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ABSTRACT
Compressive Sensing method has been used in several applica-

tions specially for Image processing and wireless sensor network

applications where Binary Compressive Sensing(BCS) is widely

used. However, BCS reconstruction process is considered one of the

most challenge in the most of applications. Therefore, this paper

aims to address the mentioned problem by proposing Compressive

Sparse Binary Signals Reconstruction Algorithm Using Simulated

Annealing (CSBCSA). CSBCSA uses the advantage of Simulated

Annealing algorithm in terms of finding the optimal solutions using

lightweight computation and the advantage of the easy and fast im-

plementation for the greedy algorithm to solve the reconstruction

problem. This integration makes CSBCSA outperform the baseline

reconstruction algorithm as shown in the simulation results section.

CCS CONCEPTS
• Internet of Things→WSNs; Data Reduction; Routing; • Com-
pressive Sensing→ Reconstruction.
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1 INTRODUCTION
In the last decade, Compressive sensing (CS) method [1–7]proved

itself as a novel and efficient data reduction methods for many

applications such as Internet of Things(IoT), Wireless Sensor Net-

works (WSNs) and Biological applications. CS method has efficient

contribution specially in solving IoT network data transmission

[19, 20] power consumption process. That’s because, based on CS

theory the Base Station(BS) needsM ≥ K logN /K , measurements

from the entire network which is consists of N nodes ,whereM is

compressed sampled size, K sparsity level andM << N , instead of

collecting N to recover he original data x ∈ RN from only y ∈ RM

such that the CS framework cab be expressed as follows: thaty = Φx
where Φ is the CS matrix. However, the CS reconstruction process

is considered as NP-hard problem [8] because in the reconstruction

process the BS tries to reconstruct the original data vector N from

onlyM samples such thatM << N where the number of unknown

N is bigger than the input M . The CS recovery process can be

shown as following:

minx ∥ x ∥0 s .t .y = Φx (1)

Eq.1, targets to reconstruct the non zeros value of the signal x (K

sparsity level) such that Φ and t y (measurements vector) are given.

There are many reconstruction algorithms have been proposed to

solve this problem such as convex relaxation and greedy algorithm.

during the convex relation reconstruction process , the problem in

1 is solved by replacing L0 to L1 [9] as following:

minx ∥ x ∥1 s .t .y = Φx (2)

and then the magic toolbox [10] can be used to solve the problem

in Eq.2. Convex reconstruction based algorithms can provide sta-

bile reconstruction process where the full signal can be recovered

correctly. However, all of them have complex computations process

which consume more communication process leads to consume the

IoT network energy. That’s why convex relation algorithms are not

suitable for IoT network. On the other hand, Greedy algorithms

present them self as sufficient reconstruction algorithm. During the

greedy algorithm reconstruction process, one or more CS matrix

Φ’s columns are iteratively choose based on their correlation to

the current residual. There are different greedy algorithms can be

used such as OMP [11] algorithm, in which one column is selected
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from Φ and then OMP algorithm remove its orthogonality from the

current residual and then repeats till obtain the estimated signal x ′.
Based on OMP algorithm a lot of algorithms have been proposed

such as ROMP [12] and StOMP [13]. in addition to, CoSaMP [14],

SP [15], IHT [16] and FBP [17]algorithms, which uses backward

steps to prune the wrong elements that have been added during

the forward step. All of these algorithms are sufficient but cannot

obtain the optimal solution.

Simulated annealing (SA) [8] is an efficient heuristic algorithm to

find the optimal solution for many problems such as optimization

problems [8]. Thus, in this paper we aim to utilize the advantage of

greedy algorithm in term of simple implementation to integrate it

with SA algorithm. To achieve this aim, this paper propose a Com-

pressive Sparse Binary Signals Reconstruction Algorithm Using

Simulated Annealing (CSBCSA) which combine between greedy

algorithm and SA algorithm. During this paper, we are interested

on reconstruct binary data x ∈ [0, 1]. Our contributions can be

summarized as follows:

• Convert the CS reconstruction problem into optimization

problem

• Utilizes the advantage of SA algorithm in term of finding the

optimal solution to solve this optimization problem.

• Proposes an efficient fitness function that aims to improve

the performance of the proposed algorithm

• The simulation results explains that the reconstruction per-

formance of the proposed algorithm outperforms existing

baseline algorithms.

The rest of the paper is organized as follows: Section 1 presents Sim-

ulated Annealing algorithm background . In Section 2, the proposed

reconstruction algorithm is described. In Section 3, we present the

performance results of our approach and the comparison with ex-

isting algorithms. In Section 4, conclusion is presented.

section SA Algorithm Background

Metals annealing process is stimulated by iterative random search

algorithm which is called Simulated annealing (SA) [18]. The aim

of SA is to find a new solution by searching into current solution’s

neighbors. Due to the comparison of the new solution with the

current one in each iteration, SA can avoid being stuck in local opti-

mum. In case new solution is better (based on its fitness value), it is

selected and saved by SA as the base for its next iteration. Moreover,

in contrast to all other algorithms, SA has an ability to move to this

solution (depending on acceptance probability) without ignoring it.

In Algorithm SA algorithm’s main procedure is summarized 1.

2 THE PROPOSED CSBCSA ALGORITHM
In this section, the proposed reconstruction algorithm which called

Compressive Sparse Binary Signals Reconstruction Algorithm Us-

ing Simulated Annealing (CSBCSA) is going to be explained. CS-

BCSA consists of three phases: initialization phase, selection phase

and stop criteria phase. CSBCSA initializes as any greedy algo-

rithms by selecting the largest K amplitude components from the

Matched Filter Detection process Φty i.e H = maxK (Φy
t ). In ad-

dition to, CSBCSA initializes the SA algorithm parameters such

as Tmin and T . Then, CSBCSA starts the selection phase in which:

firstly, CSBCSA randomly selects indices of q columns from the

Algorithm 1 SA Algorithm

1: initialize Temperature T and minimum temperature Tmin
2: Maximum number of iterations imax
3: SA generates a random solution sol
4: Calculate the fitness value for the sol by using the predefined

fitness function cost(sol)
5: oldcost= cost(sol)

6: while (T > Tmin ) do
7: i=1
8: while (i < imax ) do
9: newsol = neighbor(sol)

10: newcost = cost(newsol )

11: ap = acceptanceprobabil ity (oldcost , newcost , T )
12: if (ap < random()) then
13: sol = newsol
14: oldcost = newcost
15: end if
16: i = i + 1
17: end while
18: Update T
19: end while
20: Return sol, cost

matrix Φ such that q = M/2 −K . Secondly, CSBCSA creates the set

C which equal to the union of set H and q.

Then CSBCSA solves the least square problems Φ†

Cy and selects

the largest K amplitude components from I =maxK (Φ
†

Cy), where I
is called support set, as a solution to this iteration, where ΦC are the

columns of Φ with indies equal to C and † means pseudo inverse.

These solution I is then evaluated by using the fitness function F (I ).
Finally, CSBCSA checks the the stopping criteria to decides either

to stop if the number of iteration exceeds the maximum number

of iteration Omax or F (I ) = 0, or Update the temperature T and

increase the number of iterations to repeat the selection phase.

2.1 Fitness Function
in this section, we propose the following fitness function to be used

during the selection phase:

Lemma 2.1. Assume that we have the original signal x is binary
vector such that x ∈ [0, 1] and y is the compressed samples of x
such that y = Φx then the estimated solution x ′ with support set
I = {I1, I2, ....IK } is the correct solution i.e x ′ = x if and only if F (I ) =
y − (

∑i=K
i=1 ΦIi ) = 0. proof: according to CS theory, the compressed

samples y is generated from the multiplication result of the non zeros
values of x with the corresponding columns from the matrix Φ. Let
I = I1, I2, ....IK is the indices of non-zero values of x then the CS can
be expressed as:

y = ΦIxI ,where ΦI =
(
ΦI1 ΦI2 . . ΦIK

)
and xI =

©­­­­­«
xI1
xI2
.

.

xIK

ª®®®®®¬
(3)
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Eq.3 can be written as:

y = ΦI1xI1 + ΦI2xI2 + ..... + ΦIK xIK (4)

Since x is a binary vector, so all the non-zero values equal to 1.
Then Eq.4 can be expressed as:

y = ΦI1 + ΦI2 + .... + ΦIK =
K∑
i=1

ΦIi (5)

from Eq.5, it is clear that if the support set I is correct then y −

(
∑i=K
i=1 ΦIi ) = 0 ■.

So, our algorithm aims to find the estimated signal x ′ with the

support set I that achieves F (I ) = 0. To clarify Lemma2.1 we provide

the following example:

Let x =
©­­­«

1

0

1

0

ª®®®¬ and Φ =
©­«

0.1818 0.1361 0.5499 0.6221

0.2638 0.8693 0.1450 0.3510

0.1455 0.5797 0.8530 0.5132

ª®¬.
From vector x we can say that the non-zero values of x are located

at indices I = {1, 3}. Then the compressed samples vector y can be

computed as following:

y = ΦIx(I ) =
©­«

0.1818

0.2638

0.1455

ª®¬
(
1

)
+
©­«

0.5499

0.1450

0.8530

ª®¬
(
1

)
=
©­«

0.7317

0.4088

0.9986

ª®¬
Assume that the support set I is equal to I = {1, 4}, then

∑K
i=1 ΦIi =©­«

0.1818

0.2638

0.1455

ª®¬+ ©­«
0.6221

0.3510

0.5132

ª®¬ = ©­«
0.8039

0.6148

0.6588

ª®¬ According to the proposed
fitness function F (I ) , 0, then I isn’t the correct solution.

2.2 CSBCSA Description
This section provides the detailed descriptions of the proposed

algorithm. During the initialization phase, CSBCSA initializes all

SA parameters such as Tmin and T . In addition to, CSBCSA uses

Matched Filter Detection process Φyt and selects the largest K
amplitude components from it to initialize the support set H and

then calculates the fitness value to H i.e. F (H ) using the proposed

lemma. The selection Phase is considered the main search steps,

in which the CSBCSA starts by selects random q columns from

the matrix Φ ,where q = M/2 − K depends on the fact that the

CS reconstruction problem can be resolved if the sparsity level

K ≤ M/2 [15].

Then CSBCSA creates the setC = q ∪H to solve the least square

problem Φ†

Cy and creates the support set I which contains the

largest K amplitude components in Φ†

Cy. This support set is then
evaluated by using the proposed fitness function Lemma2.1. CS-

BCSA algorithm checks the value of F (I ), If F (I ) < F (H ) then set

H = I and F (H ) = F (I ). The inner loop is repeated till the maxi-

mum inner iterations Inmax is reached. Finally, CSBCSA algorithm

checks the the stoping criterion i.e. the number of outer loop iter-

ations exceed the maximum numbers Outmax or F (I ) = 0. If the

stoping criterion is met then the estimated signal will calculated

as x ′I = ΦIy and x ′N−I = 0. Otherwise, CSBCSA updates the T
value and repeats the selection phase. CSBCSA is summarized in

Algorithm 2.

Algorithm 2 CSBCSA Algorithm

1: Input: The compressed sample= y, selection size= q and CS

matrix Φ
2: Initialization Phase
3: Maximum number of inner iterations Inmax and Maximum

number of outer iterations Outmax
4: initialize Temperature T , minimum temperature Tmin , outer

loop counter Oi = 1 and inner loop counter Ei = 1

5: H={the largest K amplitude components in Φty}
6: Calculates the fitness value of H i.e F (H )using Lemma .2.1

7: while Stopping criterion is not met | | Oi < Outmax do
8: Selection Phase:
9: while Ei ≤ Inmax do
10: Choose randomly q columns from Φ
11: C = H ∪ q

12: I = {the largest K amplitude components in Φ†

Cy }

13: Calculates F (I ) using Lemma 2.1

14: if F (H ) > F (I ) then
15: H=I and F (H ) = F (I )
16: end if
17: Ei = Ei + 1
18: end while
19: Stopping Criteria Phase
20: if Oi ≥ Outmax | |F (I ) == 0 then
21: Stop, and Return x ′I = ΦIy and x ′N−I = 0

22: end if
23: Updates T and Oi = Oi + 1

24: end while
25: Output: x ′

3 SIMULATION RESULTS
In this section, MATLAB environment is used for performing all

simulations and we use Gaussian and Bernoulli matrices Φwith size

M ×N , where N = 256 andM = 128 as Φ CS matrix. CSBCSA algo-

rithm is applied to reconstruct computer-generated sparse binary

signals. We evaluate the performance of LSARA reconstruction

algorithm in comparison to OMP[11], COSAMP [14] and SP [15] in

term of Average Normalized Mean Squared Error (ANMSE) which

can be defined as average ∥L + ∥2 difference between the original

reading and the reconstructed one, divided by ∥x ∥2 which can be

expressed as:
∥x−x ′ ∥2

x where x is the original signal and x ′ is the
estimated one, and the average runtime.

In Fig. 1 where the Gaussian matrix is used to compress the

sparse binary signal, CSBCSA algorithm clearly provides lower

ANMSE comparing to COSAMP, OMP and SP. In addition, ANMSE

for RSMP algorithm is started to increase only when K > 58 while

it increases when K > 45, K ≥ 41 and K ≥ 48 for COSAMP, OMP

and SP algorithms respectively as shown in Fig 1.

Fig.2 shows ANMSE results where the Bernoulli matrix is used

to compress the sparse binary signal. In Fig.2, CSBCSA algorithm

still provides lowest ANMSE result comparing to COSAMP, OMP

and SP, as K > 56,K ≥ 45, K > 38 and K > 49, respectively.

In Fig.3, we aims to test CSBCSA reconstruction performance

when different measurement vector lengths-M are used with Gauss-

ian CS matrices distribution matrix. To achieve this aim, the length

487



ICFNDS 2021, December 15–16, 2021, Dubai, United Arab Emirates Ahmed Aziz and K.Sharipov, et al.

Figure 1: ANMSE vs Sparsity Level for sparse binary signals using Gaussian matrix.

Figure 2: ANMSE vs Sparsity Level for sparse binary signals using Bernoulli matrix.

of the sparse binary signals drawn from uniform distribution is

N = 120 is used and M values ranges from 10 to 60 with step

size 1. From those figures, we observe that CSBCSA algorithm still

provides the lowest ANMSE values comparing to the others.

From Fig.4,it is clear that CSBCSA average run time is higher

than the greedy algorithm but still slightly fast.

4 CONCLUSION
In this paper, we proposed CSBCSA algorithm to reconstruct sparse

binary signals. CSBCSA integrates between the advantages of the

greedy algorithms in easy and fast implementation with the advan-

tage of SA algorithm in finding the optimal solution to improve

the reconstruction performance. In addition to, we proposed an

efficient fitness function which helped the proposed algorithm to re-

construct the binary signals in perfects way. The simulation results
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Figure 3: Reconstruction results over Gaussian matrix with different length of M.

Figure 4: Average run times as a function of sparsity level.

show that CSBCSA outperformed the reconstruction performance

of the baselines algorithms with acceptable run time.
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