
Compositional Verification Using a Formal
Component and Interface Specification

Yue Xing∗, Huaixi Lu∗, Aarti Gupta, and Sharad Malik
Princeton University, Princeton, USA

yuex@princeton.edu, huaixil@princeton.edu, aartig@cs.princeton.edu, sharad@princeton.edu

Abstract—Property-based specification s uch a s SystemVerilog
Assertions (SVA) uses mathematical logic to specify the temporal
behavior of RTL designs which can then be formally verified
using model checking algorithms. These properties are specified
for a single component (which may contain other components
in the design hierarchy). Composing design components that
have already been verified r equires a dditional v erification since
incorrect communication at their interface may invalidate the
properties that have been checked for the individual components.
This paper focuses on a specification f or t heir i nterface which
can be checked individually for each component, and which
guarantees that refinement-based p roperties c hecked f or each
component continue to hold after their composition. We do this in
the setting of the Instruction-level Abstraction (ILA) specification
and verification m ethodology. T he I LA m ethodology p rovides a
uniform specification f or p rocessors, a ccelerators a nd general
modules at the instruction-level, and the automatic generation
of a complete set of correctness properties for checking that the
RTL model is a refinement o f t he I LA s pecification. We add
an interface specification to model the inter-ILA communication.
Further, we use our interface specification t o g enerate a s et of
interface checking properties that check that the communication
between the RTL components is correct. This provides the
following guarantee: if each RTL component is a refinement of
its ILA specification and the interface checks pass, then the RTL
composition is a refinement o f t he I LA c omposition. W e have
applied the proposed methodology to six case studies including
parts of large-scale designs such as parts of the FlexASR
and NVDLA machine learning accelerators, demonstrating the
practical applicability of our method.

I. INTRODUCTION

Formal verification o f h ardware i s p erformed b y checking
an implementation (typically an RTL model) against a formal
specification. T hese s pecifications ar e ty pically pr ovided as a
set of properties in SystemVerilog Assertions (SVA) [1] or
property specification l anguage (PSL) [2]. T hese properties
use mathematical logic (e.g., linear temporal logic [3]) and
are formally verified o n t he i mplementation m odel u sing a
model checker [4]. The properties are specified f or a single
component in the design (which may contain other compo-
nents in the design hierarchy). In this paper, we focus on
properties of individual components that prove that their RTL
implementations are refinements of high-level specifications –
we refer to these as refinement-based properties.

This work was supported by the Applications Driving Architectures (ADA)
Research Center, a JUMP Center co-sponsored by SRC and DARPA. This
research is also funded in part by NSF award number 1628926, XPS: FULL:
Hardware Software Abstractions: Addressing Specification a nd Verification
Gaps in Accelerator-Oriented Parallelism, and the DARPA POSH Program
Project: Upscale: Scaling up formal tools for POSH Open Source Hardware.
*These authors contributed equally to this work

Composing components that have already been verified
as correct refinements requires additional verification since
incorrect communication at their interfaces may invalidate the
refinement-based properties already checked for the individual
components. This paper proposes a specification for their
interfaces that can be provided and checked individually for
each component. The checks guarantee that the refinement-
based properties checked for each component continue to
hold after their composition. We do this in the setting of the
Instruction-level Abstraction (ILA) specification and verifica-
tion methodology.

The ILA methodology provides a uniform specification for
processors, accelerators and general modules at the instruction-
level, and the automatic generation of a complete set of
correctness properties for checking that the RTL model is a
refinement of the ILA specification. The ILA is a generaliza-
tion of the instruction set architecture (ISA) of processors.
Huang et al. [5] proposed the ILA for accelerator designs
by modeling the commands on the MMIO (memory-mapped-
input-output) interface of accelerators as instructions which
update the architectural state variables. As with processors,
the architecture state variables are those that are persistent
across instructions. Xing et al. [6] further generalized the ILA
instruction-level modeling to general hardware modules. The
commands received at the inputs to a module are treated as
instructions that update the architecture state variables (i.e.,
variables that are persistent across the commands). The ILA
methodology supports refinement-based verification by auto-
generating per-instruction correctness properties from the ILA
specification for checking the RTL implementation. Essen-
tially, each property checks that if the ILA specification model
and the RTL design start in states that correspond (according
to a refinement map), then after an instruction executes to
completion, the resulting states also correspond.

So far the ILA refinement-based verification methodology
has been applied to a single component, e.g., a RISC-V core
or a cache module. However, when verified RTL modules are
composed by connecting their corresponding pins, incorrect
communication between them may invalidate the refinement
checks, which assumed correct inputs. This would therefore
require additional verification of the composed RTL models,
including possibly re-verifying properties for each component.
This is undesirable – we would like the per-component refine-
ment checks to continue to hold following the composition.

We address this problem by proposing a compositional
specification and verification methodology using ILA models
for individual components and generating interface checks to

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508352.3549341&domain=pdf&date_stamp=2022-12-22

ensure correct communication by each individual component.
The goal of this methodology is to guarantee that if each RTL
component (RTL1, RTL2) is a refinement of its respective ILA
specification (ILA1, ILA2) and the interface checks pass, then
the RTL composition is a refinement of the ILA composition.
We refer to this methodology as ILA-based compositional
refinement.

However, there are some challenges in meeting this goal:

• Challenge 1 – Interface specification: The existing ILA
specification focuses on a single component and lacks the
specification of interface behavior.

• Challenge 2 – Compositional refinement checking: The
refinement checking for individual RTL models only
checks the state variables corresponding to the ILA
specification at specific times (e.g., when an instruction
commits), which is inadequate to check the communi-
cation with other components. Unlike processors, where
the architectural state variables are globally visible only
after the commit point, the interface signals for general
modules are visible to other components at all time steps,
i.e., even before instruction completion. Thus, additional
checks are needed before instruction completion.

We address these challenges by first extending the ILA
specification with an interface specification (via valid-ready
handshake signals) for inter-ILA communication. Next, we
generate corresponding interface checks (SVA properties) to
ensure that inter-RTL communication correctly implements
inter-ILA communication. The interface checks contain two
parts: (1) checks for interface signals at the end of instruction,
which become part of refinement checking, and (2) checks
for interface signals before instruction completion (§III-D).
Note that these interface checks are targeted to verify only
the communication between components. Note also that our
overall approach includes checking the implementation of each
component against its functional specification and its commu-
nication interface specification, where the functional aspect is
separately handled via specification and verification of valid
instructions for each module. This is in contrast to well-
known assume-guarantee reasoning [7], where the two kinds
of specifications are combined in environment assumptions,
which capture the inputs/input-sequences that are valid at the
interface of a component.

As with refinement-checking in the ILA methodology, the
interface specification and interface checking are done per
component on its ILA and RTL models. This leverages design
modularity in the implementation and the specification to
enable modular verification, thereby improving the scalability
of verification. Note that our methodology works with a given
modular design and does not propose how to partition a
design. We demonstrate the practical benefits of our proposed
methodology through six case studies.

Overall, this paper makes the following contributions:

• We propose a new methodology leveraging Instruction
Level Abstractions (ILAs) for compositional specification
and verification that enables compositional refinement,
i.e., if individual RTL implementations are refinements of
their corresponding ILAs and their interface checks pass,
then their composition is a refinement of the composition
of their individual ILAs.

• To verify the interactions between components in the
implementation, we include an interface specification
(via valid-ready handshake signals) in the ILA models
(§III) and perform additional interface checks (§III). This
provides the basis for compositional refinement checking.

• We have implemented our compositional modeling and
verification methodology and demonstrated its effective-
ness through six different case studies (§IV). These
case studies are parts of real designs: an 8051 micro-
processor [8], a secure SoC comprising an 8051 and
an AES accelerator [9], FlexASR Processing Element
(PE) [10], NVDLA convolution core [11], an off-chip
communication protocol used in BaseJump STL [12], and
AMBA AXI on-chip communication modules [13]. For
several of these case studies our method found bugs in the
RTL implementation that were confirmed by designers.

II. BACKGROUND: ILA MODELS

A. ILA Specification

The Instruction Level Abstraction (ILA) is a generalization
of the Instruction Set Architecture (ISA), which serves as a
specification for processors. An ISA specifies:

• the architectural state variables for a processor, i.e., the
state variables that persist between instructions

• the decode condition for each instruction
• the architectural state update for each instruction.

There have been several successful efforts in processor verifi-
cation that check an implementation instruction-by-instruction
against a formal ISA specification [14]–[17].

The ILA specification [5] was introduced to extend the
notion of an ISA to accelerators. It does so by treating the
commands at the interface of the accelerator as “instructions.”
The ILA specification and ILA-based verification methodol-
ogy were further extended for specification and verification
of general hardware modules [6]. In this paper, we further
leverage this notion of treating commands at the interface
of a general hardware module as instructions to also model
component interactions.

As introduced in [5], an ILA model of a component is rep-
resented as a five-element tuple: 〈S,W, S0, D,N〉, where S,
W denote the vectors of state and input variables, respectively,
and S0 is a vector of initial values of the state variables. The
set of instructions J is associated with the sets D and N .
D is a set of decode functions (each specifies a condition
for triggering an instruction, i.e., the interface command), and
N is a set of next state functions (each describing the state
update performed by an instruction) for each instruction j ∈ J ,
respectively. Formally, an ILA model A is defined as follows:

A = 〈S,W, S0, D,N〉, where

S is a vector of state variables (state space: S)

W is a vector of inputs variables (input space: W)

S0 is a vector of initial values of the state variables

D = {Dj : (S×W) → B, j ∈ J} is a set of decode

functions, B = {0, 1}
N = {Nj : (S×W) → S, j ∈ J} is a set of next

state functions

Note that this ILA definition focused on a single module
specification. It did not consider any specification for commu-
nicating with other modules. Filling this gap via an interface
specification is one of the contributions of this paper (§III).

B. ILA-based Refinement Verification
For performing a refinement check, the ILA methodology

automatically generates a set of verification properties – one
per instruction – by using a user-provided refinement map.
Essentially, the refinement map specifies what to check and
when to check for equivalence of corresponding states, since
the ILA and RTL models are at different levels of abstraction
and one step at the ILA level may correspond to multiple steps
at the RTL. Intuitively, each property (called a commutating
diagram correctness property [15]) checks that when the ILA
specification and the RTL implementation start in equivalent
corresponding states (as specified in a refinement map) at
the start of an instruction, then after the instruction finishes
execution (as specified in a refinement map), the resulting
corresponding states are also equivalent. Refinement maps can
also handle checking the correctness of a pipelined hardware
implementation against a sequential ISA/ILA [5], [15], [16].
The per-instruction properties that are generated by ILA-based
refinement verification can be checked using standard open-
source [18] or commercial model checking tools [19]. In the
rest of this paper, we will use RTLi � ILAi to denote that
RTLi is a refinement of ILAi (for component i) and RC to
denote performing a refinement check for each component in
a design.

It is worth emphasizing that other existing methodologies or
tools do not provide automated generation of a complete set of
properties for refinement checking for hardware modules other
than processors. Thus, the ILA component specifications are
very valuable for this purpose and enable leveraging standard
model checkers for verification of processors, as well as
accelerators and general modules.

III. COMPOSITIONAL VERIFICATION

This section describes our proposed ILA-based composi-
tional verification methodology. It starts with a motivating ex-
ample which demonstrates the challenge with reasoning about
composed designs, followed by an overview of the existing
ILA modeling and verification of individual components for
that example. Then, we introduce the interface specification
which we add to the existing ILA specification, and show how
it captures synchronous communication between ILA mod-
els. Finally, we introduce additional per-component interface
checks based on this interface specification. Their combination
with the existing refinement checks guarantees compositional
refinement, which establishes correctness of the composition
of RTL modules.

A. Motivating Example
We start with a motivating example of the BaseJump offchip

protocol design [12]. This protocol has two components:
an upstream controller module (which is in the Upstream
chip) and a downstream controller module (which is in the
Downstream chip) as shown in Figure 1. The data commu-
nication is uni-directional from Upstream to Downstream,
where the transfer is limited to 8-bit words at a time. Ac-
cordingly, a 64-bit input data in in Upstream is transferred

Fig. 1: BaseJump Off-chip Protocol Design (design in black;

monitor used by the verification procedure in blue).

TABLE I: Time/Memory Usage of the Monolithic Verification

the Off-chip Protocol Design.

Verification Task Design Size Time Memory

Property (1)
7478 LoC /

3187 state bits

bounded proof

399 steps in 24 h
682 MB

in a four-step pipeline to Downstream via 8-bit channels
data o 0 and data o 1, and then sent out as 64-bit output
data out by Downstream. The design uses a token-based
protocol to coordinate the two modules and to ensure no loss
of data. A user-provided set of properties or an automated ILA
approach [5] (which we use) can be used to ensure correctness.

Here is an example property expressed in SVA:

assert{#req >= #ack} (1)

In this property, the signals req and ack are two monitor
signals where req is set to high when there is some data
d input to the upstream module, while ack is set to high
when the same data d is output from the downstream module.
Thus, Property 1 checks that the number of data output from
downstream module does not exceed the number of data
input into the upstream module. Table I shows the time and
memory usage of checking this property using JasperGold, a
commercial model checker [19] on the full design. (Any model
checker may be used for this purpose.) This property is not
fully proved even with a 24-hour time limit, i.e., the model
checker fails to provide an unbounded proof, although the
bounded model checking (BMC) engine provides a bounded
proof with no bug up to 399 cycles. Note that monolithic
verification of the full design (with the upstream and down-
stream control modules together) poses a scalability challenge
to a state-of-the-art model checker. As we will show later,
a compositional verification of the upstream and downstream
control modules using the proposed ILA-based methodology
exploits design modularity during verification, and thereby
improves scalability.

B. ILA Modeling and Verification of Individual Components
The first step of our approach is to leverage the existing ILA

modeling and verification techniques [6] for individual compo-
nents. The ILA models for individual RTL modules of Base-
Jump are shown in Figure 2. These models are instruction-
level specifications for the individual RTL modules. Each
module has the DATA IN and DATA SEND instructions to
indicate when the data comes in and goes out, respectively. The
TOKEN, as introduced in § III-A, is included in the upstream
and downstream ILA models (TOKEN SEND instruction in
the downstream module, and TOKEN IN instruction in the
upstream module).

With the per-module ILA model as a specification, the ILA-
based verification methods (§II-B) can be applied to verify

Fig. 2: Instructions and Interface Signals for the Off-chip

Communication Protocol. i:DATA IN, i:DATA SEND,

i:TOKEN IN, i:TOKEN SEND are the instructions.

Data in(64), valid in(1) etc. are the interface signals

(bit-width shown inside the parentheses).

Fig. 3: ILA Interface Specification: Handshake Signals and

Interface Instructions.

each RTL module, i.e., that each RTL module refines the
corresponding ILA model. However, since the per-module ILA
does not specify any interface for communicating with other
ILAs, the two ILAs for the upstream and downstream modules
by themselves do not provide a complete specification for the
full RTL design composed of the two modules. It is this gap
that we fill through the ILA interface specification.

C. Compositional Refinement using ILA Models
1) Augmenting the ILA model with the Interface Specifi-

cation: To support the composition of ILA models, we first
define outputs in ILA models. This allows connecting the
outputs of an ILA model to the inputs of another ILA model to
enable their communication. Then, we consider the interface
between two models, as defined by their inputs and outputs.

In our study of designs ranging from HLS-generated de-
signs [20] to manually implemented RTL designs [12], we
noted that most modules use simple handshake signals for
correct communication. Motivated by this observation, we
specify an interface between two modules in terms of two
handshake signals – valid and ready – in the outputs/inputs
of ILA models, as shown in Fig. 3 (i). Note that these signals
may be implemented in different ways (e.g., ready signals may
always be high in some design, or may only be high when
valid is low in other designs) – for now we focus on the
specification of this classic handshake mechanism. Further, an
ILA model may have many channels in its interface, where
we consider a channel as connecting the output of one ILA
to the input of another ILA. We model each channel using a
separate pair of valid/ready handshake signals.

Intuitively, a valid signal indicates that the output of an
ILA model is valid, while a ready signal indicates that an
ILA model is ready to read its input. The data transferred
through the channel is referred to as the payload and we
require that the payload can be transferred only when both
the valid and ready signals for the channel are high (i.e.,
active). When there are multiple channels for transferring data
(e.g., multiple valid/ready or one valid/multi-ready or multi-
valid/one ready), the specification (ILA) must decide how to
resolve this through its instructions’ decode and state update
functions. For example, if there is one valid and multiple ready
signals, the ILA specification must decide whether to wait for
all ready signals or only one of them to be high, by using a
suitable decode condition of the handshake signal that requires
all or one ready signals to be high, respectively. This allows
specifications with an arbitrary number of valid/ready signals.

More formally, we define the augmented ILA model A as:

A = 〈S,W,O, S0, D,N〉, where

S is a vector of state variables (state space: S)

W is a vector of input variables (including valid/ready,

input space: W)

O is a vector of output variables (including valid/ready,

output space: O, O ⊆ S

S0 is a vector of initial values of the state variables,

D = {Dj : (S×W) → B, j ∈ J} is a set of decode

functions, B = {0, 1}
N = {Nj : (S×W) → S, j ∈ J} is a set of next

state functions

2) Interface Specification using Handshake Signals: Con-
ceptually (although implementations vary), a valid signal is
set to high when a module is prepared to send the payload to
another module; a ready signal is set to high when a module
is prepared to receive the payload from another module. A
payload is transferred from one module to another only when
valid and ready are both set to high in the respective modules.

We model the interface specification using such handshake
signals in the ILA specification of a component. Note that in
this setting, the payload received by an ILA is an instruction
for that ILA with associated data values. An example ILA
component that includes four handshake signals is shown in
Fig. 3(i), where valid o and ready o are outputs of this
component, say P , and valid i and ready i are inputs from
another component, say Q. P and Q are communicating with
each other based on these handshake signals. Here we focus
on the handshake signals and omit the payload associated with
the handshake. In this example, we assume that module Q has
the same specification as model P .

In Fig. 3 (ii), we show an example interface specification for
the handshake signals in ILA component P , i.e., how valid o
and ready o (the output variables labeled in each state) are
updated by P depending on its current state and its inputs
valid i and ready i. In the state “wait,” P is ready to receive
a new instruction. If P sees a valid input (valid i) from
component Q (i.e., a possible new instruction at its interface),
then it will decode and execute the instruction, and transition to

the state “done.” In the “done” state, P ’s valid output (valid o)
is high while its ready output (ready o) is low, indicating that
P can send results (from its recently executed instruction) to
Q, but it is not yet ready to receive a new instruction from Q
in this example. P will wait in this state (self-loop) as long
as Q is not ready. When Q indicates that it is ready (and
receives the payload from P), then P can transition back to
its “wait” state where it is ready to receive a new instruction.
Note that in this specification, an instruction is executed by P
along its transition from “wait” to “done,” while an instruction
is executed by Q along P ’s transition from “done” to “wait.”
Next, we discuss how these instructions are modeled along
with the interface specification.

3) Instructions with Handshake Operations: We now de-
scribe how the interface specification is modeled in the form of
instructions with handshake operations in the ILA models. In
particular, Fig. 3 (iii) shows the ILA specification (including
the interface) for a module P (the same as for module Q).
For ease of discussion, we focus only on the handshake
signals in module P ; other outputs in the interface simply
carry the payload but are not involved in synchronizing the
communication. Based on the handshake signals, we define
two instructions in the ILA model – the first has a “receive”
operation (corresponds to the transition from state “wait” to
state ”done”), and the other has a “send” operation (corre-
sponds to the transition from state “done” to state “wait”).

With these two instructions, an ILA model P can correctly
communicate with an ILA model Q when their respective
instructions with “send” and “receive” operations are synchro-
nized, i.e., if the second instruction with “send” is decoded in
the sender P ’s ILA model, the first instruction with “receive”
is decoded in the receiver Q’s ILA model at the same time.
This synchronicity condition guarantees that the payload is
correctly transferred from ILA model P to ILA model Q.

We would like to emphasize that although this handshake
specification resembles a standard handshake between asyn-
chronous concurrent processes, i.e., processes that may not
operate synchronously, our goal here is to adapt it for spec-
ification of synchronous components that are implemented
in RTL. Thus, it is important to identify and specify the
synchronicity condition that ensures correct communication
between RTL modules in the implementation.

More generally, we include the handshake operations “send”
and “receive” as part of instructions in an ILA model, where
the other part of each instruction captures its associated
functional requirement. For an instruction with a “receive”
operation, its decode function includes the condition that
valid i ∧ ready o; and for an instruction with a “send”
operation, its decode function includes the condition that
valid o ∧ ready i. Note that the decode function would also
include other conditions on input and state variables to trigger
state update functions according to the functional requirement.
The synchronicity condition ensures that whenever two ILA
models communicate there is an instruction with a “send”
operation decoded in the sender ILA model and an instruction
with a “receive” operation decoded in the receiver ILA model.

In this way, our strategy for specifying a component in-
terface in terms of handshake operations allows them to be
easily incorporated into instructions in the ILA model for

each component. Thus, similar to the original ILA model
that specifies how the architectural state variables are updated
by instructions, the augmented ILA model specifies how the
architecture state variables and interface handshake signals are
updated by instructions with handshake operations. Effectively,
the augmented ILA model ensures that each component ex-
ecutes a new instruction only when the interface handshake
signals have specific values, e.g., some new instruction can be
received and executed by a component only after its previous
instruction with send operation has been received by the
other component(s). Importantly, by considering the handshake
signals as inputs/outputs at the interface of a component, the
overall problem of specifying communication between com-
ponents in a system is decomposed into a modular interface
specification for each component. This modular specification
is critical in enabling modular per-component verification,
thereby improving verification scalability.

4) ILA Composition: In the setting of this paper, we
view an ILA model as a Moore finite state machine
(FSM) where O ⊆ S. Thus, a composition of ILA mod-
els is a standard composition between interacting FSMs,
where an output of one FSM can be connected to an
input of another FSM. More formally, consider two ILA
models A1 = 〈S1,W1, O1, S10, D1, N1〉 and A2 =
〈S2,W2, O2, S20, D2, N2〉. The parallel composition C
of A1 and A2, is an FSM C : A1 ‖ A2 =
〈SC ,WC , OC , SC0, δC〉, defined as follows:

SC = S1× S2

WC = W1 ∪W2 \ ((W1 ∩O2) ∪ (W2 ∩O1))

OC = O1 ∪O2 \ ((W1 ∩O2) ∪ (W2 ∩O1))

SC0 = S10 × S20

δC : (SC ×WC) → SC is the state transition function.

δC((S1,W1), (S2,W2)) = (S1′, S2′),where

S1′ =

{
N1j(S1,W1) if ∃j.D1j(S1,W1) = 1

S1 otherwise

S2′ =

{
N2k(S2,W2) if ∃k.D2k(S2,W2) = 1

S2 otherwise.

Each state of the composition C is a pair comprising the states
of A1 and A2 in the usual way. The state transition function δC
updates each part of this pair if there exists an associated in-
struction (j for A1, k for A2) whose decode condition is true.
Thus, each transition in C corresponds to the execution of an
instruction in one or both components. Note that by including
the synchronicity condition for handshake operations in the
decode conditions of the specified instructions, we ensure that
communication between ILA models happens synchronously.

This definition generalizes in a straightforward manner to
a composition of n ILA models. An FSM for C : A0 ‖
A1 ‖ . . . ‖ An−1 can be constructed where the state of the
composition is a vector comprising the states of A0, A1, ...,
An−1. A payload transfer between any pair of ILA occurs
when a send instruction in one component and a receive
instruction in the other are synchronized in the composition.

D. Compositional Refinement with Interface Checking
Recall that in RC, when RTLi �ILAi, the RTL component

RTLi and its ILA specification ILAi are shown to have
equivalent outputs at corresponding points specified in a given
refinement map provided by the user (§II-B). The augmented
ILA models presented in this paper include interface in-
structions that specify the updates to the handshake signals
according to the interface specifications. We can then use the
standard ILA-based refinement verification methodology [6] to
perform the component refinement checks, which now include
checking the handshake signals at the end of each instruction
– this forms the first part of interface checking.

Note that checking RTLi � ILAi focuses on checking the
equivalence of specified outputs at the end of each instruction,
as specified in the refinement map. However, refinement
checking at instruction completion points is not enough for the
interface signals. Unlike processors and accelerators, where the
architectural state is visible only at the end of an instruction,
the handshake signals at the interface are visible at all time
steps, i.e., even before instruction completion. Therefore, we
also need to ensure that the interface signals have correct
values even before the instruction completion points. Specifi-
cally, we perform the following two additional pre-completion
checks (PCCs):

• PCC1: For each RTLi, the valid output is not set to
high before the completion of the instruction that asserts
the valid signal. This ensures that the payload is not
transferred before it is available.

• PCC2: For each RTLi, the ready output is not set to
high before the completion of the instruction that asserts
the ready signal. This ensures that the module is actually
ready to receive the payload.

These two checks form the second part of interface checking
and ensure that the payload is correctly transferred as per
the ILA interface specification. Note that these checks focus
on communication only and can be generated automatically.
This is different from standard assume-guarantee reasoning [7]
where one needs to verify given guarantees under environment
assumptions for each module. As we show later §IV, the
bugs that we find with these two checks can help strengthen
environment assumptions in some designs. It is also important
to note that properties for RC and PCC are automatically
generated, providing a systematic verification methodology.

Theorem 1 [Compositional Refinement]: If for all compo-
nents i, the refinement checks and the additional PCC checks
on RTLi and ILAi pass, then the composition RTLC :
RTL0 ‖ RTL1 ‖ RTL2 . . . ‖ RTLn−1 is a refinement of the
composition ILAC : ILA0 ‖ ILA1 ‖ ILA2 . . . ‖ ILAn−1.

Proof Sketch: Consider a pair of interacting modules RTLi

and RTLj , and their specifications ILAi and ILAj , respec-
tively. Since RTLi � ILAi and RTLj � ILAj , this ensures
that the payload values match between RTLi and ILAi and
also between RTLj and ILAj . Furthermore, the handshake
signals in the two models match at the end of each instruction,
and the additional PCCs ensure that the handshake signals
are correctly implemented at all steps before the end of each
instruction. Thus, the payloads between RTLi and RTLj

match the payloads between ILAi and ILAj , and their

transfers between RTLi and RTLj are implemented correctly.
Therefore, the composition of RTLi and RTLj refines the
composition of ILAi and ILAj . This reasoning can be applied
pairwise to n components, thereby proving the claim.

IV. CASE STUDIES

There are no automated tools that directly address our prob-
lem space – the specification and verification of refinement-
based properties of a composition of hardware components.
Further, general property-based specification depends on prop-
erties written manually by a designer/verification engineer,
which does not allow a head-to-head comparison with our
largely automated methodology. Instead, we demonstrate the
applicability and effectiveness of our proposed ILA-based
composition methodology through six case studies *: the Base-
Jump off-chip communication design [12], an AXI communi-
cation design [13], an 8051 microprocessor as a composition
of its sub-modules [8], a secure SoC [9] (composition of 8051
and an AES accelerator), the Processing Element in a speech
recognition accelerator FlexASR [10], and the convolution
core in the Nvidia Deep Learning Accelerator (NVDLA) [11].

We successfully verified all six case studies and detected
some bugs that were confirmed by the designers. The open-
source ILAng platform [21] was used for ILA tools and
JasperGold [19] was used as the model checker. All exper-
iments were performed on a Dell Server with a 2.3 GHz 28-
core Intel Haswell processor and 224 GB of RAM, running
RedHat Linux 5 OS. The experimental results for verification,
including the RCs and PCCs are provided in Table II.

A. BaseJump Off-chip Link
We built the ILA models with the augmented outputs and

interface signals for the upstream and downstream modules
in the BaseJump [12] off-chip link design (§ III-A). During
pre-completion checking (PCC) one bug was identified in the
upstream module. The implementation incorrectly transferred
invalid data, which is not allowed in the specification. The
bug was found within 0.3s. After checking with the designers,
we found that the cause was a missing requirement on the
external inputs. We fixed this bug by adding environmental
constraints on those inputs, after which verification for all
modules completed successfully in 15 min. In comparison with
user-specified property-based verification for the composed
RTL design which did not complete in 24 hours (§ III-A), the
ILA compositional verification methodology decomposed the
original verification problem into per-component RC and PCC
checks. These proof obligations were finished in reasonable
time, demonstrating the verification scalability enabled by our
modular methodology.

B. AXI Design
The widely-used on-chip AXI communication protocol [13]

is a burst-based data-transfer protocol where the communica-
tion channels use a valid-ready handshake mechanism. Data
can be transferred from a leader module to a follower module
only when ready and valid signals are both asserted in one
channel, as required by the handshake mechanism.

*Source code for all models and verification properties is available at
https://github.com/yuex1994/ICCAD22 composition.

TABLE II: Experimental Results for Case Studies: Statistics of RTL Designs (Lines of Code (LoC) in Verilog, Number of

State Bits), ILA Models (Number of Instructions, Lines of Code in C++ using ILAng, Number of State Bits), Refinement

Maps (Lines of Code in Json using ILAng) and Verification Time/Memory for RCs and PCCs per module.

Case Study Design Statistics ILA Model Statistics Verification

Modules
RTL Size

(LoC)

of

state bits

of

instrs

ILA size

(LoC)

of

state bits

Ref-Map

(LoC)

Bug Found

Time (s)

Proof

Time (s)

Memory

Usage (MB)

Off-chip

Protocol

Upstream 2982 713 7 144 146 286 0.3 756.6 253.5

Downstream 5453 2474 6 101 98 196 - 38.2 89.1

AXI OH

Design

Leader 871 403 11 184 289 109 0.01 0.23 9.7

Follower 828 372 9 167 159 77 0.01 0.11 7.8

8051

Micro-

processor

Decoder 2636 30 5 479 30 63 - 0.23 19.5

Datapath 2987 273 20 861 229 142 - 11.9 667

Mem Interface 1096 304 12 342 220 101 - 0.79 45

Secure

SoC

micr-processor 5938 645 255 723 274 716 - 2749.2 297

AES 1217 1728 16 520 575 232 - 97.4 235

PE Module

in FlexASR

PE Core 39098 9270 12 1203 1269 256 4.1 2716.4 344.1

Activation Unit 15885 9025 20 1394 775 250 - 2284.9 587.7

Convolution

Core

in NVDLA

SC 101846 60874 12 385 41 139 - 109.5 63.41

MAC 54602 72927 6 228 1609 365 - 2601 968

ACC 22450 67032 22 443 767 442 - 362 170.1

We built four augmented ILA models: one each for reading
and writing channels, in each of the leader and follower
modules. We then performed the per-component RC and PCC
checks. We found two bugs in the follower and one bug in
the leader components through the RC. The ILA specification
of each module requires that the interface data be unchanged
until the receiver is ready, but the design fails to implement
this feature in both the leader and the follower. Another bug
in the follower read channel is that the data address should
be updated based on an internal state variable instead of an
input variable. These bugs were found very quickly, in about
0.01s. We confirmed the bug with the designer and fixed the
bugs by keeping the interface data unchanged until the receiver
is ready and correcting the address computation logic. After
fixing the bugs, the follower and leader modules successfully
passed all checks in 1s.

C. 8051 Microprocessor
We applied our methodology to an open-source 8051 micro-

processor [8]. It comprises three modules: a decoder, a datap-
ath, and a memory interface. The decoder receives the instruc-
tion, decodes it, and communicates with the datapath, which
contains the registers for computation. The memory interface
communicates with the external instruction/data memory and
holds the program counter. It also communicates with the
decoder for sending the instruction and receiving the branch
address for the program counter. We built an ILA model for
each of the three modules and applied RC and PCC. The
verification for these three modules finished successfully in
0.23s, 11.9s, and 0.79s, respectively.

D. Secure SoC
We verified a design for a secure SoC [9] which includes

two parts: an 8051 microprocessor and an AES encryption
accelerator. The processor communicates with the accelera-
tor through an MMIO interface with a valid/ack handshake
mechanism. It can configure the accelerator, trigger a task on
the accelerator, and poll it for completion. Earlier work [5],
[9] has developed the ILA models (without an interface
specification) for the two components. We extended these two

Fig. 4: Modules in FlexASR and NVDLA accelerators.

models with outputs for MMIO interaction and the interface
handshake mechanism. We performed RC and PCC for the
two components, and the verification completed in less than
an hour in total.

E. Processing Elements in FlexASR
FlexASR [10] is an accelerator for speech and natural lan-

guage processing (NLP) tasks that supports various recurrent
neural networks. As shown in Fig. 4a, a Processing Element
(PE) in FlexASR mainly comprises three modules: a Ready
Valid Addressing (RVA) wrapper, a PE core, and an activation
unit. We abstract the RVA wrapper, since it is very simple
and diverts some MMIO commands to other modules. The
PE core receives input weights through the input port from
Global Buffer (GB), while the activation unit performs vector
operations on the accumulated results, outputting the final
results back to the GB. We developed the ILA models and
found a bug when performing RC on the PE core module.
The internal state in the PE core was incorrectly updated (from
OUT state to IDLE state, instead of to PRE state) when there
is no output. On checking with the designer, we found that
this bug was caused by an unsafe optimization during high-
level synthesis of the design. Besides detecting this bug, we
verified all the modules in the PE within 90 minutes.

F. Convolution Core in NVDLA
NVDLA [11] is an open-source configurable hardware

accelerator targeting inference operations in deep learning
applications. In this case study, we focus on the convolution
core of NVDLA which comprises a sequencer controller (SC),
a multiply-accumulate array (MAC), and a separate accumu-
lator (ACC), as shown in Fig 4b. The CSB inputs are MMIO
commands, which configure the modules’ functionality (e.g.,
interpret data as 8-bit or 16-bit integers). These three modules
are cascaded: the SC module receives inputs from outside (e.g.,
a buffer) and outputs the weight and data to the MAC module;
the MAC sends its calculated results to the ACC module; the
ACC module accumulates these values and outputs the final
result to other modules outside the convolution core. The ACC
module also gives the credit to the SC module to indicate
whether the SC module can receive more values from outside.
We built ILA models for each module, modeling complex
arithmetic functions such as multiplication as uninterpreted
functions. Verification (RC and PCC) of these three modules
finished successfully in less than 1 hour.

V. RELATED WORK

Our work is broadly related to efforts in hardware specifi-
cation, interface specification, compositional verification, and
protocol verification.

a) Hardware Specifications: As described earlier (§I),
SystemVerilog assertion (SVA) [1], property specification lan-
guage (PSL) [2], and instruction-level abstraction (ILA) [5]
provide formal logic-based hardware specifications which can
be used for verification. In addition, there are other high-level
hardware specifications used in practice. SystemC [22] extends
C++ for system-level functional models, and Transaction Level
Modeling (TLM) [23] further abstracts the communication and
computation for modeling hardware designs. These models
help raise the level of abstraction and hence improve scal-
ability in software/hardware co-design/simulation. However,
formal hardware verification with SystemC/TLM specifica-
tions remains challenging because of the gap between the
C++ language-based semantics and RTL register-transition-
based semantics. Our proposed approach leverages the ILA
model that captures architecture states and their updates using
instructions – this enables application of well-known processor
verification techniques for RTL refinement checking.

BlueSpec Verilog (BSV) [24] is a rule-based language for
hardware design specification and implementation. A design
is specified by guarded rules, where each rule is an atomic
state-transition unit. BlueSpec relies on a scheduling algo-
rithm to schedule multiple enabled rules. BlueSpec has been
used for compositional reasoning [25]–[27], where a verified
specification replaces a detailed component implementation
(e.g., replacing a pipelined processor by an ISA) in the
verification of a design with many components. However, due
to the atomicity of rules, there is no mechanism to spec-
ify or check synchronous behavior between interacting BSV
components. In contrast, our augmented ILA-based interface
specification includes a handshaking mechanism that provides
a synchronous semantics for component interactions.

b) Interface Specifications: The Wire Sorts
language [28] also leverages interface specifications for

compositional reasoning for RTL designs. However, its
focus is mainly on checking types of connectivity between
modules, e.g., combinational loops, and not on functional
correctness. In contrast, our work formally verifies component
implementations against their architecture-level specifications,
and their composition via RC and PCC.

There are earlier efforts on specification of interfaces [29],
[30], such as interface automata. They provide formal models
for interface behaviors and theories for the composition of
interface models such that these models are compatible and the
composition is sound. However, these models only focus on
interface behavior and the internal functionality of modules is
abstracted away. In contrast, our approach includes functional
verification of the RTL components and their composition
through RC and PCC.

c) Compositional Verification: Compositional reason-
ing [31], [32] has also been applied to the verification of hard-
ware implementations such as processor RTL designs [33].
These are similar to our approach in that they decompose the
verification into sub-tasks of verifying “units of work” (the
unit is similar to the component in our paper, e.g., speculative
branching unit, ALU, reservation station, etc.), where each
sub-task is more tractable for a model checker. However, their
verification technique is based on assumptions/guarantees or
mutually inductive invariants, which have to be provided by
a user. In contrast, our focus is mainly on communication
and synchronization of the composition of modules, where we
require a user to provide a refinement mapping. As mentioned
earlier, assume-guarantee reasoning [7] typically combines
functional and communication requirements in environment
assumptions at interfaces of modules. In contrast, we separate
these two sets of requirements, specifying the former as valid
instructions at an interface.

d) Protocol Verification: Protocol specification and ver-
ification have also been studied before. The CMP (Chou-
Mannava-Park) method [34]–[36] uses flow-based models for
protocol designs, e.g., cache coherence protocols. It addresses
the scalability problem by using parameterized model check-
ing, which abstracts a parameterized number of components
(e.g., cache blocks) into a fixed and small number of compo-
nents. However, these works focus on correctness of high-level
protocol specifications and not on RTL implementations. Our
work (with the case studies of Off-chip Protocol and AXI) fills
this implementation-verification gap.

VI. CONCLUSIONS

In this paper, we propose an ILA-based compositional
specification and verification methodology that supports com-
positional refinement. We extend the ILA model with an
interface specification to model synchronous communication
between ILA models. In addition to component refinement
checks, we propose additional interface checks to guarantee
compositional refinement, i.e., if individual RTL implementa-
tions are refinements of their corresponding ILA specification
models and the interface checks pass, then their composition
is a refinement of the composition of the ILA models. We
have applied our proposed methodology to six case studies, all
from real designs, and found bugs and/or completed refinement
checking and interface checking – demonstrating the practical
applicability and effectiveness of our approach.

REFERENCES

[1] E. Cerny, S. Dudani, J. Havlicek, and D. Korchemny, SVA: The power
of assertions in SystemVerilog. Springer International Publishing, 2015.

[2] IEEE-Commission, “IEEE standard for Property Specification Language
(PSL),” IEEE Std 1850-2005, 2005.

[3] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). ieee, 1977, pp. 46–57.

[4] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model checking. MIT press, 2018.

[5] B.-Y. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and
S. Malik, “Instruction-Level Abstraction (ILA): A Uniform Specification
for System-on-Chip (SoC) Verification,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 24, no. 1, pp. 1–24,
2018.

[6] Y. Xing, H. Lu, A. Gupta, and S. Malik, “Leveraging processor modeling
and verification for general hardware modules,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2021.

[7] A. Pnueli, “In transition from global to modular temporal reasoning
about programs,” in Logics and models of concurrent systems. Springer,
1985, pp. 123–144.

[8] S. Teran and S. Jaka, “8051 micro controller,” 2016, [Online]. Available:
http://opencores.org/project,8051, accessed on: 2022-04.

[9] P. Subramanyan, Y. Vizel, S. Ray, and S. Malik, “Template-based syn-
thesis of instruction-level abstractions for SoC verification,” in Formal
Methods in Computer-Aided Design (FMCAD). IEEE, 2015, pp. 160–
167.

[10] T. Tambe, E.-Y. Yang, G. G. Ko, Y. Chai, C. Hooper, M. Donato,
P. N. Whatmough, A. M. Rush, D. Brooks, and G.-Y. Wei, “A 25mm2

SOC for IOT devices with 18ms noise-robust speech-to-text latency via
Bayesian speech denoising and attention-based sequence-to-sequence
DNN speech recognition in 16nm FinFET,” in 2021 IEEE International
Solid-State Circuits Conference (ISSCC), vol. 64. IEEE, 2021, pp.
158–160.

[11] NVIDIA, “NVIDIA Deep Learning Accelerator,” 2018, [Online]. Avail-
able:www.nvdla.org, accessed on: 2022-04.

[12] M. B. Taylor, “INVITED: BaseJump STL: SystemVerilog Needs a
Standard Template Library for Hardware Design,” in DAC, 2018, pp.
1–6.

[13] A. Olofsson, R. Trogan, F. Huettig, O. Jeppsson, and
P. Saunderson, “Epiphany eLink AXI,” 2016, [Online].
Available:https://github.com/aolofsson/oh/tree/master/axi, accessed
on: 2022-04.

[14] P. Manolios and S. Srinivasan, “A refinement-based compositional
reasoning framework for pipelined machine verification,” TVLSI, vol. 16,
pp. 353 – 364, 05 2008.

[15] J. R. Burch and D. L. Dill, “Automatic verification of pipelined micro-
processor control,” in CAV, 1994.

[16] P. Manolios and S. K. Srinivasan, “A complete compositional reasoning
framework for the efficient verification of pipelined machines,” in
ICCAD, 2005.

[17] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen,
A. Pathirane, O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-end ver-
ification of processors with isa-formal,” in International Conference on
Computer Aided Verification. Springer, 2016, pp. 42–58.

[18] C. Mattarei, M. Mann, C. Barrett, R. G. Daly, D. Huff, and P. Hanrahan,
“CoSA: Integrated verification for agile hardware design,” in FMCAD,
2018, pp. 1–5.

[19] Cadence Design Systems, Inc., “JasperGold: Formal Property
Verification App.” 2018, [Online]. Available:http://www.jasper-
da.com/products/jaspergold-apps/, accessed on: 2022-04.

[20] Xilinx, “Vivado Design Suite User Guide,” 2021, [Online].
Available:https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-
synthesis, accessed on: 2022-04.

[21] B. Y. Huang, H. Zhang, A. Gupta, and S. Malik, “ILAng: A modeling
and verification platform for socs using instruction-level abstractions,”
in 25th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems conference series, TACAS 2019
held as part of the 22nd European Joint Conferences on Theory and
Practice of Software, ETAPS 2019. Springer Verlag, 2019, pp. 351–
357.

[22] P. R. Panda, “SystemC: A modeling platform supporting multiple design
abstractions,” in Proceedings of the 14th international symposium on
Systems synthesis, 2001, pp. 75–80.

[23] A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez, “Transaction level
modeling in SystemC,” Open SystemC Initiative, vol. 1, no. 1.297, 2005.

[24] R. Nikhil, “Bluespec System Verilog: Efficient, correct RTL from high
level specifications,” in Proceedings. Second ACM and IEEE Interna-
tional Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE’04. IEEE, 2004, pp. 69–70.

[25] A. C. Wright, “Modular SMT-based verification of rule-based hardware
designs,” Ph.D. dissertation, Massachusetts Institute of Technology,
2021.

[26] T. Bourgeat, C. Pit-Claudel, and A. Chlipala, “The essence of Bluespec:
A core language for rule-based hardware design,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020, pp. 243–257.

[27] J. Choi, M. Vijayaraghavan, B. Sherman, and A. Chlipala, “Kami:
A platform for high-level parametric hardware specification and its
modular verification,” 2017.

[28] M. Christensen, T. Sherwood, J. Balkind, and B. Hardekopf, “Wire sorts:
A language abstraction for safe hardware composition,” in Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, 2021, pp. 175–189.

[29] L. De Alfaro and T. A. Henzinger, “Interface automata,” ACM SIGSOFT
Software Engineering Notes, vol. 26, no. 5, pp. 109–120, 2001.

[30] L. d. Alfaro and T. A. Henzinger, “Interface theories for component-
based design,” in International Workshop on Embedded Software.
Springer, 2001, pp. 148–165.

[31] K. L. McMillan, “A compositional rule for hardware design refinement,”
in CAV, 1997, p. 24–35.

[32] D. Giannakopoulou, K. S. Namjoshi, and C. S. Pasareanu, “Composi-
tional reasoning,” in Handbook of Model Checking, 2018, pp. 345–383.

[33] R. Jhala and K. L. McMillan, “Microarchitecture verification by com-
positional model checking,” in CAV, 2001, p. 396–410.

[34] M. Talupur and M. R. Tuttle, “Going with the flow: Parameterized
verification using message flows,” in 2008 Formal Methods in Computer-
Aided Design, 2008, pp. 1–8.

[35] C.-T. Chou, P. K. Mannava, and S. Park, “A simple method for
parameterized verification of cache coherence protocols,” in FMCAD.
Springer Berlin Heidelberg, vol. 3312, pp. 382–398.

[36] K. S. Namjoshi and R. J. Trefler, “Parameterized compositional model
checking,” in Proceedings of the 22nd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems - Volume
9636. Berlin, Heidelberg: Springer-Verlag, 2016, p. 589–606.

