
A Structured (Java) Exercise Repository with Automated
Feedback (SERF)

Lex Bijlsma
Open Universiteit

Faculty of Science, Department of
Computer Science

6401 DL Heerlen, The Netherlands

Cornelis Huizing
Eindhoven University of Technology

Faculty of Mathematics and
Computer Science

5600 MB Eindhoven, The Netherlands

Arjan Kok
Open Universiteit

Faculty of Science, Department of
Computer Science

6401 DL Heerlen, The Netherlands

Ruurd Kuiper
Eindhoven University of Technology

Faculty of Mathematics and
Computer Science

5600 MB Eindhoven, The Netherlands

Harrie Passier
Open Universiteit

Faculty of Science, Department of
Computer Science

6401 DL Heerlen, The Netherlands

Erik Scheffers
Eindhoven University of Technology

Faculty of Mathematics and
Computer Science

5600 MB Eindhoven, The Netherlands

Stefano Schivo
Open Universiteit

Faculty of Science, Department of
Computer Science

6401 DL Heerlen, The Netherlands

Tanja Vos
Open Universiteit

Faculty of Science, Department of
Computer Science

6401 DL Heerlen, The Netherlands

ACM Reference Format:

Lex Bijlsma, Cornelis Huizing, Arjan Kok, Ruurd Kuiper, Harrie Passier,
Erik Scheffers, Stefano Schivo, and Tanja Vos. 2021. A Structured (Java)
Exercise Repository with Automated Feedback (SERF). In The 10th Computer
Science Education Research Conference (CSERC ’21), November 22–23, 2021,
Virtual Event, Netherlands. ACM, New York, NY, USA, 2 pages. https://doi.
org/10.1145/3507923.3507942

1 THE SERF REPOSITORY

SERF provides Java exercises to support training of (Java) OO pro-
gramming skills. To make the repository teaching-approach inde-
pendent (e.g., objects-first or objects-late), there is no approach-
linked ordering or grouping of the exercises: SERF has a search
function that enables to select individual exercises by training desire.
Furthermore, to provide training in a manner that needs relatively
little teacher support, e.g., in an on-line setting, solutions can be
submitted to SERF, after which automated feedback is provided. A
short description of the ideas is given below, more details can be
found in the technical report [1].

This work is licensed under a Creative Commons Attribution International
4.0 License.

CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8576-3/21/11.
https://doi.org/10.1145/3507923.3507942

1.1 Tags

SERF has a repository, a database, of programming exercises. To
make such a repository teaching approach independent, it should be
possible to select an exercise on the basis of the current knowledge
of a student rather than depending on to which stage in a specific
course the student has progressed. More precisely, a student should
be able to select the exercises that fit a training desire of that student.

Therefore, the training contribution of each exercise is made explicit.
A tag is a word that characterises a (programming) knowledge item.
The set of tags Tag for Java is the, carefully selected, set of words
that identify programming knowledge items that pertain to Java:
syntactic as well as semantic or conceptual knowledge items are
used. The basic idea is, to use the tags to identify exercises that
provide training in the corresponding knowledge item. So tags are
added to exercises. To exploit this idea in a manner that enables
efficient selection of appropriate exercises is a main contribution
of SERF.

1.2 Knowledge graph and search function

Simply tagging each exercise with the training provided is imprac-
tical for two reasons. Firstly, an exercise may train very many
different knowledge items, secondly it may require more prior
knowledge than is feasible to indicate by tags directly. Both prob-
lems are solved by ordering the set Tag with an strong, needs and
a weaker, uses prior knowledge relation between the knowledge
items. This results in the first idea: a knowledge graph that records

68

https://doi.org/10.1145/3507923.3507942
https://doi.org/10.1145/3507923.3507942
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3507923.3507942
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3507923.3507942&domain=pdf&date_stamp=2022-04-13


CSERC ’21, November 22–23, 2021, Virtual Event, Netherlands Lex Bijlsma, Cornelis Huizing, Arjan Kok, Ruurd Kuiper, Harrie Passier, Erik Scheffers, Stefano Schivo, and 1

the dependencies between knowledge items. The construction of
the graph is crucial: general discussion as well as specific decisions
for the Java domain can be found in [1].

The same notion of prior knowledge is used for the tagging of
exercises. Selecting, using the graph, only top-tags in the orderings
for tagging exercises keeps the tagging manageable.

The second idea is the implementation in the SERF tool of a search
function that is developed and implemented as part of a tool that
enables to find exercises that match a training desire. The searcher
indicates, with tags as parameters, which knowledge is desired
to be trained, and, with negative tags, which knowledge is to be
avoided as yet-beyond the searchers capabilities. The search func-
tion, making use of the relations between tags as provided by the
knowledge graph, then returns a set of exercises, with information
about the required prerequisite knowledge for each exercise. The
searcher can then, based on this information, refine the search and
thus, iteratively, find a set of exercises that fits the training desire.

Note, that now putting an exercise in the repository requires tagging
it! The submitter of the exercise has to provide the tags. Again the
knowledge graph is used to guide and support the submitter to
choose appropriate tags, e.g., only using the aforementioned top-
tags for tagging the exercise,

1.3 Student submission and assessment

The SERF tool enables that solutions of exercises, i.e., programs,
can be submitted. JUnit tests are performed by the tool on the
solution, generating feedback. The tool provides the results in a
suitable feedback format. Resubmission is possible, thus enabling
to iteratively improve the solution.

Note, that now putting an exercise in the repository requires pro-
viding tests/feedback for it! There is a loosely defined standard
format for exercises: exercise description and example i/o. To en-
able automated feedback on solutions, the precise input and output
format for each exercise is explicitly given. There is a protocol for
adding exercises to the repository with a review component that
ensures the quality of exercises.

1.4 Steps in finding an exercise

To give an idea of the use of SERF, we indicate the steps in finding
an exercise.

Primary actor: either teacher or student.

Step 1 Choose one ormore tags that indicate the subject for which
the exercise is to provide a practice opportunity.

Step 2 Indicate tags for related subjects that have not been mas-
tered and hence should not be required for the exercise. For
instance, a query might have search tag repetition and negative
tag array. This step is optional, but it will reduce the work in
the next steps.

Step 3 The system retrieves a set of exercise titles whose tag set
contains at least one of the search tags of Step 1.

Step 4 The system removes exercises from the set where the needs
tag set contains any negative tags listed in Step 2.

Step 5 The system displays a list of exercises together with their
prior knowledge needs and uses tags.

Step 6 Repeat from Step 2, using a larger set of blocked knowledge
items, until exercises are found that have no unwanted prior
knowledge.

2 EVALUATION OF THE TOOL

The tool has been used at several institutions: OU, TU/e and NHL
Stenden.

The results have been evaluated, a technical report is in prepa-
ration. The evaluation consists of quantitative analysis of logged
information like submission behavior of the students for partic-
ular exercises, and on qualitative information obtained through
interviews.

Some observations are the following. The search function was
used, but, likely due to the small number of exercises currently in
the database, also just browsing through these exercises occurred.
Feedback, as intended, triggered resubmission. Compared to other
on-line exercise databases, students positively valued the presence
of more complex, advanced exercises than provided there - the
tagging appears to be able to accommodate also these exercises.

3 DISCUSSION

The SERF tool enables to select Java exercises by training aim and
provides feedback on solutions.

The two main ideas for selection are to use a prior knowledge
graph to manage the complexity of knowledge item tags and to
use a search function that, based on the knowledge graph, selects
exercises that provide the desired training.

The main idea for feedback is that exercise-specific tests are au-
tomatically applied to submitted solutions and that information
about the test results is then provided to the submitter.

These ideas can be used for any domain for which training of
knowledge through exercises applies. The approach is beneficial
in situations where several orderings of exercises depending on,
e.g., teaching approach or interests, occur, and where there are
extensive dependencies between knowledge items. To obtain the
graph requires effort. If the domain is close to Java, say Python,
much can be re-used from our graph. If the domain is quite different,
still many of our techniques to obtain the graph can be re-used.
The search function can be re-used if the relations in the graph are
as in our graph: needs and uses; if different, adaptations should be
made accordingly. Feedback on solutions is likely to be application
domain dependent.

REFERENCES
[1] Lex Bijlsma, Cornelis Huizing, Arjan Kok, Ruurd Kuiper, Harrie Passier, Erik

Scheffers, Stefano Schivo, and Tanja Vos. 2021. Construction of a knowledge graph
for exercise selection. Technical Report. Open Universiteit.

69


	1 The SERF repository
	1.1 Tags
	1.2 Knowledge graph and search function
	1.3 Student submission and assessment
	1.4 Steps in finding an exercise

	2 Evaluation of the tool
	3 Discussion
	References

