequate facili-
ties to support physician’s work, among them most
relevant are a display to refer to tracked information
and diagnostics’ results dynamically, and the vital

signs monitor to collect and observe the patient’s vi-
tal signs trace. Other rooms of the trauma path are,
e.g., the computer-aided tomography (CT) room or a
dedicated operating room. Finally, when the trauma
management process ends, the patient is generally
hospitalised according to his/her new health condi-
tion, e.g. into the intensive-care unit.

The OngoingTraumaDT tracks all the relevant events
happening during the traumamanagement. In a sense,
this DT replaces the PatientDT in the in-hospital
phase: no more updates are reported to this latter
DT. The OngoingTraumaDT tracks the current room
where the patient (and trauma team) are, by linking
the corresponding DT (e.g. the ShockRoomDT). The DT
of the current room provides the links to the DTs of
the physical facilities in the room (e.g., the DisplayDT
and the VitalSignsMonitorDT). These facilities can
be exploited by, e.g., the personal assistant agent of
the trauma team/leader, implementing context-aware
support. When the trauma management ends, the
OngoingTraumaDT is no longer updated, and a DT
referring to the hospitalised patient is created by the
DT of the designed hospital ward. Likewise, the DTs of
the trauma team and trauma leader ends their work.

and is built according to the speciic domain glossary of terms. For instance, the :ambulanceA instance at the
Stage #1 is represented by two properties (:position and :status) and it is related to the :CEU instance, with the
:from relation. Note that the :ambulanceA is also indirectly related to the :missionM concept because this latter
has a relation :vehicle toward :ambulanceA. An agent which would like to track the position of an ambulance
of a speciic mission in the context of a speciic event, could observe changes of the :position propriety of the
:ambulanceA instance in the graph.
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Fig. 11. The evolution of a Major Trauma Management Scenario in terms of relations among DTs and PAs. Entities in bold

represent new additions to the KG, entities in grey represent old entities but still active, faded entities represent currently

inactive entities.

To further support agent reasoning, a KG may include not only ABox assertions, i.e. facts associated with
the actual state and situation of the PAs mirrored by the WoDT, but also TBox statements, about classes and
properties of the ontologies [14]. As an example, Figure 13a shows a reinement of the KG at Stage #1 in which the
subject of each RDF triple has been qualiied, introducing a proper domain-oriented parent concept to enhance the
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semantics and the reasoning upon it. For instance, we added the information about the fact that the :ambulanceA
is a :Vehicle (note that in the Turtle syntax the keyword ła” can be used to express an :is-a relationship).
When considering concrete real-world domains, the knowledge graph of a WoDT may proitably refer to

existing standard ontologies available for those domains. A main example in the healthcare context is given
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PREFIX : <https://pslabunibo.github.io/t4c/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
:eventE :started-by :ceuX;
  :code "SC01R" ;
  :mission :missionM ;
  :place "10, Park Avenue" .
:missionM :part-of :eventE ;
  :status "moving" ;
  :leader :rescuerR ;
  :vehicle :ambulanceA .
:ambulanceA :from :ceuX ;
  :status "busy" ;
  :position POINT(-0.26310 51.46287)" ^^geo:wktLiteral .
:rescuer :code "ABC123" ;
  :qualification "paramedic" .

:EventE

:missionM:ambulanceA

:ceuX

:rescuerR

SC01R

10, Park Ave

moving

busy

paramedic

ABC123

:code

:started-by

:mission :part-of

:v:vehicle

:v:from

:v:position

:v:status :v:leader

:v:status

:v:place

:v:code

:v:qualification

:eventE

:missionM

:ambulanceA

:ceuX

:rescuerR

SC01R
10, Park Ave

at-place

busy

paramedicABC123

:code

:started-by

:mission
:part-of

:v:vehicle

:v:from
:v:status

:v:leader
:v:status

:v:place

:v:code :v:qualification

:trauma 
CentreTC

:destination

:patientP:patient :ongoing 
TraumaOT:v:of

trauma

:diagnosis

:trauma 
TeamTT

:v:managed-by

:trauma 
LeaderTL

:v:leader

waiting
:v:status

:v:member:member-of

:v:position

# PREFIX ... (as above)
# :eventE ... (as above)
# :ambulanceA ... (as above)
:missionM :part-of :eventE ;
  :status "at-place" ;
  :leader :rescuerR ;
  :vehicle :ambulanceA ;
  :patient :patientP ;
  :destination :traumaCentreTC .
:patientP :diagnosis "trauma" ;
  :bloodPressure 110 ;
  :respiratoryRate 25 .
:ongoingTraumaOT :of :patientP ;
  :managed-by :traumaTeamTT .
:traumaTeamTT :status "waiting" ;
  :member :surgeonS ;
  :leader :traumaLeaderTL .
:traumaLeaderTL :member-of :traumaCentreTC ; 

# PREFIX .. (as above)
:ongoingTraumaOT :involves :patientP ;
  :managed-by :TraumaLeader ;
  :place :shockRoomSR ;
  :starts "2021-05-10"^^xsd:date ;
  :heart-rate 80 ;
  :nbp 120 ;
  :event :eventX .
:eventX :description "intubation" ; 
  :time "2021-03-10T15:32:14"^^xsd:dateTime ;
:patientP :person :healthcareUserHU .
:healthcareUserHU :name "M. Adams" ;
  :age 75 .
:shockRoomSR :part-of :emergencyDeptE ;
  :equippedWith :vitalSignsMonitorM, :displayD .
:traumaLeaderTL :refers-to :physicianP ;
  :member-of :traumaCentreTC ;
  :role "Anesthetist" .
:traumaTeamTT :status "working" ;
  :member :surgeonS ;
  :leader :traumaLeaderTL .
:traumaCentreTC :defines :traumaTeamTT .
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Fig. 12. The Knowledge Graphs related to the Major Trauma Management Scenario Evolution.
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PREFIX : <https://pslabunibo.github.io/t4c/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

:eventE a :Accident ;

:started-by :ceuX ;

:code "SC01R" ;

:mission :missionM ;

:place "10, Park Avenue" ;

:victims 1 .

:missionM a :FirstAidAction ;

:part-of :eventE ;

:status "moving" ;

:leader :rescuerR ;

:vehicle :ambulanceA .

:ambulanceA a :Vehicle ;

:from :ceuX ;

:status "busy" ;

:position "POINT(-0.263 51.462)"^^geo:wktLiteral .

:rescuerR a :Rescuer ;

:code "ABC123" .

:rescuerR a :TraumaCentreEmployee ;

:name "J. Smith" ;

:qualification "paramedic" .

(a) Generic RDF description with unspecified domain-

specific ontology.

PREFIX : <https://pslabunibo.github.io/t4c/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX fhir: <https://www.hl7.org/fhir#>

:eventE a fhir:Encounter;

fhir:identifier "SC01R" ;

fhir:location :eventLocationEL ;

fhir:status "active" ;

:victims 1 .

:eventLocationEL a fhir:Location ;

fhir:address "10, Park Avenue" .

:missionM a fhir:Encounter ;

fhir:partOf :eventE ;

fhir:status "moving" ;

fhir:location :ambulanceA ;

fhir:participant :rescuerR .

:ambulanceA a fhir:Location ;

fhir:status "active" ;

fhir:position "POINT(-0.263 51.462)"^^geo:wktLiteral .

:rescuerR a fhir:Practitioner ;

fhir:identifier "ABC123" ;

fhir:name "J. Smith" ;

fhir:qualification "paramedic" .

(b) RDF description according to the domain-specific FHIR on-

tology.

Fig. 13. Refinements to the semantics of the Major Trauma Management Scenario Stage #1.

:patientP

:ongoing 
TraumaOT

:v:involves

120 :v:nbp 80:v:heart-rate

2021-03-10 
^^xsd:date

:v:starts

:shockRoomSR :v:place

intubation

:v:event

:eventX:v:description :v:time 2021-03-10T15:32:14
^^xsd:dateT ime

SELECT ?t ?v1 ?v2 
WHERE { 
  ?t a :OngoingTrauma . 
  ?p a :Patient . 
  ?t :involves ?p . 
}

Fig. 14. An Example of a SPARQLuery on the KG.

by FHIR14, the standard for healthcare data exchange. Figure 13b shows a reinement of the representation of
the WoDT at Stage #1, in which domain concepts have been rearranged according to the FHIR ontology. For
instance, FHIR uses the concept fhir:Location to identify all the heterogeneous set of healthcare locations (e.g.,
buildings, rooms, streets, vehicles): for this reason, both :ambulanceA and :eventLocationEL are now instances
of the fhir:Location concept. Moreover, both :eventE and :missionM must be qualiied as fhir:Encounter
instances, although they have a very diferent meaning in the speciic major trauma management scenario.
Nonetheless, in FHIR every non-planned occurring event, involving practitioners and patients must be deined as
encounters, with speciic properties as, i.e., fhir:participant, fhir:status, fhir:identifier as shown in
this example.

14https://www.hl7.org/fhir/
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Finally, Figure 14 reports an example of a simpliied SPARQL Query performed on a portion of the KG of the
Stage #3 related to the described Trauma Management scenario.

5.2 The Case of Mobility Intelligence

In a future cooperative driving scenario with both autonomous and non-autonomous vehicles sharing the road
infrastructure, basic services such as intersection crossing, parking, and ride-sharing will need to be re-designed
[26]. AWoDT can play the role of the enabling coordination infrastructure: (i) each vehicle has its own DT created
and bound when the vehicle is registered in the municipality’s dedicated registry; (ii) each citizen may also have
her own DT, whose creation and binding could happen at birth upon registration in public health registries; (iii)
each relevant road infrastructure element ś such as Road Side Units (RSUs) working as intersection managers,
parking lots managers, etc. ś is also digitally represented as a DT; (iv) some of these, such as those representing
RSUs, are statically connected at design-time to provide application developers with the means to shape the
computational environment of intelligent mobility and traic management applications; (v) some others, such
as those representing vehicles, become connected dynamically, at run-time, based on users’ adoption and the
applications’ needs. Several use cases may be described with the WoDT vision we deined in Section 3. Here we
focus on intersection crossing as the most challenging urban task for both autonomous and non-autonomous
vehicles, but other application scenarios may as well target smart parking, ride-sharing, and overall traic low
management.
Currently, most intersections are regulated by right of way signals placed on the road, traic lights, or

roundabouts. These regulations means are suitable for human-driven vehicles but largely inadequate (e.g. sub-
optimal) for autonomous ones, which could leverage cooperative driving to cross intersections more eiciently.
Literature about autonomous intersection crossing is abundant and features many diferent approaches, such as
reservation-based, negotiation-based, distributed constrained optimisation, solutions based on game-theoretic
approaches, etc. [26]. Common to all approaches is the assumption that either an intersection manager is available,
as the computational component of the intersection road infrastructure in charge of coordinating vehicles, or
that vehicles are able to communicate with each other and reach an agreement about the crossing order in a fully
decentralised way. In Table 2, we take as a reference a reservation-based approach to intersection crossing, one
of the most successful and studied approaches [12], and describe the relationships between what happens in
the physical world and what happens in the digital world, that is, in the WoDT representing the domain (the
problem as well as the solution).

There, it is worth noting that the signalling operation mentioned in stage łincoming” can be realised according
to two approaches: the one described in Table 2 needs the Vehicle DT to be pro-active, as it is the one who
informs the intersection about its intention to cross; an alternative would be to let the Intersection DT devise
out the Vehicle DTs intentions through observation (e.g. if both turning lights are of, the vehicle is going
straight). Preference of either approach is a design choice whose discussion is out of scope here.
The many links established throughout the scenario lifespan are depicted in Figure 15, which shows the

temporal evolution (from top to bottom) of the knowledge graph of the WoDT, assumed to be deined by RDF in
Turtle notation, exploiting the SAREF4Auto ontology15 currently deined by the ETSI 16. In stage łsetup” the
basic road infrastructure is setup, and vehicles registered to the municipality are bound to their DT. Links in this
stage are rather static, as they resemble (mostly) persistent relationships. In stage łincoming” the dynamic links
tracking the status of the intersection and of the crossing process begin to be established towards all vehicles
approaching the intersection area (e.g. within a 100m radius). In stage łoutgoing” further links are established
to track the highly dynamic process of intersection crossing. For instance, links resembling waiting queues are

15https://forge.etsi.org/rep/SAREF/saref4auto
16https://www.etsi.org
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Table 2. Description of the intersection crossing scenario using the Web of DTs model.

Physical World Digital World

Stage
łsetup”

The municipality deploys the łintelligent
mobility” platform on a target intersection.
Relevant RSUs are deployed, such as smart
cameras to monitor traic conditions and
a computational node (e.g. a RasberryPi) to
govern the crossing process according to a
policy given by the municipality. Vehicles
are registered to the municipality before
hitting the streets, and are supposed to be
equipped with a suitable hardware & soft-
ware stack enabling at least identiication.

The Intersection DT is created and bound, representing the
status of the intersection area. The CrossingProcess DT is
created and bound, representing the policy of the crossing
process and its status. A :deployed link is established amongst
the two, to represent the fact that the intersection is currently
enforcing the given crossing policy on approaching vehicles. In
case of a fully autonomous vehicle, the Vehicle DT is created
and bound, representing the vehicle status and behaviour. In
case of a non fully autonomous vehicle, the Driver DT is also
created and bound, and linked to the Vehicle to represent the
connection between a vehicle and its driver.

Stage
łincom-
ing”

A vehicle approaching the intersection is
detected by some RSU (e.g. a smart camera
with a given detection radius). The vehicle
somehow signals the intention to cross the
intersection, e.g. by activating the turning
lights in case of a non autonomous vehicle,
or by communicating with the intersection
manager over wireless networks in case of
an autonomous vehicle attempting to re-
serve a spatio-temporal slot for occupying
the intersection area [12].

A :crossing link is established between the Vehicle DT and
the Intersection DT, to track the presence of the vehicle
within the intersection area. A :managing link is established
between the CrossingProcess DT and the Vehicle DT, to
track the fact that the vehicle is now being managed by the
intersection policy. The Vehicle DT signals the intention to
cross to the Intersection DT, e.g. by raising an appropriate
event eDT , or by exploiting the dedicated service interface
on the Intersection DT. The CrossingProcess DT, by ob-
serving the Intersection DT, becomes aware of the crossing
request and includes the Vehicle DT in the coordination pro-
cess aimed at distributing right of ways.

Stage
łoutgo-
ing”

The intersection manager checks new re-
quests for crossing against pending ones
given the current crossing state, and de-
cides which vehicles get the right of way,
and which spatio-temporal constraints
they should abide to while crossing. The ve-
hicle eventually gets its right of way, then
can safely cross the intersection.

The CrossingProcess DT establishes :assigned and
:waiting links to Vehicle DTs already having a :managing
link with it, representing the crossing status of the vehicleÐ
respectively: right of way given, or not. The Intersection

DT establishes :leading links with Vehicle DTs leading
a queue of vehiclesÐthat is, vehicles with a :waiting link
and an incoming :queuing link. The Vehicle DTs establish
:queuing links with the preceding vehicle, if any, tracking
the fact that to get the right of way they need the leading
VehicleDTs to get it irst. The Vehicle DT loses all of its links
related to the CrossingProcess DT and the Intersection

DT, tracking the fact that it is no longer involved in the
intersection.

established, as well as links tracking the crossing status of a vehicle, where :assigned means that the vehicle
got its right of way, whereas :waiting the opposite. It is worth noting that orientation of links highly depend on
their semantic: for instance, we decided to let the :queueing link go from the queued vehicle to the leading one,
but the opposite could be meaningful as well. However, it is crucial to keep in mind that orientation of links has
an impact on applications, as which links a DT can participate to as the subject of the relationship should be
known at design-time, whereas those involving the DT as the object can be unknown before run-time.

To conclude, we emphasise that on top of theWoDT infrastructure, we can envision a wide array of applications.
For instance, an application may continuously monitor the knowledge graph linking together all the diferent
intersections of an urban area, e.g. based on ownership of the municipality, to provide to city governance a
dashboard with a map charting the traic low. The governance can then detect bottlenecks and, for instance,
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@PREFIX  rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@PREFIX  s4auto: <https://saref.etsi.org/saref4auto/> . 
@PREFIX  : <#> . 

:crossingProcessCP a s4auto:TrafficManagementCentre . 
:intersectionI a s4auto:RoadEntity . 
:vehicleVi a s4auto:Vehicle . 
:crossingProcessCP :deployed :intersectionI . 
:intersection :belongsto :municipalityM . 
:driverDi :registered :municipalityM ; 
    :drives :vehicleVi . 
:vehicleVi :registered :municipalityM . 

:managing rdfs:domain s4auto:TrafficManagementCentre ; 
    rdfs:range s4auto:Vehicle . 
:crossing rdfs:domain s4auto:RoadEntity ; 
    rdfs:range s4auto:Vehicle .
:crossingProcessCP :managing :vehicleVi ; 
    :managing :vehicleVj , :vehicleVk , :vehicleVw . 
:intersectionI :crossing :vehicleVi ; 
    :crossing :vehicleVj , :vehicleVk , :vehicleVw .

S
TA

G
E-

S
et

up
S
TA

G
E-

In
co

m
in

g
S
TA

G
E-

O
ut

go
in

g :assigned rdfs:domain s4auto:TrafficManagementCentre ; 
    rdfs:range s4auto:Vehicle . 
:waiting rdfs:domain s4auto:TrafficManagementCentre ; 
    rdfs:range s4auto:Vehicle . 
:leading rdfs:domain s4auto:TrafficManagementCentre ; 
    rdfs:range s4auto:Vehicle . 
:queueing rdfs:domain s4auto:Vehicle ; 
    rdfs:range s4auto:Vehicle . 
:crossingProcessCP :assigned :vehicleVi ; 
    :waiting :vehicleVj ; 
    :leading :vehicleVw . 
:vehicleVw :queueing :vehicleVk . 
:vehicleVk :queueing :vehicleVj .

:driverDi

:vehicleVk :drives

:queuing
:queuing

:crossingProcessCP

:managing

:assigned

:vehicleVj
:managing

:waiting :vehicleVw

:leading
:municipalityM

:registered

:registered

:registered

:registered

:intersectionI

:crossing

:deployed

:crossing

:crossing

:crossing

:belongsto

:driverDk

:registered

:managing
:drives

:registered

:vehicleVi

:crossingProcessCP

:deployed

:vehicleVi

:driverDi

:drives

:belongsto

:registered

:registered
:municipalityM

:crossing

:managing

:intersectionI

:intersectionI

:deployed

:vehicleVi

:driverDi

:drives

:belongsto

:registered
:registered

:municipalityM

:crossingProcessCP

Fig. 15. Evolution of the knowledge graph in the mobility intelligence scenario.

change the crossing policy of selected intersections. A similar application may be given to drivers, or integrated
with vehicles’ navigation systems, so that they can always choose the least congested route towards their
destination. Another kind of application instead may inform drivers about the crossing policy of intersections
along their route, so that they can decide which to avoid (e.g. auction-based policies to avoid spending łroad
credits” to cross). More complex applications, such as for gaining actionable knowledge through traic low
prediction, may be engineered as well on the common, homogeneous, interoperable substrate provided by the
WoDT, depending on the augmentation capabilities of the DT, as discussed in Section 6.

6 RESEARCH DIRECTIONS

The vision and model proposed in this paper, as well as its application in the real world, introduce potential
opportunities and open issues that should drive future research and implementation activities, possibly in diferent
areas. In this section, we provide an overview of a selection of them.

Realising Interoperable WoDTs. In this paper, we described the main concepts of WoDT using an abstract
conceptual framework and architecture. The possibility to apply and implement it by preserving (cross-domain)
interoperability is bound to the deinition of shared concrete meta-models and languages. For instance, in the case
of WoT, standardised metadata and other re-usable technological building blocks ś such as the Thing Description
ś have been deined by the W3CWoTWorking Group, to ease the integration across IoT platforms and application
domains. Analogously, standardised metadata and technological building blocks can be devised as well for WoDT,
possibly layered upon enabling ones, such as Semantic Web and the ones deined by WoT. Main references
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to be considered for exploring this direction include both standardisation initiatives (such as the Digital Twin
Consortium17), large scale projects (such as the Digital Twin Programme18 promoted by the CDBB), but also
concrete languages and technologies available from speciic companies. A main example for this is the digital
twin deinition language (DTDL) by Microsoft. These technologies can be used to develop speciic incarnations
of the WoDT model, for instance one speciic to the WoT domain exploiting standard Web technologies. Indeed,
we deliberately described our reference architecture in abstract terms, without speciic constraints on design
paradigm or technologies (except for event-driveness), exactly to let the interested communities ś be it the
(Semantic) Web community, the MAS community, etc. ś develop their own technical solutions, depending on
reference applications requirements and available technologies.

Design and Implementation of WoDT Middleware and Tools. Recent years clearly showed how the lack of
standards or common agreements for DTs design and development has led to the proliferation of several isolated
platforms and domain speciic solutions. This trend is also emphasised in [50] where the authors highlight how
the real DTs’ potentials are seriously limited by the existing fragmentation and heterogeneity. Each existing
approach or platform is built from scratch with a siloed centralised vision instead of a shared set of methodologies,
models, and interaction patterns. The WoDT contribution aims to overcome these limitations by creating an
interoperable vision where DTs can seamlessly cooperate within the same application domain and across multiple
domains at the same time. As previously illustrated, the WoDT does not impose any implementation speciications
or constraints, rather, it aims to operate at a higher layer supporting multiple platforms and tools following the
set of shared modelling principles and event-driven design.
An open challenge for DTs and WoDT will be at irst related to the deinition of open implementations for

both the DT’s core and the platform in order, on the one hand, to simplify the shadowing and the augmentation
management and, on the other hand, to support a distributed and interoperable knowledge system and commu-
nication overlay. The natural next step will be to quickly adopt the new implementations and start developing
and integrating speciic modules and libraries dedicated to target PAs, domains, and use cases in order to exploit
existing standards and creating a set of shared features without the need to reinvent the wheel at each deployment,
and limit the risk to create siloed ecosystems. The perfect example will be the integration between WoDT with
the IoT world, where the beneits of introducing an interoperable and lexible DT’s layer will be strategic at
diferent levels and for several uses cases. In that speciic domain, where the fragmentation of the physical layer is
a massive issue, the integration of WoDT with the standardisation eforts provided by consortia such as oneM2M
and W3C WoT represent an appealing and concrete opportunity to quickly reach a standardised version of IoT
DTs, capable of providing a scalable digital abstraction on top of the physical layer.

Shadowing and Certiied DTs. Shadowing is a key process for DTs, being responsible of making the state of the
DT a correct digital shadow of the PA, where the semantics of correctness is given by the modelMÐit may include
constraints about idelity, responsiveness, accuracy, etc. Applications exploiting DTs ś especially intelligent
agent-based systems reasoning upon DTs and taking autonomously decisions given the observable state of DTs ś
should have evidence that a DT is working (or not) as promised by its model/speciication. Accordingly, a proper
level of certiication should be useful (or, rather, necessary) to deine the quality of service expected from a DT, as
part of its Service Level Agreement.

Querying and Observing Graphs of DTs. Querying and observing graphs of DTs and, correspondingly, Distributed
KG is a challenging issue, given in particular the semantic constraints speciied in Section 3. This issue is strongly
related to existing research works in Semantic Web literature that are about querying distributed RDF data
stores [37], and, more generally, to research that deals with large-scale semantic integration of linked data [31].

17https://www.digitaltwinconsortium.org/index.htm
18https://www.cdbb.cam.ac.uk/what-we-do/national-digital-twin-programme
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The two aspects of Distributed KG in WoDT that further characterise the open issue is about dynamism and
shadowing, so that individual KG continuously evolve, possibly with a high changing frequency, and the stream
of updates from the physical world cannot be blocked or be interfered by querying and tracking.

Design of Intelligent Agents Situated in WoDT. The adoption of a semantic model based on knowledge graphs
makes it particularly interesting to explore the usage of intelligent agents that adopt an explicit knowledge
level [33] to represent and reason about their tasks, goals, and environment. In the case of BDI Agents, for
instance, this translates to adopting a model for representing beliefs based on KG triples. That is: each triple is
represented by a belief and then a WoDT environment observed by an agent is represented by a (dynamic) set
of triples tracking the corresponding KGs, properly updated according to the evolution of the WoDT. A main
reference for this research investigation is given by existing works in the literature exploring the integration
of BDI Agents and Semantic Web [11] and ontology-based agents [30]. In these works, agents are equipped
with basic capabilities to access and query OWL-based knowledge based on some ontologies. That knowledge is
however almost static. The WoDT calls for agents capable of observing knowledge graphs that could dynamically
evolve, not only in terms of values in data properties but also in terms of relationships.

Besides knowledge representation, a further main research issue concerns the opportunity to combine practical
reasoning techniques ś that are typically adopted on the agent side [54] ś with cognitive capabilities provided by
DTs, such as predictive ones. Accordingly, in order to decide the course of actions to perform to fulil some task,
the agent could consider not only the current observed state of the WoDT (in terms of knowledge graph), but
exploiting the prediction/simulation functionalities provided by the DT as-as-service. This calls for exploring the
design of intelligent agents (andMAS) exploiting anticipatory capabilities [35] to enhance the overall sense-making
process and improve decision-making.

Prediction and Historical Data Analysis based on Knowledge Graphs. In the literature, distinguishing func-
tionalities such as threading and prediction have been explored for individual DTs mirroring speciic physical
assets [43]. The WoDT approach broadens this view by considering a graph of linked but independent evolving
DTs: a semantic model based on knowledge graphs makes it possible to explore these features in terms of the
evolution of KGs and distributed KGs. A challenging aspect here is that a WoDT may involve multiple DTs
based on diferent modelsM , hence abstracting away diferent facets of the observed reality, which in turn likely
need diferent data being available, following diferent distributionsÐfeatures that complicate notably the task
of learning patterns that can be generalised. Existing works in the literature have explored such techniques
in the case of single models or a single data stream [55]. Nevertheless, these contributions can be taken as a
starting point for exploring extensions considering the integration of multiple heterogeneous models, as well as
of multiple heterogeneous data sources for data-driven approaches.

7 CONCLUDING REMARKS

The WoDT is an efort to take the lessons learnt from the World Wide Web, the IoT, multiagent systems, and
distributed systems, and apply them to the deinition of an event-driven, decentralised, interoperable, linkable
and discoverable vision of digital twins. The proposed model and abstract architecture deine a basic conceptual
framework, that can be mapped onto a variety of concrete deployment scenarios and implementation technologies,
with the aim to be a unifying horizontal layer on top of the physical assets.

The use cases presented in Section 5 illustrated how the WoDT can be actually shaped into speciic application
domains with peculiar challenges and constraints related, for example, to the enrolment of heterogeneous physical
assets, a structured hierarchical organisation, and dynamic evolution in terms of interactions and knowledge
representation. On one hand, the WoDT allowed to model DT’s properties, behaviours, and relationships, and
consequently to represent large-scale and complex physical environments as an open ecosystem of connected
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and interoperable DTs. On the other hand, the proposed vision supports the deinition of a new cyber layer where
applications, agents, and services can implement and orchestrate new smart and dynamic systems of components
by relying on a structured and integrated DT’s overlay, without the responsibility to handle the fragmentation
and the heterogeneity characterising the physical layer.
Moving forward from the local scope of a single application domain, the possibility to exploit a uniform and

interoperable Web of DTs also opens the way to the design of a new generation of cross-domain computational
infrastructures, trying to mirror the physical world where existing assets seamlessly move and interact across
multiple contexts at the same time. For example, a person can be an employee for a company and a patient for
the health system, or an ambulance can be a vehicle on the street and a resource for the trauma management
ecosystem. Through the adoption of WoDT, DTs from multiple realms can start cooperating (potentially on
demand) to reach a shared goal or to opportunistically implement a new behaviour, that is something quite
diicult to achieve in the siloed environments representing the state of the art.
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