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Abstract

Modern key-value stores, object stores, Internet proxy caches, as well as Content Delivery Networks
(CDN) often manage objects of diverse sizes, e.g., blobs, video files of different lengths, images with
varying resolution, and small documents. In such workloads, size-aware cache policies outperform size-
oblivious algorithms. Unfortunately, existing size-aware algorithms tend to be overly complicated and
computationally expensive.

Our work follows a more approachable pattern; we extend the prevalent (size-oblivious) TinyLFU
cache admission policy to handle variable sized items. Implementing our approach inside two popular
caching libraries only requires minor changes. We show that our algorithms yield competitive or better
hit-ratios and byte hit-ratios compared to the state of the art size-aware algorithms such as AdaptSize,
LHD, LRB, and GDSF. Further, a runtime comparison indicates that our implementation is faster by
up to x3 compared to the best alternative, i.e., it imposes much lower CPU overhead.

1 Introduction

Caches improve the performance of diverse computing and networked systems by storing portions of the data
closer to the applications and users. Caching is widely used in many databases and storage systems in which
DRAM memory serves as a cache for slower secondary storage [25], Web caching [34], and even in hardware
fast SRAM memory serves as a cache to slower DRAM memory. As another example, Content Delivery
Networks (CDN) reduce the data access latency by storing popular content closer (in terms of Internet
topology) to its consumers [22]. CDNs deploy multiple distributed content caching servers, also known as
Points of Presence (PoP), in multiple ASs. PoPs serve popular content faster than fetching the data from
the original server and accomplish three goals: reducing Internet traffic [21], reducing the load on the content
providers’ servers, and reducing users’ perceived response times, thereby improving the user experience.

Given that the cache is smaller than the entire storage whose content it stores, a cache management
policy decides which items to store in the cache at any given point. Due to the diversity of workloads and
systems, a plethora of such policies have been devised, e.g., [27, 33, 10, 43, 19, 5, 6, 41, 24, 14, 15, 45].

The vast majority of research on cache management policies ignore the size of cached items. The logic
behind this simplification is that many databases and storage systems use block devices as secondary storage,
so caches only need to work at block boundary. The sizes of all blocks or pages within a given system are
the same or very similar.

However, in modern databases and data-stores, the reality is more complicated. Specifically, there are
many important scenarios, such as imaging and video objects, CDN’s caches, cell content in column-family
data models, blobs, and application caches, where the size of cache-able items vary, emphasizing the need for

1

ar
X

iv
:2

10
5.

08
77

0v
2 

 [
cs

.O
S]

  2
3 

M
ay

 2
02

1



size-aware cache policies. Further, much of today’s Internet content volume is consumed by video streaming,
which is encoded and transmitted using variable bit rates. Therefore, the video is partitioned into chunks
(each corresponding to a short video duration) whose size varies considerably [3]. In fact, even the same
sub-stream may be encoded multiple times at different bit rates, each of which is transmitted to different
clients based on their temporal line quality. In such workloads, size-aware cache policies often outperform
size oblivious cache policies. Indeed, a modern analysis has recently shown that sophisticated variable sized
objects caching indeed has room for significant system performance improvements [9].

Alas, size-aware cache management policies are often more complex than unit sized policies. For example,
size-aware policies may divide the cache into slabs, where each slab is devoted to objects of similar size and
is managed independently of other slabs [39, 6]. Such an approach leads to sub-optimal cache utilization as
objects of a certain slab may be more popular than objects of other slabs. Further, the popularity of objects
varies, so there is no single best static slabbing partitioning. Some works mitigate these complications by
periodically re-balancing the slab allocation [6].

When objects’ sizes vary, we distinguish between hit-ratio and byte hit-ratio. Hit-ratio is the ratio between
the number of accesses that are a hit in the cache and the total number of accesses. Hit-ratio is important
to improve the systems’ perceived access latency, and thereby its user experience. In contrast, byte hit-ratio
is the accumulated number of bytes served by hits in the cache vs. the total number of bytes returned by
all accesses. This indicates the cache’s effectiveness in reducing network bandwidth consumption.

The seminal GDSF policy [13] is very effective in terms of both hit ratio and byte hit-ratio. But, GDSF
suffers from a poor reputation of being computationally expensive and it operates in logarithmic complexity.
Three other prominent size-aware cache management policies include AdaptSize [10], LHD [6] and the recent
LRB [41]. AdaptSize involves parameter tuning through non-trivial stochastic models. LHD and LRB both
apply a heavy machine learning process to learn from previous accesses to predict future ones. Here we are
looking for a lightweight, yet effective, size aware caching policy.

Our Contributions

This paper explores the benefits of simple size-aware cache policies that generalize the W-TinyLFU policy [20]
to handle varying sized objects1. In a gist, W-TinyLFU decides which objects to hold in the cache for a long
duration according to their access frequency compared to the cache victim. Intuitively, variable-sized items
imply that we may need to compare a newly arriving item against multiple cache victims to make enough
room for it in the cache.

Our work evaluates three such possible extensions. The first two, nicknamed Implicit Victims (IV)
and Queue of Victims (QV), are implemented in production extensions of W-TinyLFU to variable-sized
objects (our Caffeine [32] and Ristretto [18]), but were never described outside their code, nor analyzed
and compared in any manner. The third is our newly proposed approach, nicknamed Aggregated Victims
(AV). We demonstrate that our proposed method AV outperforms the two existing solutions IV and QV in
hit-ratio. When it comes to byte hit-ratio, QV has a slight advantage in the CDN traces. Next, we show
that our new policy AV achieves competitive hit-ratio and byte hit-ratio compared to the state-of-the-art
policies GDSF [13], AdaptSize [10], LHD [6] and LRB [41] over a wide variety of real-world traces. While
none of the evaluated policies is best in all the cases, our policy consistently attains high hit ratios and faster
constant time operation and is also very simple to implement.

Interestingly, our measurements revealed the following inherent limitation of cache management ap-
proaches, such as AdaptSize [10], that admit objects with a probability that is inversely proportional to the
object’s size. The problem is that such policies fail to utilize the entire cache area when operating over large
caches, as found in modern CDN PoPs [22]. We explain this problem in the evaluation section.

Paper road-map: The rest of this paper is structured as follows: We survey related work in Section 2. We
present the (size oblivious) W-TinyLFU approach in Section 3, and the extensions to variable size objects

1W-TinyLFU is used, directly or through caching libraries, in Cassandra, Accumulo, HBase, Apache Solr, Infinispan, Open-
Whisk, Corfu, Finagle, Spring, Akka, Neo4j, DGraph, Druid, and many others as listed in [32].
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in Section 4. Section 5 presents the performance evaluation of the hit-ratio, byte hit-ratio, and throughput
for the various approaches. Finally, we conclude with a discussion in Section 6.

2 Related Work

As indicated above, the majority of cache management policies assume that all objects are of similar or
equal size. Such policies include LFU and its variants [28, 29, 4] as well as LRU [23] and its performance-
driven approximations [44, 24]. More modern approaches improve on LRU by adding frequency aspects to
it. These include, e.g., LRU-K [37], 2Q [27], ARC [33], CAR [5], LIRS [25], DLIRS [31], FRD [38] and
Hyperbolic [12]. Mini-Sim [45] efficiently simulates multiple policies and configurations in order to choose
the best one. W-TinyLFU proposes having two cache segments with an approximated LFU admission filter
for transferring items between these segments [19, 20].

The seminal Greedy-Dual work was one of the first to incorporate size into the replacement decision [46].
The Greedy-Dual was later extended to accommodate for recency, frequency, cost, and size in the GDSF
scheme [13]. GDSF gives a dynamic score to each item by combining the above four criteria into a unifying
formula. To make room for a newly arriving item x, GDSF collects cached items whose dynamic score is
minimal, until finding enough items whose combined size is larger than the size of x and then evicts all these
found items. To date, GDSF remains a tough performance benchmark to beat as far as hit ratio and byte
hit ratio are concerned. Yet, its computational complexity is largely considered too high for most production
caching systems.

The popular Redis system [39] divides the total cache area into multiple slabs, each dedicated to similarly-
sized objects. Every slab is maintained using either sampled LRU or sampled LFU for eviction coupled with
blind admission.

Three promising recent size aware caching schemes are AdaptSize [10], LHD [6] and LRB [41]. Adapt-
Size implements a stochastic sized-based admission policy where large items have a smaller probability of
being admitted compared with small items. Specifically, AdaptSize utilizes Markov models to optimize the
admission policy.

In contrast, LHD [6] introduced the concept of hit density to capture the combination of frequency
and size. It also considers recency through machine learning based prediction of when each item would be
reaccessed. These parameters are placed in a unifying formula, and the cache victims are those whose score
is minimal. Yet, to keep the computational cost practical, LHD randomly samples 64 uniformly selected
items, computes the scores only for those items, and evicts the minimal among them. LHD also employs
slabbing to avoid having to evict too many items at once, as well as slabs re-balancing to improve the overall
cache utilization.

LRB [41] is a recent sophisticated cache replacement policy whose design goal is to maximize byte hit
ratio in order to minimize bandwidth consumption in CDNs. LRB employs machine learning in order to
approximate the behavior of a relaxed Belady algorithm. The classical offline Belady algorithm [8] evicts
from the cache the object whose future access is the furthest, which is optimal. Yet, as the authors of [41]
have discovered, learning to approximate Belady is very hard, but is also usually not needed. Instead, they
proposed a variant called relaxed Belady, in which the algorithm evicts some object whose next access is
beyond what they referred to as the Belady boundary. The LRB policy utilizes machine learning in order to
mimic the relaxed Belady algorithm, which is feasible and indeed provides very good byte hit ratio results.

3 An Overview of W-TinyLFU

In this section, we give a brief overview of the (size oblivious) W-TinyLFU scheme. For more details,
see [19, 20]. As shown in Figure 1, W-TinyLFU relies on three modules: the Main cache, the Window cache
and an approximated LFU based admission filter called TinyLFU. On a cache miss, the accessed item is
inserted into the Window cache. When this results in another item being evicted from Window cache, aka
Window victim, the Window victim is introduced to the TinyLFU filter. The filter provides approximate
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Figure 1: W-TinyLFU scheme: Items are first always admitted to the Window cache. The Window cache
victim is offered to the Main cache, which employs TinyLFU as its admission filter. We preserve here the
terminology of [20].

frequency estimations of the Window victim, and the would-be victim of the Main cache, aka Main victim.
If the Window victim’s estimated frequency is higher than that of the Main victim, then the Window victim
is admitted to the Main cache at the expense of the Main victim. Else, the Main victim remains in the Main
cache, and the Window victim gets evicted.

In principle, this is a generic architecture where one can use any cache management scheme for the Main
and Window caches, and the admission filter of the Main cache could employ any utility comparison function.
Yet, the authors of [20] recommended deploying LRU as the eviction policy of the Window cache, SLRU as
the eviction scheme of the Main cache, and TinyLFU as the admission filter. As for the relative sizes of the
two cache regions, in [20] is was recommended that the Window cache be allocated 1% of the overall cache
size, whereas a followup work [19] showed how to adapt these region sizes dynamically.

The TinyLFU admission filter is implemented through a sketch such as a minimal increment counting
Bloom filter [16], or a count min sketch [17]. All sketch’ counters are halved for aging purposes every S
accesses, where S is a parameter. Given a cache of size C items, these counters are also capped by S/C and
therefore require O(logS/C) bits. Typically, S is at least one order of magnitude larger than C. The sketch
counters corresponding to x are updated for every occurrence of x, even if it is not in the cache. Such an
approach eliminates the need for maintaining ghost entries, as is common in other schemes [33, 26, 38].

4 Size-aware Admission Policy

This section discusses how to extend the W-TinyLFU policy to variable-sized objects. There are three
main differences between the similar size case and variable size scenarios: First, a new item might be larger
than the Window cache. In this case, the newly arriving item skips the Window cache and is immediately
submitted for the TinyLFU filter to be determined if it can enter the Main cache.

Second, we may need to consider multiple potential Window victims whose aggregated size is large enough
to make room for the newly arriving item. Figure 2 exemplifies this point. In this example, B is the new
item, while W and V are the Window cache victims.

Third, in W-TinyLFU, the Window cache victim is tested against the Main cache victim. Here, we may
have multiple Window cache victims, each tested against (possibly multiple) Main cache victims. There are
several options on how to pick these potential Main cache victims and how to compare them to the candidate
item(s). Specifically, as mentioned before, in this work, we consider three options. These include Implicit
Victims (IV), Queue of Victims (QV), and Aggregated Victims (AV). The Caffeine Java-based project [32]
employs IV, the Go-based Ristretto project [18] implements QV, and AV is our newly designed scheme.
While IV and QV were adapted into popular libraries, we are the first to evaluate them systematically.

Figure 3 outlines the size-aware W-TinyLFU policies. The differences with the basic W-TinyLFU policy
are marked in yellow. In our measurements, we use a Window cache whose size is 1% of the total cache size
(and 99% is allocated to the Main cache), as suggested in [20]. The eviction policy for the Window cache
is LRU, while for the Main cache, we experiment with few alternatives, as described below. Algorithm 1
provides pseudocode for miss handling by the size-aware adaptation of W-TinyLFU.
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Figure 2: An illustration of the admission of a new item (B) to the Window cache, in this example, evicting
the LRU item (V), does not make enough room for B, and we need to evict also the 2nd LRU item (W).

Figure 3: We are extending W-TinyLFU to size-awareness. The main change to the (size oblivious) W-
TinyLFU policy is that adding the new item to the Window cache may result in multiple victims (in yellow).
We use TinyLFU to decide for each one of these Window cache victims. Similarly, admitting a Window
cache victim to the Main cache may result in multiple Main cache victims. Thus, in the end, the set of
victims may come from both caches.

4.1 Implicit Victims (IV)

The IV scheme deals with variable sized objects by following the simplistic approach in Algorithm 2: IV
compares the candidate item’s frequency vs. the frequency of the would-be victim, as reported by the
approximate filter (Line 3). If the candidate is more frequent, IV blindly evicts enough victims, one after
the other, until there is enough free space in the cache for the candidate to be admitted (Lines 4–6). The
method is exemplified in Figure 4.

Notice that IV only cares about the first victim’s frequency and ignores the frequency of subsequent
victims that may be evicted to admit the candidate. In case the victim is more frequent, IV promotes it
(Line 9) and rejects the candidate (Line 10).

This approach is straightforward and computationally efficient to implement. As mentioned before, we
developed IV and implemented it in Caffeine [32], but it was never explained before beyond the source code
of Caffeine nor studied systematically.
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Algorithm 1 W-TinyLFU Becomes Size Aware

1: procedure OnMiss(newItem)
2: if newItem size > cache size then
3: reject newItem
4: return
5: candidates ← emptyList()
6: if newItem size > maximal window size then . The new item is too large for the Window cache
7: candidates.append(newItem) . Skip Window cache → a candidate for Main
8: else
9: insert newItem to window

10: while window size > maximal window size do . Evict items from Window to make room
11: candidate ← evict from window . Each eviction from Window becomes
12: candidates.append(candidate) . a candidate for Main

13: for candidate in candidates do
14: EvictOrAdmit(candidate) . This function is where IV, QV and AV differ

Algorithm 2 Implicit Victims (IV)

1: procedure EvictOrAdmit(candidate)
2: victim← getVictim()
3: if frequency(candidate) ≥ frequency(victim) then
4: while space is needed do
5: victim← getVictim()
6: evict victim
7: admit candidate
8: else
9: promote victim

10: reject candidate

4.2 Queue of Victims (QV)

QV takes a somewhat different approach to handle variable-sized objects, as outlined in Algorithm 3. Specif-
ically, QV repeatedly seeks for victims. For each victim, if the frequency of the candidate is higher than the
victim’s frequency, the victim is evicted (Lines 4–5). Otherwise, the victim is promoted in the cache, as if
it was accessed, and the iterative process stops (Lines 7–8). At the end of the iterative process, if there is
enough vacant space in the cache for the candidate, then the candidate is admitted (Line 10).

Figure 5 illustrates this process. In this example, we evict an item (J) from the Main cache without
admitting an item. The lack of admission is because the evicted item was not large enough to make room
for the candidate, while the next victim was more frequent than the candidate.

The motivation behind QV, compared to IV, is two-fold: (i) avoid evicting items that are more frequent
than the candidate, which could happen with IV, (ii) yet, if a victim is less frequent than the candidate,
evict the victim even if eventually the candidate is not admitted. The rationale behind (ii) is that if a victim
is less frequent than a candidate, it is polluting the cache, and so it should be evicted in any case.

4.3 Aggregated Victims (AV)

We now present our Aggregated Victims (AV) approach. AV compares a cache candidate’s frequency to that
of the entire group of potential victims. We admit the candidate if its frequency is higher than that of all
the potential cache victims. Intuitively, since admitting the candidate causes all cache victims’ eviction, the
admission policy asserts that such a transaction is beneficial to the cache as a whole.

Algorithm 4 details AV’s behavior: Specifically, AV gathers potential victims (according to the eviction
policy) until their total size is sufficient to admit the candidate (Lines 3–5). AV then uses TinyLFU to
compare the candidates’ frequency to the total frequency of all victims (Line 8). If the candidate’s frequency
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Figure 4: An example of the Implicit Victims (IV) approach: We compare the frequency of the Window
cache victim (W) to that of the first Main cache victim (J). Since W is more frequent, we admit W and
evict J and K.

Algorithm 3 Queue of Victims (QV)

1: procedure EvictOrAdmit(candidate)
2: while space is needed do
3: victim← getVictim()
4: if frequency(candidate) ≥ frequency(victim) then
5: evict victim
6: else
7: promote victim
8: break
9: if there is enough space then

10: admit candidate
11: else
12: reject candidate

outweighs the total frequency of all victims, then it is admitted at the expense of the victims (Lines 9–11).
Otherwise, the candidate is discarded, and no entries are evicted from the cache (Lines 13–15). As before, if
the candidate is rejected, we promote the potential victims (Line 14). Figure 6 exemplifies this process. In
the figure, W fails to enter the Main cache and is dropped from the cache entirely.

In most simple eviction policies (e.g., LRU), we also promote the victims as if they were accessed once
after rejecting the candidate, to force the eviction policy to select a different set of victims for the next
candidate. Yet, some eviction policies may not require this step.

4.3.1 The Early Pruning Optimization

The description of AV so far suffers from inefficiency. If the victims’ cumulative frequencies surpass the
candidate’s frequency during its iterative process, we can abort the calculation since the candidate will
not be admitted. Hence, we can improve run-time by gradually gathering the victims and summing their
frequency estimations until the total victims’ frequency outweighs the candidate’s frequency, or their total
size is sufficient to admit the candidate. This optimization is listed in (Lines 6–8) of Algorithm 4; we name
it early pruning.

Early pruning improves the run time of AV since we need to compare rejected candidates (which are
often the vast majority [2]) with fewer victims. Figure 7 demonstrates the effectiveness of this optimization.
Notice that early pruning reduces victim comparisons by a factor of x4-x16.
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Figure 5: The Queue of Victims (QV) approach: Here, we compare the frequency of the Window cache
victim (W) to that of the Main cache victim (J). Since W is more frequent, evict J and move to the next
victim (K). In this case, K is more frequent than W, so we do not admit W to the Main cache.

Algorithm 4 Aggregated Victims (AV)

1: procedure EvictOrAdmit(candidate)
2: victims← emptyList()
3: while victims size < space needed do
4: victim← getVictim()
5: victims.append(victim)
6: if frequency(candidate) < frequency(victims) then
7: break . early pruning

8: if frequency(candidate) ≥ frequency(victims) then
9: for victim in victims do

10: evict victim
11: admit candidate
12: else
13: for victim in victims do
14: promote victim

15: reject candidate

Let us note that potential victims that were eventually not evicted are promoted in all these algorithms,
e.g., Line 14 of Algorithm 4. Hence, early pruning may result in fewer objects being promoted than without
this optimization. Yet, we empirically found that its impact on the hit ratio is negligible.

5 Evaluation

In this section, we present our conducted trace-based simulations results. First, we compare the three
discussed approaches of the size-aware admission filter (IV, QV, and AV), combining six different Main cache
eviction policies for W-TinyLFU: SLRU as in Caffeine [32], four versions of sampled policies and random
eviction (Random). Each of the sampling policies samples five entries and selects the victim according to
one of the following four rules respectively: lowest frequency (Sampled Frequency), largest size (Sampled
Size), lowest frequency/size (Sampled Frequency/Size), and the closest match where the evicted item is
the one yielding highest memory utilization (Sampled Needed Size), e.g., when admitting a 100k item into
a cache with 50k free space, the victim is the one whose size is closest to 50k). Our sampled configurations
mimic Ristretto’s SampledLFU configuration [18] that randomly samples five potential victims and evicts
the one with the lowest frequency. Overall, we suggest eighteen combinations of admission and eviction
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Figure 6: Illustrating the Aggregate Victims (AV) approach: In this example, we compare the frequency of
the Window cache victim (W) to that of the the Main cache victims (J,K). The combined frequency of the
Main cache victims (6+4=10) is larger than the frequency of W (5). Therefore, we do not admit W to the
Main cache.

policies in total.
Next, we picked our top versions, AV with SLRU for hit-ratio and QV with SLRU for byte-hit-ratio, and

compared it to four other leading size-aware policies: GDSF [13], AdaptSize [10], LHD [6] and LRB [41].
Following previous works, our primary measurement was hit-ratio, byte-hit-ratio, and run-time performance.
As mentioned before, hit-ratio improves latencies, resulting in better user experience and byte-hit-ratio
indicates how much bandwidth is saved, meaning better network utilization, while run-time points to the
CPU overhead for maintaining the cache itself.

To perform the evaluation, we used our own Java implementation to measure all but AdaptSize, LHD,
and LRB policies. For these latter three, we used their authors’ C++ implementations available in [11], [7]
and [40] respectively. We used their default configurations, with minor modifications, mainly to address
trace parsing issues and remove redundant stats measuring. To verify a baseline, we make sure that LRU
hit-ratio and byte-hit-ratio are the same in all three frameworks.

Traces Our measurements have used four types of real traces, taken from four different resources, as
detailed in Table 1. MSR1, MSR2, and MSR3 are taken from an enterprise storage system [35]; SYSTOR1,
SYSTOR2, and SYSTOR3 are taken from the storage of a VDI system [30]; CDN1 [9] along with CDN2 and
CDN3 [41] are taken from CDN deployments; TENCENT1 [47] is taken from a large-scale photo service.
Table 1 details for each trace the total number of accesses in the trace, the number of unique objects, and
the total size of all unique objects.

Another interesting aspect of these traces is their object size distributions. This is depicted in Figure 8.
As can be observed, all traces include objects of various sizes, ranging from less than 1KB to 0.5MB in the
case of both storage systems, and up to 0.5GB or more in the case of the CDN. We can also see that in
MSR1 and MSR2, it is easy to divide the objects into a small number of “size buckets”, suggesting that here
slabbing might work well. In particular, 3–4 slabs could suffice. MSR3, TENCENT1 and SYSTORs traces
are already more challenging, and the sizes of the objects are much less clustered. Finally, in the CDNs,
object sizes are spread in the entire range of up to 0.5GB, hinting that a true size aware policy is needed.

5.1 Finding the Best Hit-Ratio Filter Variant

Figure 9 compares our AV with the IV approach (taken by Caffeine [32]) and the QV approach (used by
Ristretto [18]). As illustrated, AV is consistently better for all traces in the entire range. Such improvement
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Figure 7: The number of victims per access, with and without the pruning optimization (see algorithm 4
line 7), for different traces with cache sizes of 10MB, 1GB, and 100GB for each.

is explained by the fact that AV more accurately captures the victim set’s benefit compared with IV and
QV. Also, QV seems slightly better than IV.

Figure 10 repeats the above evaluation for byte hit ratio. Here, QV seems to be the best admission policy.
Intuitively, AV’s relative weakness on this metric is because it is more likely to admit smaller items than
larger items. Specifically, smaller items are likely to be compared against few victims, while larger items
are compared against many victims. The byte hit ratio benefits more from serving a large item from the
cache than from serving a small item. The QV approach is indifferent to items’ size and actively removes
infrequent items from the cache even if it rejects the new item. These evictions free poorly utilized space,
making QV more likely to admit large items to improve the byte hit ratio.

Notice that although there are clear differences between the admission approaches, the eviction policies
make inconsistent difference, except for the Random policy that clearly lags. An interesting and expected
observation is that Sampled Size is a little better than others for hit-rate due to the gain it gets from evicting
large items, while it losses for byte-hit-rate. SLRU is decent for both measurements and more simple and
efficient. Hence we continue with SLRU for all subsequent evaluations.

5.2 Hit-Ratios of State-of-the-Art Approaches

Next, we compare AV (SLRU) and QV (SLRU) with the seminal GDSF [13] as well as the recently proposed
AdaptSize [10], and LHD [6], and LRB [41] schemes. Figure 11 shows the results for the hit ratio metric
(important for user perceived reaction time). First, observe that LHD lags for small cache sizes, which is
expected as LHD does not use any metadata on non-cached items. Intuitively, when the cache is large, LHD
has enough information to reach sound decisions. But, this approach is insufficient for small cache sizes.
In comparison, AV utilizes the TinyLFU data structure that collects metadata on a large sample of past
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(a) MSR1 (b) MSR2 (c) MSR3

(d) SYSTOR1 (e) SYSTOR2 (f) SYSTOR3

(g) CDN1 (h) CDN2 (i) CDN3

(j) TENCENT1

Figure 8: The cumulative distribution for objects sizes in each trace. The dotted blue lines indicate the
actual span of objects sizes in the trace. Notice that in MSR1 and MSR2, most elements belong to a small
number of tight object size ranges. In MSR3, TENCENT and the three SYSTOR traces, object sizes are
spread further apart. Finally, in CDN traces objects sizes span the entire range.

accesses, which explains why AV outperforms LHD for small caches. We note that LRB is never the best
policy despite its use of machine learning. This may not be surprising, as it is trained to maximize the byte
hit ratio metric.

Next, observe that AdaptSize under-performs with large caches. Specifically, observe the MSR traces,
the SYSTOR traces, and the CDN traces and notice that the hit ratio of AdaptSize does not improve when
moving from 100GB to 10TB (an x100 increase). We believe that this is intrinsic to Adaptsize’s design.
Specifically, AdaptSize admits a new item to the cache with a probability that is inversely proportional to
the item’s size. AdaptSize is, therefore, unlikely to admit a very large item even if the cache has enough
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Table 1: Summary of Traces

Name Accesses Objects Total
millions millions Objects Size

MSR1 [35] 29 18 738 GB
MSR2 [35] 37 6 161 GB
MSR3 [35] 2.2 0.27 5.3 GB
SYSTOR1 [30] 77 52 1.5 TB
SYSTOR2 [30] 79 48 1.4 TB
SYSTOR3 [30] 78 53 1.5 TB
CDN1 [9] 500 18 2.3 TB
CDN2 [41] 2,800 37 5.5 TB
CDN3 [41] 2,655 50 8.3 TB
TENCENT1 [47] 339 137 9.8 TB

Total number of accesses, unique objects and total size of unique objects for each trace.

space to accommodate this item without evictions. In that sense, AdaptSize is too selective and fails to
utilize large caches.

We argue that AdaptSize can be improved for large caches if it bases the admission probability on the
victim set’s size rather than on the cache candidate’s size. Such a change would bring it closer to our
approaches in terms of design philosophy. That is, in AV the admission bar depends on the total frequency
of the victim set. Similarly to AdaptSize, large items are less likely to enter the cache as they cause more
evictions than small items do. Unlike AdaptSize, AV always admits an item if there is enough free space
without evictions. Consequently, we can see that AV remains competitive across the entire range for all the
traces.

The QV algorithm is not competitive in this metric since it evicts low-frequency items even when it fails
to perform an admission. Thus, it has lower space utilization compared to AV. Finally, observe that GDSF
remains competitive with present-day algorithms even after all these years. The main drawback of GDSF
remains its logarithmic time complexity.

Figure 12 shows the results for the byte hit-ratio metric (important for bandwidth conservation). Notice
that here, LRB is a very attractive suggestion, and is often one of the leading algorithms. AV is reasonable in
the byte-hit-ratio metric as well but the QV algorithm excels in this metric. It never lags by much after the
best alternative, and in some cases is strictly better. QV’s excellence in this metric is because QV actively
evicts infrequent items even if the candidate is not admitted to the cache. Thus, it is more likely to pick up
large and frequent items to increase the byte hit ratio.

5.3 Summary

As shown in our empirical study, AV is competitive with the best alternative (which is not always the same
algorithm) in most workloads, especially for small to midsize caches. It is slightly better than the best
alternatives in the byte hit-ratio metric.

We can further conclude that QV is inferior in the hit-ratio metric but almost always superior in terms
byte hit-ratio. It is tough to excel in both hit ratio and byte hit ratio as there is some tension between them.
For example, hit ratio wise it is better to cache an item of size 0.5MB that is accessed six times, but for byte
hit ratio, it may be better to cache an object of size 1MB that is accessed only five times.
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(a) MSR2 (b) SYSTOR2 (c) CDN1 (d) TENCENT1

(e) MSR2 (f) SYSTOR2 (g) CDN1 (h) TENCENT1

(i) MSR2 (j) SYSTOR2 (k) CDN1 (l) TENCENT1

Figure 9: Evaluation of hit-ratio for W-TinyLFU versions. For brevity, we present here only MSR2, SYS-
TOR2, TENCENT1, and CDN1 traces. Results for the rest of the traces are similar.

5.4 Computational Performance

Finally, we complete the picture by measuring each policy’s algorithmic computation time when varying
the cache size. Figure 13 and Table 2 illustrates these results. First, observe that AV (SLRU) is the most
lightweight size-aware policy by a large margin and that its calculation time is comparable to the LRU policy.

One of the critiques about GDSF is that its logarithmic complexity in the number of cached objects
makes it impractical for large caches. However, our evaluation shows that it is often considerably faster than
both LHD and AdaptSize. We did notice the impact of the logarithmic complexity of GDSF, as its running
time increased with the cache size, despite the higher hit-ratios obtained by large caches. This trend is
evident in all traces, but is most acute for the CDN traces, which can be explained by their wide distribution
of object sizes, as illustrated in Figure 8. Wider distributions of objects push the actual average running
times closer to the logarithmic upper bound for GDSF’s priority queue maintenance. This is because when
the size difference is very large, the distribution of objects’ priorities is larger, so objects are moved further
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(a) MSR2 (b) SYSTOR2 (c) CDN1 (d) TENCENT1

(e) MSR2 (f) SYSTOR2 (g) CDN1 (h) TENCENT1

(i) MSR2 (j) SYSTOR2 (k) CDN1 (l) TENCENT1

Figure 10: Evaluation of byte hit-ratio for W-TinyLFU versions. For brevity, we present here only MSR2,
SYSTOR2, TENCENT1, and CDN1 traces. Results for the rest of the traces are similar.

inside the priority queue, which involves more internal operations.
Among the other algorithms, AdaptSize is the slowest one. Still, even LHD is at least x3 times slower

than AV, especially where the hit-ratio is not very high, and many evictions are needed. Thus, we conclude
that since neither of these algorithms yields a distinctive benefit in terms of hit-ratios, AV offers the most
attractive trade-off as it is very simple to implement, as shown in Algorithms 1 and 4, and is considerably
faster than the alternatives.

The run-time results for LRB (Table 2) are roughly an order of magnitude longer than the worst policy
among the other schemes we tested (Figure 13). Yet, we notice that the performance improves when the
cache size increases. In fact, LRB’s run-time is not directly dependent on the cache size. Rather, LRB
works much harder on each miss than on a hit, as whenever there is a miss, it has to sample 64 items and
invoke the machine learning based mechanism on them. Now, as the cache size increases, the hit ratio also
improves, and therefore LRB does significantly less work. This is somewhat similar to LHD’s behavior, but
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(a) MSR1 (b) MSR2 (c) MSR3

(d) SYSTOR1 (e) SYSTOR2 (f) SYSTOR3

(g) CDN1 (h) CDN2 (i) CDN3

(j) TENCENT1

Figure 11: Evaluation of hit-ratio for state-of-the-art policies (given the traces’ characteristics in Table 1, a
1TB cache is practically an unbounded cache for the MSR traces and an almost unbounded for the SYSTOR
traces; a 10TB cache is effectively an unbounded cache for all the traces).

on a grander scale.

6 Discussion

Modern databases and data-stores need to cope with objects of significant size variability. Therefore, tra-
ditional size oblivious cache management policies are often inadequate. In this paper, we have studied size
aware cache management policies for workloads in which objects’ sizes vary. In particular, we focused on
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(a) MSR1 (b) MSR2 (c) MSR3

(d) SYSTOR1 (e) SYSTOR2 (f) SYSTOR3

(g) CDN1 (h) CDN2 (i) CDN3

(j) TENCENT1

Figure 12: Evaluation of byte hit-ratio for state-of-the-art policies (given the traces’ characteristics in Table 1,
a 1TB cache is practically an unbounded cache for the MSR traces and an almost unbounded for the SYSTOR
traces; a 10TB cache is effectively an unbounded cache for all the traces).

three approaches to extending the size oblivious W-TinyLFU policy into this more challenging setting. The
first two, IV and QV, have been realized in two widely used open-source caching libraries [32, 18], but
were never studied before, and the third is our new approach (AV). We also compared them against the
state-of-the-art approaches GDSF [13], AdaptSize [10], LHD [6] and LRB [41]. We showed that in terms of
hit-ratio and byte hit-ratio, none of these policies always wins. Yet, AV is always competitive with the state-
of-the-art and is considerably faster than previous approaches. On the other hand, QV is less competitive
on the hit-ratio metric but offers very attractive byte hit-ratio. In terms of CPU overhead, QV and AV are
consistently the fastest.
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(a) MSR1

(b) SYSTOR1

(c) CDN1

Figure 13: Overhead run-time of each policy for different traces and cache sizes. We ran GDSF and AV
with our own Java implementation, while LHD and AdaptSize with their authors C++ implementation. To
minimize the effect of using different frameworks and present the policy overhead only, we subtract the mean
run-time of LRU in the matching implementation from the total run-time.
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Trace Cache Size Overhead Time
seconds

MSR1

100 MB 1,744
1 GB 2,206
10 GB 2,133
100 GB 1,999

SYSTOR1

100 MB 9,666
1 GB 8,257
10 GB 7,410
100 GB 6,380

CDN1

100 MB 26,744
1 GB 25,725
10 GB 16,712
100 GB 14,769

Table 2: Overhead run-time of LRB with the authors’ C++ implementation. To minimize the effect of using
different frameworks and present the policy overhead only, we subtract the mean run-time of LRU in the
matching implementation from the total run-time.

Being fast is vital since caching is a performance optimization, so quicker policies are applicable in more
systems and have a smaller CPU footprint. Thus, we believe that AV is a strong candidate as its hit-ratios
are competitive, and it is considerably faster than the existing alternatives.

However, in scenarios where byte hit-ratio is more beneficial than hit-ratio (e.g., to minimize network
bandwidth consumption), QV is likely the best alternative. Further, AV and QV are also very straightforward
to implement. That is, their code is short, easy to explain, and requires no sophisticated math nor heavy
machine learning mechanisms.

Our performance evaluation study has also revealed the following inherent drawback of AdaptSize [10],
as a representative of policies that admit objects with a probability that is inversely proportional to the
object’s size [1, 42, 36]. AdaptSize practically avoids inserting very large objects into the cache, even when it
is far from full. Consequently, it fails to utilize significant portions of large caches, which hurts AdaptSize’s
hit ratios, and even more significantly, its byte hit ratios when operating with very large caches.

Let us note that slabbing is orthogonal to the management policy. Yet, intuitively, the more effective
the management policy is inside a slab, the fewer slabs one needs, and therefore one can expect to obtain a
better overall hit ratio. Rigorously studying the tradeoffs of combining our policies with slabbing is left for
future work.

Code availability The full code of the algorithms suggested in this paper is available at https://github.
com/ohadeytan/caffeine/tree/arXiv_submission. The traces are available online and are pointed to from
our code repository.
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