
Using Dynamic Shifters for Linear Address Bitmask Generator
via Chisel3
Linyuan Huang

University Of Miami, USA

ABSTRACT
Chisel is a hardware construction language that supports advanced
hardware design using highly parameterized generators and layered
domain-specific hardware languages. Chisel can generate a high-
speed C++ based cycle-accurate software simulator, or low-level
Verilog designed to a standard ASIC flow for synthesis [1]. In this
project, we choose Chisel to design dynamic shifters for linear
address generator bitmask generation. When accessing a banked
memory, bitmask should be generated to select different bytes in
one memory row across different banks. We design a linear address
bitmask hardware generator by Chisel to produce programmable
linear address bitmask hardware. Our experiments are based on
dynamic shifters with comparison of multiplexer-based design.
Based on logic synthesis results, we have achieved lower power
consumption and lower area in different configurations with little
frequency loss. This paper shows an alternative design for linear
address bitmask generators that demonstrate possible tradeoff for
PPA (performance, power and area).

CCS CONCEPTS
• Hardware→ Integrated circuits; Logic circuits; Asynchronous
circuits.

KEYWORDS
Chisel, Dynamic Shifters, Linear Address, Bit mask, Memory, Byte

ACM Reference Format:
Linyuan Huang. 2021. Using Dynamic Shifters for Linear Address Bitmask
Generator via Chisel3. In 2021 4th International Conference on Electronics
and Electrical Engineering Technology (EEET 2021), December 03–05, 2021,
Nanjing, China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3508297.3508326

1 INTRODUCTION
Scala is a general-purpose functional programming language that
provides both object-oriented programming paradigm and func-
tional programming interface. Chisel (Constructing Hardware In
a Scala Embedded Language), developed by University of Califor-
nia, Berkeley, is an open-source hardware description language
(HDL) that can be used to describe digital and analog circuits at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EEET 2021, December 03–05, 2021, Nanjing, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8516-9/21/12. . . $15.00
https://doi.org/10.1145/3508297.3508326

gates/register-transfer level. As Chisel’s name implies, it is devel-
oped based on Scala programming language, which means Chisel
is essentially a package with s set of Scala libraries that define new
hardware datatypes and a set of routines to convert a hardware
data structure into a fast C++ simulator or low-level Verilog (or
other RTL) for emulation or synthesis. Reason of choosing Scala
are explained by Chisel developer: 1) Scala is a powerful functional
programming language for building circuit generators; 2) Scala is
developed as a base for domain-specific language (DSL); 3)Scala
compiles to the Java Virtual Machine (JVM); 4) Scala has a large
set of development support tools like IDE [2]; 5) Scala is good at
trait mixin and has many features that are helpful for hardware
construction. The reason for us to choose Chisel for this paper is:
1) Chisel allows users to create reusable objects and functions; 2)
Chisel allows users to create and define their own data types; 3)
Chisel allows users to better capture particular design pattern by
writing their own data domain-specific languages on top of Chisel.
Compared with a hardware implementation with Chisel and tradi-
tional Verilog implementation, the main advantage of using Chisel
is that Chisel supports highly parameterized circuit generators.
Based on the experiments that were done by Chisel’s developers,
a simple 3-stage 32-bit RISC processor [3], Chisel produced Ver-
ilog code that has 3x reduction lines of code than the conventional
hand-written Verilog code. They also did some experiments to show
Chisel generated Verilog code has similar area and approximately
8x speedup than hand-coded Verilog. Most modernmemory designs
have banks within each memory line. Accessing banked memory
requires bitmasks to select from different bytes of one memory line
across different banks. Thus, it is important to design small and
power efficient bitmask generation hardware. We used Chisel to
form a configurable generator for building a linear address bitmask
generation hardware, which could be included into a configurable
memory generator. Linear address bitmask generation is to gen-
erate a bitmask for accessing patterns of one line of memory. The
number of bits in bitmask equals the memory width; each 1 in
bitmask corresponds to each byte that needs to be accessed within
the memory line, while each 0 in bitmask corresponds to bytes
that are not accessed. For bitmask generation, the inputs are the
line offset into each memory line, the length of the unit that needs
to be accessed, the exponent of bytes that each unit is, and the
direction of each access. There exist three possible directions for
access: 1) ascending access (direction = 1) is accessing the byte and
bytes after the first element. 2) descending access (direction = -1)
is accessing the byte and bytes before the first element. 3) constant
access (direction = 0) is accessing the first element only.

2 RELATEDWORK
For a linear address bitmask hardware generator can be used for
generating a sequence of addresses for the purpose of speeding up
the memory access. In the paper, we mainly design a linear address

177

https://doi.org/10.1145/3508297.3508326
https://doi.org/10.1145/3508297.3508326
https://doi.org/10.1145/3508297.3508326
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508297.3508326&domain=pdf&date_stamp=2022-04-21

EEET 2021, December 03–05, 2021, Nanjing, China Linyuan Huang

Figure 1: A 4-way banked memory with bank width of 4 bytes

Figure 2: Baseline Algorithm for Local Mask Generation

generator for a bank-scratchpad memory like [4]. The scratchpad
memory is divided into multiple lines, and each line of memory is
separated by different banks. In this way, each access to memory
can be separated by access to different banks, thus reducing the
access time to memory and bus contention. The number of bytes in
each line is called memory width, and the number of bytes in each
line of each bank is called bank width. For example, suppose we
have a 4-way banked memory that is byte-addressable with bank
width of 4 bytes (or memory width of 16 bytes). As shown on Figure
1, for each memory line that has 16 bytes, 4 bytes are stored in each
bank, and accessing the memory should cycle through bank0 to
bank3.

One realization of linear address bitmask generator is to com-
pute a local that is a reduced bit mask according to exponent. A
conversion from local mask to output bitmask by duplicating bits.
The abstracted algorithm for generating a local mask is described

below. To be specific, if exponent = 2 (each access unit should be 2 =
4 byte), considering the example of 4-way banked byte addressable
memory with memory width of 16 bytes, the memory line bitmask
should be 16 bits, but the reduced local mask should be only 4 bits
(calculated as 16−byte/4−byte). The local bitmask is generated bit
by bit, and each bit is generated as 1 if the bit is in range of memory
access request. At the final stage, the local bitmask will be converted
back to global bitmask to match the width of memory, representing
the whole line, and the next row number is computed.

The downside of this algorithm (figure 2) is that generating a lo-
cal bitmask for every possible exponent value given memory width
will result in a huge hardware overhead during logical synthesis.
Generating a combinational logic for every exponent and uses the
exponent to select from a list of local masks will eventually result
in a large multiplexer and duplicated logics. We proposed a new

178

Using Dynamic Shifters for Linear Address Bitmask Generator via Chisel3 EEET 2021, December 03–05, 2021, Nanjing, China

Figure 3: a, l, b for Memory Width 16

algorithm to reduce the area and power by applying a non-recursive
logic, which will be explained in the next section.

3 DYNAMIC SHIFTER ARCHITECTURE
Because the exponents are determined only at runtime, only syn-
thesizing logics targeting specific exponent values would be detri-
mental and would result in wrong bitmask generated. It seems
inevitable that we need to form combinational logic to compute
masks for each exponent. However, our new algorithm bypasses
this constraint and uses dynamic shifters and adders to complete
the seemingly impossible task.

3.1 Pre-computation
All bitmasks can be formed by shifting all “1” bit streams right and
then left. Since we will be using shifters to form bitmasks, the first
step of our method is to find out the amount to be shifted for each
bitmask. We first define some variables. Suppose we have a memory
with a width of 16 bytes, so we need a 16-bit bitmask. As shown in
Figure 3, we define that l is the length of bits needed to be “1”, a is
the length of bits before needed to be “0”, and b is the length of bits
after needed to be “0”. Then the resulting bitmask will just be all
“1” bit streams shift right by a + b, then shift left by a.

3.2 4 Case Studies: Bitmask Calculation under
different exponents

Computation of a, b, l will be different for each direction explained
by using four examples that use the same memory setup as Figure
1. Figure 4 shows the example that has the line offset = 5, length =
3, exponent = 1, direction = 1. This means that we need to access
three (length = 3) two-byte (exponent = 1, 21 = 2 bytes) elements
starting from the fourth byte (line offset = 5, each access should be
aligned to a two-byte address) of the memory line. In other words,
if the line offset is an odd number, the access should be aligned to
an even number. Finally, there are 6 bytes in total that should be
accessed from the fourth offset to the ninth offset. Figure 4 shows
the bitmask should be generated as 0000,0011,1111,0000. In addition,
the linear address bitmask generator should generate the remaining
length (next length) of bytes that needed to be accessed. If we still
consider the example from Figure 4, then next length = 0. From
this example we can clearly see that if direction =1, then a is 4 (line
offset aligned), l is 6 that is computed based on exponent and length,
and b equals 6 that is computed from mem width - l - a.

Example 2 is presented in Figure 5. If we applied length = 7 and
kept other parameters as same as example 2, then next length = 1.
The bitmask should be 1111,1111,1111,0000, while a = 4, b = 0, and
l = 12, just as last example.

Example 3 is shown in Figure 6 that is line offset = 5, length = 7,
exponent = 2, direction = 0. Then we will have next length = 0 since
its direction is constant. The bitmask should be 0000,0000,1111,0000,
while a = 4, b = 8, and l = 4. From this example we can see that
in direction = constant, l is only the length of an element, while
computation for a and b stays the same.

Example 4 is shown in Figure 7 that is line offset = 5, length =
4, exponent = 2, direction = -1, other parameters keep the same
as example 1. The result of bitmask is 0000,0000,1111,1111 and
next length = 2. From this example we can see that in direction =
descend, calculation for a, b, l is different from when direction =
ascend or constant. If direction is descended, then b = mem width -
line offset aligned - 1¡¡exponent, and l is determined by length and
a = mem width - b - a.

As we can see from the above 4 case studies, the computation for
a, b, l is straightforward for each possible direction, and would only
require small adders and dynamic shifters. This would produce little
area and power overhead for the whole bitmask generator. After
a, b, l is acquired, we then use dynamic shifters to form bitmasks,
which detailed algorithm is described below.

3.3 Dynamic Shifters Design
Dynamic shifters are common hardware components [6] that can
shift a binary number based on some fixed bit width shift number.
Chisel will automatically generate a dynamic shifter, if the shifting
operand is a wire, which value can only be determined in runtime.
As shown in Figure 8, each shifter has an enable bit that is connected
to each bit of shift number. The dynamic shifter allows us to achieve
left or right shifting by a dynamically determined binary number,
with little area and power overhead.

To form a bitmask, we can shift an all-one-bit stream right by a+b
bits and then left by a bits. For example, to form 0000,1111,0000,0000,
we only need to right shift 16 bits of “1” by 12 and then left shift
the result by 8. With the knowledge of dynamic shifter, we design
the below algorithm. Note that next length computation would
require adders and a, b, l computation would require both adders
and dynamic shifters.

179

EEET 2021, December 03–05, 2021, Nanjing, China Linyuan Huang

Figure 4: Example 1 shows the a, b, l computation for direction = ascend

Figure 5: Example 2 shows the a, b, l computation for direction = ascend

180

Using Dynamic Shifters for Linear Address Bitmask Generator via Chisel3 EEET 2021, December 03–05, 2021, Nanjing, China

Figure 6: Example 3 shows the a, b, l computation for direction = constant

4 METHODOLOGY
We implemented both version of linear address bitmask generator
and its testbench using Chisel3. The code was compiled, and Ver-
ilog code is generated. Then we used Synopsys Design Compiler
[5] to complete the logical synthesis and frequency/power/area
number are collected from synthesis report. The traditional local
bitmask generation method is used as baseline. To be more specific,
we compare the cell area, static power and frequency of linear ad-
dress bitmask generators, since the goal is to achieve low power
consumption and low area design with little frequency trade-off.

Our design consists of dynamic shifters and adders, both of them
would increase in area and power with respect to the number of
input bits. Since increasing memory width would increase the input
bits of shifters and adders, we are also exploring the design space
by changing the mem width parameter for both baseline and our
design. To be more specific, we choose memory width equal to
16, 32, 64, 128 as testing cases. For each memory width, we are
keeping the memory byte addressable, number of exponents as 4,
memory size as 256 bytes. In addition to mem width, the number
of exponents is also a determining factor, as the traditional design
will increase linearly as the number of exponents increase. We
choose the number of exponents to be 2, 3, 4, 5, 6 as a testing case,
and compare our result to the baseline design. For each number of
exponents, we keep the memory byte-addressable, memory with
as 128-bytes and memory size as 256 bytes.

5 EVALUATION
As expected, area, power, increased by increasing memory width,
and frequency decreased by increasing memory width. All sim-
ulation results are shown in Figure 9, and the data is shown in
Appendix A. Shifters performance in area and power is better than
baseline. Moreover, as the memory width increases, the perfor-
mance in area and power gets better and better. For example, the
shifter’s area is 23.6% and 27.4% less than baseline design when the
memory width is 16 and 128. And the shifter’s power is 7.9% and
23% less than baseline design when the memory width is 16 and
128. Also, the shifter’s frequency is 25% lower than baseline when
memory width is 16.

However, when memory width increases to 128, the shifter’s
frequency is higher 5.7% than baseline design. Due to time con-
straints, we did not continue to increase the memory width of the
experiment in this work. But we do not rule out that if we con-
tinue to increase the width, the shifter’s frequency performance
will be worse than baseline design. In general, in the experiment
of increasing the width, our shifter’s performance is better than
baseline design. In the best case, compared with baseline design, the
shifter’s design can lower area, power and frequency performance
by 27.4%, 23% and 25% respectively.

Figure 9 presents the simulation results for increasing the num-
ber of memory unit width exponent (number of exponent) as well.
In the best case of area versus number of exponents, the shifter’s
area is 27.4% better than baseline design when the number of expo-
nents is 4. In the best case of power versus number of exponents, the

181

EEET 2021, December 03–05, 2021, Nanjing, China Linyuan Huang

Figure 7: Example 4 shows the a, b, l computation for direction = descend

Figure 8: A Dynamic Shifter Example of Left Shifting 16’hFFFF by b Bit

shifter’s power is 23.3% better than baseline design when the num-
ber of exponents is 5. In the best case of frequency versus number of
exponents, the shifter’s power is 28.4% better than baseline design
when the number of exponents is 5. Overall, the shifter’s design
has better performance in area, power, with the best improvement
of 27.4%, 23.3%.

6 CONCLUSION
Chisel makes the power of a modern software programming lan-
guage available for hardware design, supporting parameterized
generators and providing high-quality Verilog RTL output for ASIC
flow synthesis. We have accomplished an alternative design com-
pared to [7] for linear address bitmask hardware generators using
Chisel. By using dynamic shifter and adders, our algorithm explores

182

Using Dynamic Shifters for Linear Address Bitmask Generator via Chisel3 EEET 2021, December 03–05, 2021, Nanjing, China

Figure 9: Comparison Between Baseline and Dynamic Shifter Design

possible trade-off between power, area, and frequency. After evalu-
ation, our design is proven to be power efficient and area efficient
with approximately 25% improvement than baseline design, while
having little frequency loss under specific circumstances.

REFERENCES
[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avizienis, John Wawrzynek, and Krste Asanovi´c. Chisel: constructing
hardware in a scala embedded language. In DAC Design Automation Conference
2012, pages 1212–1221. IEEE, 2012.

[2] Krochmalski, Jarosław. IntelliJ IDEA Essentials. Packt Publishing Ltd, 2014.
[3] Asanovic, Krste, et al. "The rocket chip generator." EECS Department, University

of California, Berkeley, Tech. Rep. UCB/EECS-2016-17 4 (2016).
[4] Gomez-Luna, Juan, et al. "Performance modeling of atomic additions on GPU

scratchpad memory." IEEE Transactions on Parallel and Distributed Systems 24.11
(2012): 2273-2282.

[5] Kurup, Pran, and Taher Abbasi. Logic synthesis using Synopsys®. Springer Science
& Business Media, 2012.

[6] Ercegovac, Milos D., and Tomas Lang. Digital arithmetic. Elsevier, 2004.
[7] Ramesh, Kini M., and David S. Sumam. "Comprehensive address generator for digi-

tal signal processing." 2009 International Conference on Industrial and Information
Systems (ICIIS). IEEE, 2009.

183

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 DYNAMIC SHIFTER ARCHITECTURE
	3.1 Pre-computation
	3.2 4 Case Studies: Bitmask Calculation under different exponents
	3.3 Dynamic Shifters Design

	4 METHODOLOGY
	5 EVALUATION
	6 CONCLUSION
	References

