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Abstract
This paper proposes an automated framework for quantitative ver-
ification and design space exploration of cyber-physical systems
in the presence of uncertainty, leveraging assume-guarantee con-
tracts expressed in Stochastic Signal Temporal Logic (StSTL). We
introduce quantitative semantics for StSTL and formulations of the
quantitative verification and design space exploration problems as
bi-level optimization problems. We show that these optimization
problems can be effectively solved for a class of stochastic systems
and a fragment of bounded-time StSTL formulas. Our algorithm
searches for partitions of the upper-level design space such that
the solutions of the lower-level problems satisfy the upper-level
constraints. A set of optimal parameter values are then selected
within these partitions. We illustrate the effectiveness of our frame-
work on the design of a multi-sensor perception system and an
automatic cruise control system.
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1 Introduction
Design and verification of modern cyber-physical systems (CPSs)
are challenging for several reasons. The number of heterogeneous
requirements to be satisfied has increased as safety-critical CPSs
are deployed to perform missions under strict regulations. The
design space size has also expanded, requiring design decisions
over multiple interconnected dimensions, e.g., control reliability,
sensing accuracy, and energy consumption, among others. Finally,
CPSs operate in the presence of uncertainty due, among other
sources, to noise and disturbances in the system as well as the
highly dynamic, unstructured, and even adversarial, environments.

Several approaches have been proposed to aid design and verifi-
cation of CPSs [1]. Among these, the approaches based on assume-
guarantee (A/G) contracts [2–4], often specified using temporal
logics [5, 6], offer effective mechanisms to analyze system behav-
iors in a modular way and reason about the correctness of systems
assembled from independently developed components [7–11]. How-
ever, automated compositional reasoning about system properties
in the presence of uncertainty remains challenging.
This paper addresses this challenge by building on a composi-

tional framework of stochastic A/G contracts [12], which relies on
Stochastic Signal Temporal Logic (StSTL), a specification language
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for capturing probabilistic behaviors, to conveniently balance ex-
pressiveness with support for computationally tractable encodings
of analysis and synthesis tasks in terms of optimization problems.
StSTL contracts have shown to be effective when dealing with qual-
itative verification tasks, aiming to establish whether a system, or
a class of systems, satisfies a certain property with high probabil-
ity by verifying, for example, that a stochastic system satisfies a
stochastic contract, or that a stochastic contract refines another
stochastic contract. However, many design problems are rather
concerned with quantitative reasoning, aiming to find, for instance,
by which “margin” a certain probability bound on the satisfaction
of a requirement can be guaranteed. While a number of efforts have
resorted to notions of robust satisfaction of logic formulas [13–16]
in a deterministic setting, effective frameworks to formulate and
solve these problems in a stochastic setting have been elusive.

Our contributions is summarized as follows.We introduce quanti-
tative semantics for StSTL in terms of a robustness estimate, capable
of quantifying the degree of satisfaction of an StSTL formula. The
robustness estimate allows reasoning about the robust satisfaction
of probabilistic temporal constraints. Moreover, we show that it
can be mapped to another estimate, termed predicate robustness
estimate, which allows translating often intractable probabilistic
constraints into more tractable, deterministic constraints over the
statistics, e.g., expectations and variances, of the system variables.
Based on the quantitative semantics of StSTL, we formulate

quantitative verification and parameter synthesis problems over
parametric system models and StSTL contracts. In particular, we
show that the parameter synthesis problem can be cast as a bi-level
optimization problem. Moreover, for linear systems with additive
Gaussian uncertainty [17, 18], the robust satisfaction of a fragment
of bounded-time StSTL can be encoded into mixed integer linear
programs (MILPs) or mixed integer quadratically-constrained pro-
grams (MIQCPs) which can be effectively solved using off-the-shelf
solvers. Based on these encodings, we provide effective algorithms
to solve the quantitative verification and parameter synthesis prob-
lems with StSTL contracts. We implement the proposed framework
and algorithms in the PyCASSE toolbox and illustrate their effec-
tiveness on the design of a multi-sensor perception and adaptive
cruise control (ACC) systems.

2 Preliminaries
We introduce the class of stochastic systems we consider in this
paper together with background notions on A/G contracts, StSTL,
and bi-level optimization. We then provide a brief discussion of the
related work. In the following, we denote the set of real numbers,
non-negative real numbers, and non-negative integers by R, R≥0,
and N0, respectively. The transpose of a vector 𝑎 and a matrix𝐴 are

𝑎𝑇 and𝐴𝑇 , respectively. For a set 𝐵, its complement is 𝐵. The empty
set is denoted by ∅. ∪ and ∩ represent the union and intersection
between sets, respectively. The logical symbols� denotes truewhile
⊥ denotes false. Finally, ¬, ∧, and ∨ denote the logical negation,
conjunction, and disjunction, respectively.
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2.1 Assume-Guarantee (A/G) Contracts

Let 𝑀 denote a component, i.e., an element of a system, character-
ized by a set of variables 𝑉 and a set of behaviors [[𝑀]] over 𝑉 .
We denote the composition of components 𝑀1 and 𝑀2 by 𝑀1 × 𝑀2.
An A/G contract 𝐶 is a triple (𝑉 , 𝐴,𝐺), where 𝑉 is the set of vari-
ables, and𝐴 and𝐺 are sets of behaviors over𝑉 . The assumptions𝐴
are the set of behaviors that 𝑀 expects from its environment. The
guarantees 𝐺 are the set of behaviors that 𝑀 promises given that
the environment provides behaviors within 𝐴. We omit 𝑉 in the
contract tuple, when it is clear from the context. A component 𝐸 is
a valid environment of 𝐶 , i.e., 𝐸 |=𝐸 𝐶 , if [[𝐸]] is contained within
𝐴, i.e., [[𝐸]] ⊆ 𝐴. A component 𝑀 is a valid implementation of 𝐶 ,
i.e., 𝑀 |= 𝐶 , if the set of its behaviors [[𝑀]] intersected with 𝐴 is

contained in 𝐺 , i.e., [[𝑀]] ∩ 𝐴 ⊆ 𝐺 , or [[𝑀]] ⊆ 𝐺 ∪ 𝐴.
A contract 𝐶 = (𝐴,𝐺) is compatible if and only if there exists a

valid environment for it, i.e., 𝐴 ≠ ∅, and consistent if and only if

there exists a valid implementation, i.e., 𝐺 ∪ 𝐴 ≠ ∅. The refinement
relation between contracts allows reasoning about the replaceability
of a contract by another contract. We say that𝐶2 refines𝐶1, written
𝐶2 � 𝐶1, if and only if 𝐶2 has weaker assumptions, i.e., 𝐴1 ⊆ 𝐴2,
and stronger guarantees (in the context of the assumptions), i.e.,

𝐺2 ∪ 𝐴2 ⊆ 𝐺1 ∪ 𝐴1. We can then replace 𝐶1 with 𝐶2. Contracts
can be combined to construct more complex contracts using the
conjunction (∧) and composition (⊗) operations. Conjunction can
be used, for example, to combine multiple requirements that must
be satisfied simultaneously by a single component. If a component
𝑀 implements the conjunction of 𝐶1 and 𝐶2, i.e., 𝑀 |= 𝐶1 ∧ 𝐶2,
then 𝑀 also implements 𝐶1 and 𝐶2 individually, i.e., 𝑀 |= 𝐶1 and
𝑀 |= 𝐶2. On the other hand, composition can be used to combine
multiple component-level requirements to obtain a system-level
requirement. Given 𝑀1 such that 𝑀1 |= 𝐶1 and 𝑀2 such that 𝑀2 |=
𝐶2, we can reason about the properties of the composite system
𝑀1 × 𝑀2 using 𝐶1 ⊗ 𝐶2. We refer to the literature [2] for further
details on the formal semantics of contracts and their algebra.

2.2 Discrete-Time Stochastic Control System

We use contracts to specify the behaviors of discrete-time stochastic
systems, defined below. Let (Ω, F , P) be a probability space, where
Ω is a set of outcomes, F is a set of events, and P : F → [0, 1] is a
function that assigns probabilities to events [19]. The cumulative
distribution function (cdf) of a random variable (RV)𝑤 is defined as
the probability of the event {𝑤 ≤ 𝑤}, i.e., 𝐹𝑤 (𝑤) = P{𝑤 ≤ 𝑤}.

Definition 1 (Discrete-Time Stochastic Control System).
A discrete-time stochastic control system (dt-SCS) is a tuple
(𝑋,𝑈 , 𝑍,𝑊 ,𝑉 ,w, v, 𝑓 , 𝑔, ℎ), where, at time step 𝑘 ∈ N0:

• 𝑥𝑘 ∈ 𝑋 is the system state and 𝑋 is the state space;
• 𝑢𝑘 ∈ 𝑈 is the control input and𝑈 is the control input space;
• 𝑧𝑘 ∈ 𝑍 is the measurement vector and 𝑍 is the measurement
space;

• 𝑤𝑘 ∈ 𝑊 is the process input and𝑊 is the process input space;
• 𝑣𝑘 ∈ 𝑉 is the measurement input and 𝑉 is the measurement
input space;

• w := {𝑤𝑘 : Ω → 𝑊 , 𝑘 ∈ N0} and v := {𝑣𝑘 : Ω → 𝑉 , 𝑘 ∈

N0} are random processes, consisting of sequences of ran-
dom vectors𝑤𝑘 and 𝑣𝑘 over the probability space (Ω, F , P);

• The system process model 𝑓 : 𝑋 ×𝑈 ×𝑊 → 𝑋 , the measure-

mentmodel 𝑔 : 𝑋×𝑉 → 𝑍 , and the control law ℎ : 𝑍𝑘+1 → 𝑈
are measurable functions [19] which describe the evolution
of the stochastic system. Given the value of the initial state

𝑥0, the system dynamics can be written as:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ,𝑤𝑘 ), 𝑧𝑘 = 𝑔(𝑥𝑘 , 𝑣𝑘 ), 𝑢𝑘 = ℎ(𝑧0, . . . , 𝑧𝑘 ). (1)

A behavior of a dt-SCS is a sequence: 𝝃 = 𝜉0, 𝜉1, · · · , where
𝜉𝑘 = (𝑥𝑇

𝑘
, 𝑢𝑇
𝑘

, 𝑧𝑇
𝑘

,𝑤𝑇
𝑘

, 𝑣𝑇
𝑘
)𝑇 ∈ R𝑛𝑋 +𝑛𝑈 +𝑛𝑍 +𝑛𝑊 +𝑛𝑉 and 𝑛𝑋 , 𝑛𝑈 , 𝑛𝑍 ,

𝑛𝑊 , 𝑛𝑉 are the dimensions of the corresponding spaces. We also
denote the behavior starting at time step 𝑘 by (𝝃 , 𝑘) = 𝜉𝑘 , 𝜉𝑘+1, · · · .

2.3 Stochastic Signal Temporal Logic

StSTL [12] extends Signal Temporal Logic (STL) [15] to enable
the expression of probabilistic temporal properties of real-valued
stochastic systems. We use StSTL to represent contract assumptions
and guarantees.

2.3.1 StSTL Syntax. StSTL formulas are defined over atomic
predicates (APs) represented by chance constraints of the form:

𝜇 [𝑝 ] := P{𝜇 (𝑣) ≤ 0} ≥ 𝑝 , where 𝜇 : R𝑛 → R is a real-valued
measurable function, 𝑣 ∈ R𝑛 is a random vector on the probability
space (Ω, F , P), and 𝑝 ∈ [0, 1] is the probability threshold. An AP
evaluates to � if and only if 𝜇 (𝑣) ≤ 0 holds with probability larger
than or equal to 𝑝 . The syntax of an StSTL formula is given as
follows:

𝜙 := 𝜇 [𝑝 ] | ¬𝜙 | 𝜙 ∧𝜓 | 𝜙U[𝑡1,𝑡2 ]𝜓, (2)

where 𝜇 [𝑝 ] is an AP,𝜙 and𝜓 are StSTL formulas, 𝑡1, 𝑡2 ∈ N0∪{+∞},
and U is the until operator. Temporal operators such as globally (G)
and eventually (F) can be expressed using the operators in (2).

2.3.2 StSTL Semantics. The semantics of StSTL are defined re-
cursively as follows:

(𝝃 , 𝑘) |= 𝜇 [𝑝 ] ↔ P{𝜇 (𝜉𝑘 ) ≤ 0} ≥ 𝑝

(𝝃 , 𝑘) |= ¬𝜙 ↔ ¬ ((𝝃 , 𝑘) |= 𝜙)

(𝝃 , 𝑘) |= 𝜙 ∧𝜓 ↔ ((𝝃 , 𝑘) |= 𝜙) ∧ ((𝝃 , 𝑘) |= 𝜓 )

(𝝃 , 𝑘) |= 𝜙U[𝑡1,𝑡2 ]𝜓 ↔ ∃𝑖 ∈ [𝑘 + 𝑡1, 𝑘 + 𝑡2] : ((𝝃 , 𝑖) |= 𝜓 ) ∧

(∀𝑗 ∈ [𝑘, 𝑖 − 1] : (𝝃 , 𝑗) |= 𝜙) .

An interval [𝑡1, 𝑡2] in an StSTL formula can be unbounded, e.g.,
of the form [𝑡1, +∞). In this paper, we focus on bounded-time StSTL
formulas, i.e., formulas that only include bounded intervals.
Under additional assumptions on the system model, the satis-

faction of an StSTL formula can be encoded into a set of deter-
ministic constraints over the statistics of the system variables [12].
Consider, for instance, the encoding of an AP. If the inverse of
the cdf 𝐹𝜇 (𝜉𝑘 ) is available, then we can translate the chance con-

straint 𝜇 [𝑝 ] := P{𝜇 (𝜉𝑘 ) ≤ 0} ≥ 𝑝 into the deterministic constraint

𝐹−1
𝜇 (𝜉𝑘 )

(𝑝) ≤ 0. Previous work leverages such a transformation

to provide sound encodings of the satisfaction of bounded-time
StSTL formulas for discrete-time stochastic systems in terms of
more tractable, deterministic mixed integer linear constraints [12].
In this paper, we extend this approach to deal with the quantita-
tive semantics of bounded-time StSTL and the solution of robust
contract-based verification and synthesis problems.

2.4 Bi-Level Optimization

A bi-level optimization problem is an optimization problem which
embeds another optimization problem as a constraint. Its variables
can be partitioned into two vectors, 𝑎 ∈ R𝑛 and 𝑏 ∈ R𝑚 , and an
optimal solution 𝑎 for the upper-level optimization problem is to
be selected over the set of optimal solutions 𝐵∗ of the lower-level
optimization problem. A generic bi-level optimization problem can
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be posed in the form [20]:

min
𝑎∈R𝑛

𝐹 (𝑎, 𝑏) s.t. 𝐺 (𝑎, 𝑏) ≤ 0, (3)

𝑏 ∈ argmin
𝑏∈R𝑚

{𝑓 (𝑎, 𝑏) : 𝑔 (𝑎, 𝑏) ≤ 0}, (4)

where (3) is the upper-level optimization problem, with its objective
function 𝐹 : R𝑛 ×R𝑚 → R and constraint function𝐺 : R𝑛 ×R𝑚 →

R, and (4) is the lower-level problem with its objective function
𝑓 : R𝑛 × R𝑚 → R and constraint function 𝑔 : R𝑛 × R𝑚 → R.

2.5 Related Work

A few specification languages [12, 21–25] have been proposed to
capture probabilistic behaviors of hybrid systems for verification
and synthesis under uncertainty. A comparison between some of
these approaches can be found in the literature [12]. Robust se-
mantics were formulated for Stochastic Temporal Logic (StTL) [24],
which has similar expressiveness as StSTL, to capture margins of
satisfaction in terms of probability values and predicate values. In
this paper, we define robust semantics for StSTL in the probability
space and then show that they can be directly mapped to a robust-
ness estimate in the signal space, which is only a function of the
statistics of the system variables and can be regarded as the “deter-
minized” version of the original StSTL robustness estimate. Risk
STL (RiSTL) has also been proposed to incorporate risk metrics into
a probabilistic STL framework [25]. A fragment of RiSTL can be
translated into STL formulas in the spirit of the determinization ap-
proach adopted in this paper. Differently from previous approaches,
our focus is on an automated compositional framework for verifi-
cation and design space exploration via notions of refinement that
help quantify the level of uncertainty in multi-component systems
and its propagation across different abstraction layers in a design.

The parameter synthesis problems in this paper can be cast as bi-
level optimization problems, which are known to be NP-hard [26].
Simply proving the optimality of a solution is also shown to be NP-
hard for this class of problems [27]. When the lower-level problem
is convex and sufficiently regular [28], the bi-level problem can
be reduced to a single optimization problem [29]. On the other
hand, nested approaches using heuristic algorithms are applicable
under weaker assumptions [28] but tend to be computationally
expensive and provide poor optimality guarantees. Our algorithm,
based on the nested approach, leverages the particular structure of
the bi-level problems of interest, where the objective of the lower-
level problem serves as the constraint for the upper-level problem.
We solve the lower-level problem over partitions of the upper-
level solution space and select only those partitions such that the
solutions of the lower-level problem always satisfy the upper-level
constraint. We can then effectively explore the upper-level solution
space while providing optimality guarantees within a user-defined
tolerance based on the granularity of the partitions.

3 Quantitative Reasoning with StSTL
While the qualitative semantics of StSTL [12] can be used to provide
a yes-or-no answer to whether a system satisfies a formula, we
introduce the quantitative semantics for StSTL to be able to quantify
the margin by which a formula is satisfied. We then extend the
logic to support parameters in the predicates.

3.1 Robustness Semantics of StSTL

By extending the quantitative semantics of STL [14], we define the
quantitative semantics of StSTL via a robustness estimate 𝜌 , which
maps a set of system behaviors to a real number as follows:

଴ߩ = ℙ ݒ ≤ 0 − ݌ ≈ 0.14

଴ᇱߩ = ௩ିܨ ଵ ݌ + ଴ߩ − ௩ିܨ ଵ ݌ ≈ 1

௩ܨ −1 = ℙ ݒ ≤ −1 ≈ ݌ = 0.84
௩ܨ 0 = ℙ ݒ ≤ 0 ≈ 0.98

௩ିܨ ଵ ݌ ≈ −1 ௩ିܨ ଵ ݌ + ଴ߩ = 0
Figure 1. Robustness estimate 𝜌 and predicate robustness estimate 𝜌′

for the predicate P{𝑣 ≤ 0} ≥ 𝑝 = 0.84 shown on the cdf 𝐹𝑣 of 𝑣, where
𝑣 ∼ 𝑁 (−2, 1) . 𝜌0 = P{𝑣 ≤ 0} − 0.84 ≈ 0.14 and 𝜌′0 = 𝐹−1𝑣 (0.84 + 𝜌0) −

𝐹−1𝑣 (0.84) ≈ 1 where 𝐹−1𝑣 is the inverse cdf of 𝑣.

𝜌 (𝜇 [𝑝 ] , 𝝃 , 𝑘) = P{𝜇 (𝜉𝑘 ) ≤ 0} − 𝑝

𝜌 (¬𝜙, 𝝃 , 𝑘) = −𝜌 (𝜙, 𝝃 , 𝑘)

𝜌 (𝜙 ∧𝜓, 𝝃 , 𝑘) = min(𝜌 (𝜙, 𝝃 , 𝑘), 𝜌 (𝜓, 𝝃 , 𝑘))

𝜌 (𝜙U[𝑡1,𝑡2 ]𝜓, 𝝃 , 𝑘) = max
𝑖∈[𝑘+𝑡1,𝑘+𝑡2 ]

(𝜌 (𝜓, 𝝃 , 𝑖), min
𝑗 ∈[𝑘,𝑖−1]

𝜌 (𝜙, 𝝃 , 𝑗))

In the same way the quantitative semantics of STL have the funda-
mental properties of soundness [15, Theorem 1] and correctness [15,
Theorem 2], the robustness estimate 𝜌 of an StSTL can be proven to
be sound and correct. Intuitively, 𝜌 measures the margin between

P{𝜇 (𝜉𝑘 ) ≤ 0} and 𝑝 . (𝝃 , 𝑘) satisfies 𝜇 [𝑝 ] with robustness 𝜌0, if it

satisfies 𝜇 [𝑝+Δ𝑝 ] for any perturbation Δ𝑝 less than or equal to 𝜌0,

i.e., ∀Δ𝑝 ∈ [0, 𝜌0], (𝝃 , 𝑘) |= 𝜇 [𝑝+Δ𝑝 ] holds.

Example 1. Consider a sensor whose noise can be modeled by a
normally distributed RV 𝑥 with expectation E[𝑥] = 0 and variance
𝑉𝑎𝑟 [𝑥] = 1. We want to find the robustness margin by which the

sensor satisfies the StSTL formula (𝑥 − 2) [0.84] , stating that “𝑥 is
less than or equal to 2 with probability larger than or equal to
0.84.” Let 𝑣 = 𝑥 − 2. As shown in Figure 1, the robustness estimate
is 𝜌0 = P{𝑣 ≤ 0} − 0.84 ≈ 0.14. Therefore, for any perturbation

Δ𝑝 ≤ 0.13 ≤ 𝜌0, we still have 𝑥 |= (𝑥 − 2) [0.84+Δ𝑝 ] . In other words,
the noise 𝑥 is less than or equal to 2 with probability as large as
0.97.

3.2 Deterministic Encoding of Robust StSTL Satisfaction

Inspired by the qualitative encoding of the satisfaction of an StSTL
formula into deterministic constraints, we look for transformations
of the probabilistic robustness estimate into a deterministic estimate.
We assume that the inverse of the cdf 𝐹𝜇 (𝜉𝑘 ) is available. We can

then define the predicate robustness estimate 𝜌 ′ of an StSTL AP as
follows:

𝜌 ′(𝜇 [𝑝 ] , 𝝃 , 𝑘, 𝜌) = 𝐹−1
𝜇 (𝜉𝑘 )

(𝑝 + 𝜌) − 𝐹−1
𝜇 (𝜉𝑘 )

(𝑝) , (5)

where 𝜌 ′measures the margin between 𝐹−1
𝜇 (𝜉𝑘 )

(𝑝+𝜌) and 𝐹−1
𝜇 (𝜉𝑘 )

(𝑝).

𝜌 ′ preserves the order and sign of 𝜌 by the monotonicity of 𝐹−1
𝜇 (𝜉𝑘 )

.

𝜌 ′ can then be used in the same way as 𝜌 to quantitatively reason

about the satisfaction of an StSTL formula. (𝝃 , 𝑘) satisfies 𝜇 [𝑝 ] with
predicate robustness 𝜌 ′

0 if, for any perturbationΔ𝜇 less than or equal

to 𝜌 ′
0, (𝝃 , 𝑘) |= (𝜇 + Δ𝜇) [𝑝 ] holds. Since P{𝜇 (𝜉𝑘 ) ≤ 0} = 𝑝 + 𝜌 if
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Chance Constraintߤ ௣ ≔ ℙ ߤ ௞ߦ ≤ 0 ≥ ݌ Determinized Chance Constraintܨఓ కೖିଵ ݌ ≤ 0
Robustness Estimateߩ ߤ ௣ , ,ߦ ݇ ≔ ℙ ߤ ௞ߦ ≤ 0 − ݌ Determinized Robustness Estimateߩᇱ ,݌ ߩ ≔ ఓܨ కೖିଵ +݌ ߩ − ఓܨ కೖିଵ ݌

Qualitative

Quantitative

Figure 2. Relationships between qualitative and quantitative satisfaction
of StSTL APs and their deterministic encodings.

and only if 𝐹−1
𝜇 (𝜉𝑘 )

(𝑝 + 𝜌) = 0, and 𝜌 = P{𝜇 (𝜉𝑘 ) ≤ 0} − 𝑝 , by the

robustness semantics of StSTL, we conclude:

𝜌 ′(𝜇 [𝑝 ] , 𝝃 , 𝑘) = −𝐹−1
𝜇 (𝜉𝑘 )

(𝑝) . (6)

Example 2. Consider the StSTL AP 𝑣 [0.84] = (𝑥 − 2) [0.84] in

Example 1. As shown in Figure 1, we have 𝜌 ′
0 = −𝐹−1

𝑣 (0.84) ≈ 1

and, accordingly, (𝝃 , 𝑘) |= (𝑣 + Δ𝜇) [0.84] for all Δ𝜇 ≤ 1 ≤ 𝜌 ′
0. In

other words, with probability larger than or equal to 0.84, the sensor
noise 𝑥 is less than or equal to 𝑐 , with 𝑐 as small as 1.

Figure 2 summarizes the relationships between qualitative and
quantitative satisfaction of an StSTL AP and their encodings into
deterministic constraints. The robustness estimate 𝜌 (bottom-left
constraint in Figure 2) provides a quantitative measure of satisfac-

tion for the StSTL AP 𝜇 [𝑝 ] as a real number between −1 and 1. We
can convert 𝜌 into a predicate robustness estimate 𝜌 ′ (bottom-right
constraint in Figure 2), which translates a margin defined in the
probability space into a margin in terms of the statistics of the
predicate 𝜇 and, ultimately, the statistics of the system variables.
𝜌 ′ can assume any real value.

3.3 Parametric Stochastic Signal Temporal Logic

Parametric StSTL (PStSTL) extends StSTL [12] with parameters.
Let 𝜋 ∈ Π be a set of parameters partitioned into two disjoint
sets of signal parameters, 𝜋𝑠 = {𝑠1, 𝑠2, . . .}, with domain Π𝑠 , and
probability threshold parameters, 𝜋𝑝 = {𝑝1, 𝑝2, . . .}, with domain
Π𝑝 . We denote a PStSTL formula 𝜙 parametrized by 𝜋 by 𝜙 (𝜋). For

example, 𝜙 (𝜋) := F[0,5] (𝑥 + 𝑠) [𝑝 ] has parameter set 𝜋 = {𝑠, 𝑝}.

4 Problem Formulation
We express the sets 𝐴 and 𝐺 of a contract 𝐶 = (𝐴,𝐺) using StSTL
formulas 𝜙𝐴 and 𝜙𝐺 , respectively. The formula 𝜙𝐶 = 𝜙𝐴 → 𝜙𝐺
specifies the set of behaviors of any valid implementation of 𝐶 .
Operations and relations between assumptions and guarantees in
contracts can then be mapped to operations and relations between
formulas [12]. Compatibility, consistency, and refinement checking
can be translated into satisfiability or validity checking of formulas.
Robust verification translates, instead, into robust satisfaction and
robust refinement problems, defined below.

Problem 1 (Robust Satisfaction). Given a stochastic system 𝑀 , a
stochastic contract 𝐶 = (𝜙𝐴, 𝜙𝐺 ), and 𝜌∗ ∈ R≥0, check whether 𝑀
satisfies𝐶 with robustness (at least) 𝜌∗, written𝑀 |=𝜌∗ 𝐶 , i.e., whether

𝜌 (𝜙𝐶 , 𝝃𝑀 , 𝑘) ≥ 𝜌∗ for all system behaviors (𝝃𝑀 , 𝑘).

Problem 2 (Robust Refinement). Let 𝐶1 = (𝜙𝐴1, 𝜙𝐺1) and 𝐶2 =
(𝜙𝐴2, 𝜙𝐺2) be stochastic contracts defined on a stochastic system 𝑀 .
Given 𝜌∗ ∈ R≥0, check whether𝐶2 refines𝐶1 with robustness (at least)
𝜌∗, written 𝐶2 �𝜌∗ 𝐶1, i.e., whether 𝜌 (𝜙𝐴1 → 𝜙𝐴2, 𝝃𝑀 , 𝑘) ≥ 𝜌∗ and
𝜌 (𝜙𝐶2

→ 𝜙𝐶1
, 𝝃𝑀 , 𝑘) ≥ 𝜌∗ for all system behaviors (𝝃𝑀 , 𝑘).

On the other hand, we cast design space exploration problems
as parameter synthesis problems where a set of optimal parameter

values must be selected such that the contracts are satisfied. To
formulate the problem, we first introduce parametric systems and
contracts.

During the design process, some constants in the stochastic sys-
tem may be regarded as design parameters. We represent such
scenario with a parametric stochastic system (component) 𝑀 (𝜋𝑀 ),
where 𝜋𝑀 is a set of parameters and Π𝑀 is the domain for 𝜋𝑀 . Sim-
ilarly, some elements in the stochastic contract specification may
also be parametrized. We model such scenario with a parametric
stochastic contract which has assumptions and guarantees written
in PStSTL, i.e., 𝐶 (𝜋𝐶 ) = (𝜙𝐴 (𝜋𝐶 ), 𝜙𝐺 (𝜋𝐶 )), where 𝜋𝐶 is a set of
parameters, and Π𝐶 is the domain for 𝜋𝐶 .

Problem 3 (Parameter Synthesis). Given a parametric stochas-
tic system 𝑀 (𝜋𝑀 ), a parametric stochastic contract 𝐶 (𝜋𝐶 ) =
(𝜙𝐴 (𝜋𝐶 ), 𝜙𝐺 (𝜋𝐶 )), and a cost function 𝐽 : Π𝐶 × Π𝑀 → R, find an
optimal set of parameters 𝜋 = 𝜋𝐶∪𝜋𝑀 such that𝑀 (𝜋𝑀 ) |=𝜌∗ 𝐶 (𝜋𝐶 ).

Problem 3 can be written as a bi-level optimization problem:

min
𝜋∈Π𝐶×Π𝑀

𝐽 (𝜋 ) s.t. 𝜌 (𝜙𝐶 (𝜋𝐶 ), 𝝃𝑀 , 𝑘) ≥ 𝜌∗ (7)

(𝝃𝑀 , 𝑘) ∈ argmin
(𝝃𝑀,𝑘 )

{𝜌 (𝜙𝐶 (𝜋𝐶 ), 𝝃𝑀 , 𝑘) : (𝝃𝑀 , 𝑘) |= 𝜙𝐴 (𝜋𝐶 ) }

(8)

(7) is the upper-level problem and (8) is the lower-level problem.
Problem (8) searches for system behaviors that minimize the ro-
bustness estimate 𝜌 (𝜙𝐶 (𝜋𝐶 ), 𝝃𝑀 , 𝑘). In (8), we require that 𝜙𝐴 (𝜋𝐶 )
hold since we are interested in behaviors which robustly satisfy the
contract 𝜙𝐶 (𝜋𝐶 ) under valid environments. If the resulting mini-
mum robustness estimate 𝜌𝑚𝑖𝑛 (𝜙𝐶 (𝜋𝐶 ), 𝝃𝑀 , 𝑘) for the lower-level
problem is larger than or equal to 𝜌∗, then all the system behaviors
robustly satisfy 𝜙𝐶 (𝜋𝐶 ). Only if the parameters provide such a
guarantee, they are considered as the feasible space for the upper-
level problem (7), where we search for the set of optimal parameter
values 𝜋∗. We can also synthesize parameters such that refinement
is guaranteed to hold robustly.

Problem 4 (Parameter Synthesis Under Refinement). Let
𝐶1 = (𝜙𝐴1, 𝜙𝐺1) be a stochastic contract and 𝐶2 (𝜋𝐶 ) =
(𝜙𝐴2 (𝜋𝐶 ), 𝜙𝐺2 (𝜋𝐶 )) be a parametric stochastic contract de-
fined on a parameteric stochastic system 𝑀 (𝜋𝑀 ). Given a cost
function 𝐽 : Π𝐶 × Π𝑀 → R, find an optimal set of parameters
𝜋 = 𝜋𝐶 ∪ 𝜋𝑀 such that 𝐶2 (𝜋𝐶 ) �𝜌∗ 𝐶1 and 𝑀2 (𝜋𝑀 ) |=𝜌∗ 𝐶2 (𝜋𝐶 ).

Problem 4 can also be written as a bi-level optimization problem:

min
𝜋∈Π𝐶×Π𝑀

𝐽 (𝜋 ) s.t. 𝜌 (𝜙�𝐺 (𝜋𝐶 ) ∧ 𝜙𝐶2 (𝜋𝐶 ), 𝝃𝑀 , 𝑘) ≥ 𝜌∗ (9)

(𝝃𝑀 , 𝑘) ∈ argmin
(𝝃𝑀,𝑘 )

{𝜌 (𝜙�𝐺 (𝜋𝐶 ) ∧ 𝜙𝐶2 (𝜋𝐶 ), 𝝃𝑀 , 𝑘) :

(𝝃𝑀 , 𝑘) |= 𝜙�𝐴 (𝜋𝐶 ) ∧ 𝜙𝐴1 }
(10)

where 𝜙�𝐴 (𝜋𝐶 ) := 𝜙𝐴1 → 𝜙𝐴2 (𝜋𝐶 ) and 𝜙�𝐺 (𝜋𝐶 ) := 𝜙𝐶2
(𝜋𝐶 ) →

𝜙𝐶1
are the conditions for the robust refinement 𝐶2 (𝜋𝐶 ) �𝜌∗ 𝐶1 to

hold, respectively; 𝜙𝐶2
(𝜋𝐶 ) is the condition for 𝑀2 (𝜋𝑀 ) |= 𝐶2 (𝜋𝐶 )

to hold; (9) is the upper-level, and (10) is the lower-level problem.
Problem (10) searches for the minimum robustness value for the
refinement under the constraints that the system is implementable
and operates in a valid environment. If the minimum robustness
estimate 𝜌𝑚𝑖𝑛 (𝜙�𝐺 (𝜋𝐶 ) ∧ 𝜙𝐶2 (𝜋𝐶 ), 𝝃𝑀 , 𝑘) is larger than or equal
to 𝜌∗, we solve (9) to find the set of optimal parameter values 𝜋∗. In
the following, we discuss effective methods to solve the problems
above under additional assumptions on the system.
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5 Deterministic Encoding of StSTL Satisfaction
Given the stochastic system model, the predicate robustness es-
timate (6) allows translating the robust satisfaction of an StSTL
formula into a set of deterministic mixed integer constraints which
can be used to formulate the quantitative verification problems in
Section 4. The verification problems can be used as elements for
the solution of the parameter synthesis problems. In this paper,
we instantiate these problems for the class of discrete-time linear
systems with Gaussian process and measurement inputs, expressive
enough to capture a large number of applications [17, 30, 31]. We
assume that the dt-SCS 𝑀 is governed by the following dynamics:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 +𝑤𝑘 , 𝑧𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 , 𝑢𝑘 = 𝐷𝑧𝑘 + 𝐸, (11)

where 𝐴 ∈ R𝑛𝑋×𝑛𝑋 , 𝐵 ∈ R𝑛𝑋×𝑛𝑈 , 𝐶 ∈ R𝑛𝑍×𝑛𝑋 , 𝐷 ∈ R𝑛𝑈 ×𝑛𝑍 ,
𝐸 ∈ R𝑛𝑈 ×1, and the process and measurement inputs are white
Gaussian independent processes with 𝑤𝑘 ∼ N(0, 𝑄) and 𝑣𝑘 ∼

N(0, 𝑅) ∀ 𝑘 ∈ N0,𝑄 ∈ R𝑛𝑋×𝑛𝑋 and 𝑅 ∈ R𝑛𝑍×𝑛𝑍 being the process
andmeasurement input covariancematrices, respectively. Let StSTL
APs be in the form P{𝜇 (𝜉𝑘 ) ≤ 0} ≥ 𝑝 with:

𝜇 (𝜉𝑘 ) = 𝑎𝑇 𝑥𝑘 + 𝑏𝑇𝑢𝑘 + 𝑐𝑇 𝑧𝑘 + 𝑑𝑇𝑤𝑘 + 𝑒𝑇 𝑣𝑘 + 𝑓 , (12)

where 𝑎 ∈ R𝑛𝑋×1, 𝑏 ∈ R𝑛𝑈 ×1, 𝑐 ∈ R𝑛𝑍×1, 𝑑 ∈ R𝑛𝑊 ×1, 𝑒 ∈ R𝑛𝑉 ×1,
and 𝑓 ∈ R. We can then state the following result.

Theorem 1. For a stochastic system 𝑀 governed by (11) and the
StSTL AP P{𝜇 (𝜉𝑘 ) ≤ 0} ≥ 𝑝 with 𝜇 (·) in (12), the predicate robustness
estimate (6) is equivalent to

𝜌 ′
𝑘 (𝜇

[𝑝 ] , 𝑀) = −E[𝜇 (𝜉𝑘 )] − 𝐹−1 (𝑝) 𝜎𝜇 (𝜉𝑘 ) , (13)

where E[𝜇 (𝜉𝑘 )] and 𝑉𝑎𝑟 [𝜇 (𝜉𝑘 )] = 𝜎2
𝜇 (𝜉𝑘 )

can be computed as:

E[𝜇 (𝜉𝑘 )] = 𝛽𝛼𝑘𝑥0 + 𝛽
𝑘∑
𝑖=1

𝛼𝑘−𝑖𝐵𝐸 + 𝑏𝑇 𝐸 + 𝑓 , (14)

𝑉𝑎𝑟 [𝜇 (𝜉𝑘 )] =
𝑘∑
𝑖=1

(𝛽𝛼𝑘−𝑖 )𝑄 (𝛽𝛼𝑘−𝑖 )𝑇 + 𝑑𝑇𝑄𝑑 + 𝛾𝑅𝛾𝑇

+

𝑘∑
𝑖=1

(𝛽𝛼𝑘−𝑖−1𝐵𝐷)𝑅(𝛽𝛼𝑘−𝑖−1𝐵𝐷)𝑇 ,

(15)

𝐹−1 (·) is the inverse cdf of a standard Gaussian RV, 𝛼 = 𝐴 + 𝐵𝐷𝐶 ,
𝛽 = 𝑎𝑇 + 𝑏𝑇𝐷𝐶 + 𝑐𝑇𝐶 , and 𝛾 = 𝑏𝑇𝐷 + 𝑐𝑇 + 𝑒𝑇 .

Proof. From (11), 𝑥𝑘 , 𝑢𝑘 , and 𝑧𝑘 are linear combinations of the
Gaussian processes𝑤𝑘 and 𝑣𝑘 ; thus, they follow Gaussian distribu-
tions. 𝜇 (𝜉𝑘 ) is a linear combination of 𝑥𝑘 , 𝑢𝑘 , 𝑧𝑘 ,𝑤𝑘 , and 𝑣𝑘 ; hence,
𝜇 (𝜉𝑘 ) follows a Gaussian distribution. By substituting 𝑥𝑘 , 𝑢𝑘 , and
𝑧𝑘 in (12), we get exact expressions for 𝜇 (𝜉𝑘 ) which is normally
distributed. From this expression, we obtain (14) and (15). �

Given the deterministic encoding of an StSTL AP in (13), the
satisfaction of a bounded-time StSTL formula 𝜙 can be encoded as
a conjunction of deterministic constraints by applying the same
techniques proposed in the literature for StSTL [12]. Quantitative
encoding requires, however, taking the min and max of the robust-
ness estimates. We encode these constraints by using the methods
previously proposed for robust satisfaction of STL formulas [32]
into mixed integer constraints. In the general case, the determinis-
tic encoding of bounded-time StSTL satisfaction becomes a mixed
integer nonlinear program (MINLP) which is usually intractable.
However, if 𝑓 in (12) and 𝑝 in (6) are the only parameters and a

piecewise linear approximation of 𝐹−1 (·) is available, the encoding

Optimal Parameters: ߨ∗ = ∗஼ߨ ∗ெߨ,

Cost Functionܬ ஼ߨ ெߨ, Design SpaceΠ = Π஼ ∪ Πெ Maximum 
Partitionsܰܯଵ ଶܯ ܯ ெComponentsߨ Contracts

ଵܥ ଶܥ ܥ ஼ߨ Problem

Lower-Level 
Problem

Optimal Parameter Value Selection

Upper-Level 
Problem

Design Space 
Partition

SAT Partitions: Πା

PartitionΠ௖௨௥௥
SAT, 

UNSAT, or UNDET

MIP Translation

Robustness Estimate: ߩ′
Figure 3. Overview of the proposed framework for finding an optimal set
of parameter values for a stochastic system.

reduces to a MILP that can be effectively solved [33], as further
exemplified below.

Example 3. Consider a dt-SCS𝑀 and the PStSTL formula𝜙 (𝑐, 𝑝) :=
G[0,2] (𝑥 − 𝑐) [𝑝 ] where 𝑐 ∈ [0, 5] and 𝑝 ∈ [0.85, 0.95]. The initial
state is 𝑥0 = 0; the system dynamics are 𝑥𝑘+1 = 𝑥𝑘 + 𝑤𝑘 ; and
𝑤𝑘 ∼ N(1, 2) for each time step 𝑘 = 0, 1, 2. The distributions of 𝑥𝑘
at each time step 𝑘 can be found as follows: 𝑥0 = 0, 𝑥1 = 𝑥0 +𝑤0 ∼

N(1, 2), and 𝑥2 = 𝑥1 + 𝑤1 ∼ N(2, 4). The robustness estimate is
𝜌𝑘 = P{𝑥𝑘 − 𝑐 ≤ 0} − 𝑝 , but we resort to the predicate robustness

𝜌 ′
𝑘
(𝜙 (𝑐, 𝑝), 𝑀) = −E[𝑥𝑘−𝑐]−𝐹−1 (𝑝) 𝜎 [𝑥𝑘−𝑐], 𝑘 = 0, 1, 2, from (13),

where 𝐹−1 (𝑝) is a piecewise linear approximation of 𝐹−1 (𝑝). From
[32], we get the robustness 𝜌 ′(𝜙 (𝑐, 𝑝), 𝑀) = min(𝜌 ′

0, 𝜌 ′
1, 𝜌 ′

2), where
the min operator encodes the globally (G) operator. The constraint
𝜌 ′(𝜙 (𝑐, 𝑝), 𝑀) ≥ 𝜌∗ enforces the robust satisfaction of 𝜙 (𝑐, 𝑝).

If the elements in𝑄 or𝑅 are further used as parameters, quadratic

terms are introduced in the expression for 𝑉𝑎𝑟 [𝜇 (𝜉𝑘 )] = 𝜎2
𝜇 (𝜉𝑘 )

;

hence, the encoding reduces to a MIQCP, for which there are also
a number of effective solution methods [34] and off-the-shelf tools.

6 Robust Verification and Parameter Synthesis
Our automated framework addresses the problems formulated in
Section 4 using the encoding detailed in Section 5. Figure 3 depicts
the overall structure of the framework, taking as inputs the com-
ponent models, the contracts, the problem, the cost function, the
design space, and the maximum number of partitions used for pa-
rameter synthesis. The framework either returns 1) the robustness
margin by which the system satisfies the contracts or 2) a set of
optimal parameters with respect to the cost function.

We denote a set of mixed integer constraints, encoding the satis-
faction problem for StSTL formula 𝜙 and the stochastic system 𝑀
at time step 𝑘 , by C𝑘

[
𝜙, 𝑀

]
. The inequality 𝜌 ′

𝑘

(
𝜙, 𝑀) ≥ 𝜌∗ is then a

constraint in C𝑘
[
𝜙, 𝑀

]
. A behavior (𝝃𝑀 , 𝑘) of 𝑀 satisfies an StSTL

formula 𝜙 , i.e., (𝝃𝑀 , 𝑘) |= 𝜙 , if C𝑘
[
𝜙, 𝑀

]
is feasible.

Problem 1. Given the stochastic system 𝑀 , a stochastic contract
𝐶 = (𝜙𝐴, 𝜙𝐺 ), and 𝜙𝐶 := 𝜙𝐴 → 𝜙𝐺 , we compute the minimum
value of the predicate robustness 𝜌 ′

𝑘
(𝜙𝐶 , 𝑀) by solving the follow-

ing optimization problem:

min
(𝝃𝑀,𝑘 )

𝜌′𝑘
(
𝜙𝐶 , 𝑀

)
s.t. C𝑘

[
𝜙𝐶 , 𝑀

]
\ (𝜌′𝑘

(
𝜙𝐶 , 𝑀

)
≥ 𝜌∗)

If the minimum value of 𝜌 ′
𝑘
(𝜙𝐶 , 𝑀) is larger than or equal to 𝜌∗,

then 𝑀 satisfies 𝐶 with robustness (at least) 𝜌∗, i.e., 𝑀 |=𝜌∗ 𝐶 .
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Algorithm 1: 𝑓 𝑖𝑛𝑑𝑂𝑝𝑡𝑃𝑎𝑟𝑎𝑚(𝑀 (𝜋𝑀 ),𝐶 (𝜋𝐶 ),Π, 𝐽 , 𝑁 )

input :A Parameteric System, 𝑀 (𝜋𝑀 ),
A Parameteric Contract, 𝐶 (𝜋𝐶 ),
A Parameter Space, Π = Π𝐶 ∪ Π𝑀 ,
A Cost Function, 𝐽 : Π𝐶 × Π𝑀 → R,
Maximum Number of Partitions, 𝑁𝑚𝑎𝑥

output :A Set of Optimal Parameter Values,
𝜋∗ = 𝜋∗

𝐶 ∪ 𝜋∗
𝑀 ∈ Π

1 Π+,Π− ← ∅, Π𝑈 ← {Π}, 𝑟𝑚𝑖𝑛 ← ∞

2 while Π𝑈 ≠ 0 and |Π+| + |Π−| + |Π𝑈 | ≤ 𝑁𝑚𝑎𝑥 do

3 Π𝑐𝑢𝑟𝑟 ← deqeue(Π𝑈 )

4 if isSATPartition(𝑀 (𝜋𝑀 ),𝐶 (𝜋𝐶 ),Π𝑐𝑢𝑟𝑟 ) then
5 Π+ ← Π+ ∪ Π𝑐𝑢𝑟𝑟
6 else if isUNSATPartition(𝑀 (𝜋𝑀 ),𝐶 (𝜋𝐶 ),Π𝑐𝑢𝑟𝑟 ) then
7 Π− ← Π− ∪ Π𝑐𝑢𝑟𝑟
8 else

9 Π𝑈 ← Π𝑈 ∪ paramSpacePartition(Π𝑐𝑢𝑟𝑟 )
10 for Π𝑐𝑢𝑟𝑟 in Π+ do
11 if max𝜋 ∈Π𝑐𝑢𝑟𝑟 𝐽 (𝜋) > 𝑟𝑚𝑎𝑥 then
12 𝜋∗ ← argmin𝜋 ∈Π𝑐𝑢𝑟𝑟

𝐽 (𝜋)

13 𝑟𝑚𝑖𝑛 ← 𝐽 (𝜋∗)

14 return 𝜋∗

Problem 2. Given 𝐶1 = (𝜙𝐴1, 𝜙𝐺1) and 𝐶2 = (𝜙𝐴2, 𝜙𝐺2) where
𝜙�𝐴 := 𝜙𝐴1 → 𝜙𝐴2 and 𝜙�𝐺 := (𝜙𝐴2 → 𝜙𝐺2) → (𝜙𝐴1 → 𝜙𝐺1),
we compute the minimum values of 𝜌 ′

𝑘
(𝜙�𝐴 , 𝑀) and 𝜌 ′

𝑘

(
𝜙�𝐺 , 𝑀)

by solving the following optimization problems.

min
(𝝃𝑀,𝑘 )

𝜌′𝑘
(
𝜙�𝐺 , 𝑀

)
s.t. C𝑘

[
𝜙�𝐺 , 𝑀

]
\ (𝜌′𝑘

(
𝜙�𝐺 , 𝑀

)
≥ 𝜌∗)

min
(𝝃𝑀,𝑘 )

𝜌′𝑘
(
𝜙�𝐴, 𝑀

)
s.t. C𝑘

[
𝜙�𝐴, 𝑀

]
\ (𝜌′𝑘

(
𝜙�𝐴, 𝑀

)
≥ 𝜌∗)

If both values are larger than or equal to 𝜌∗, 𝐶2 refines 𝐶1 with
robustness (at least) 𝜌∗, i.e., 𝐶2 �𝜌∗ 𝐶1.

Problem 3. We solve the parameter synthesis problem using Al-
gorithm 1. Given a parametric stochastic system 𝑀 (𝜋𝑀 ), a parame-
teric stochastic contract𝐶 (𝜋𝐶 ), the parameter space Π = Π𝐶 ×Π𝑀 ,
a cost function 𝐽 (𝜋), and the maximum number of partitions 𝑁𝑚𝑎𝑥 ,
we find the set of optimal parameter values 𝜋∗ = (𝜋∗

𝐶 , 𝜋∗
𝑀 ) by

solving the bi-level optimization problem defined in (7) and (8).
We apply a nested method, where the lower-level problem (8)

is solved for each partition of the upper-level problem param-
eter space. The parameter space Π is split into multiple parti-
tions and each partition is classified as a SAT partition, an UN-
SAT partition, or an UNDET partition. Any set of parameter values
chosen within a SAT partition ensures that 𝑀 (𝜋𝑀 ) |=𝜌∗ 𝐶 (𝜋𝐶 ).
There exists no set of parameter values in an UNSAT partition
such that 𝑀 (𝜋𝑀 ) |=𝜌∗ 𝐶 (𝜋𝐶 ) holds, while a set of parameter val-
ues chosen from an UNDET partition may or may not ensure
𝑀 (𝜋𝑀 ) |=𝜌∗ 𝐶 (𝜋𝐶 ). The upper-level solution is optimized only
over the SAT partitions.

Algorithm 1 initializes the SAT and UNSAT partitions as empty
sets and the UNDET partition as {Π} (line 1). While UNDET parti-
tions exist and the number of all partitions is less than or equal to
𝑁𝑚𝑎𝑥 (line 2), the algorithm selects a partition Π𝑐𝑢𝑟𝑟 from a set of
UNDET partitions using the deqeue function (line 3). We classify
the partition Π𝑐𝑢𝑟𝑟 as a SAT partition, i.e., isSATPartition(·) = �,
if the value of the objective function for the following optimization

∗࣋≽࡯ ∗࣋≽
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Figure 4. Design examined in the case studies, including a multi-sensor
perception system𝑀𝑝𝑒𝑟 with 𝑁 fixed sensors and 𝐿 unknown sensors, and
an ACC system𝑀𝑎𝑐𝑐 with safety and comfort requirements.

problem is larger than or equal to 𝜌∗:

min
𝜋 ∈Π𝑐𝑢𝑟𝑟 ,(𝝃𝑀 ,𝑘)

𝜌 ′
𝑘

(
𝜙𝐶 (𝜋𝐶 ), 𝑀 (𝜋𝑀 )

)
s.t. C𝑘

[
𝜙𝐶 (𝜋𝐶 ), 𝑀 (𝜋𝑀 )

]
\ (𝜌 ′

𝑘

(
𝜙𝐶 (𝜋𝐶 ), 𝑀 (𝜋𝑀 )

)
≥ 𝜌∗)

and C𝑘
[
𝜙𝐴 (𝜋𝐶 ), 𝑀 (𝜋𝑀 )

]
.

If 𝜌 ′
𝑘

(
𝜙𝐶 (𝜋𝐶 ), 𝑀 (𝜋𝑀 )

)
≥ 𝜌∗, then any set of parameter values

within Π𝑐𝑢𝑟𝑟 is a robust set of parameter values and it is classified
as a SAT partition (line 4-5).
The partition Π𝑐𝑢𝑟𝑟 is classified as an UNSAT partition, i.e.,

isUNSATPartition(·) = � if the value of the objective function
for the following optimization problem is smaller than 𝜌∗:

max
𝜋 ∈Π𝑐𝑢𝑟𝑟 ,(𝝃𝑀 ,𝑘)

𝜌 ′
𝑘

(
𝜙𝐶 (𝜋𝐶 ), 𝑀 (𝜋𝑀 )

)
s.t. C𝑘

[
𝜙𝐶 (𝜋𝐶 ), 𝑀 (𝜋𝑀 )

]
\ (𝜌 ′

𝑘

(
𝜙𝐶 (𝜋𝐶 ), 𝑀 (𝜋𝑀 )

)
≥ 𝜌∗)

and C𝑘
[
𝜙𝐴 (𝜋𝐶 ), 𝑀 (𝜋𝑀 )

]
.

If 𝜌 ′
𝑘

(
𝜙𝐶 (𝜋𝐶 ), 𝑀 (𝜋𝑀 )

)
< 𝜌∗, no set of parameter values within

Π𝑐𝑢𝑟𝑟 is a robust set of parameter values and Π𝑐𝑢𝑟𝑟 is classified as
an UNSAT partition (line 6-7).

If the partition Π𝑐𝑢𝑟𝑟 is neither SAT nor UNSAT partition, Π𝑐𝑢𝑟𝑟
is classified as an UNDET partition and is further partitioned into
smaller partitions using the paramSpacePartition(·) function
(line 8-9). Any partitioning scheme can be used in Algorithm 1.
We implement the greatest uncertainty split which halves the range
of each dimension, partitioning any 𝑛-dimension partition into 2𝑛

partitions. Lastly, a set of optimal parameter values is selected and
the corresponding cost is computed for each SAT partition (line
10-13). The set of optimal parameter values 𝜋∗ with the least cost
𝑟𝑚𝑖𝑛 is returned as a solution (line 14).

Problem 4. Given 𝐶1 = (𝜙𝐴1, 𝜙𝐺1) and 𝐶2 (𝜋𝐶 ) =
(𝜙𝐴2 (𝜋𝐶 ), 𝜙𝐺2 (𝜋𝐶 )), the parameter synthesis under refine-
ment problem can be solved using Algorithm 1 with the contract
𝐶� (𝜋𝐶 ) = (𝜙�𝐴 (𝜋𝐶 ), 𝜙�𝐺 (𝜋𝐶 )), whose assumptions and guar-
antees are defined as 𝜙�𝐴 (𝜋𝐶 ) := (𝜙𝐴1 → 𝜙𝐴2 (𝜋𝐶 )) ∧ 𝜙𝐴1 and
𝜙�𝐺 (𝜋𝐶 ) := (𝜙𝐶2 (𝜋𝐶 ) → 𝜙𝐶1) ∧ 𝜙𝐶2 (𝜋𝐶 ), respectively.

7 Case Studies
We implemented our approach in the Python Contract-based Analy-

sis for Stochastic System Exploration (PyCASSE)1 library, and eval-
uated its effectiveness on the vehicle design scenario in Figure 4 by
executing our experiments on an Intel core i7 processor with 16-GB
RAM. The ego vehicle 𝑀 , i.e., the system under control with its

1https://github.com/descyphy/pycasse
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requirements specified in a top-level contract𝐶 , consists of a multi-
sensor perception and an ACC components 𝑀𝑝𝑒𝑟 and 𝑀𝑎𝑐𝑐 , speci-
fied by contracts𝐶𝑝𝑒𝑟 and𝐶𝑎𝑐𝑐 , respectively. The multi-sensor per-
ception system 𝑀𝑝𝑒𝑟 , specified in a contract𝐶𝑝𝑒𝑟 , consists of multi-
ple sensors 𝑀𝑖 , 𝑖 = 1, · · · , 𝑁 + 𝐿, and a data fusion module 𝑀𝑁+𝐿+1
specified by 𝐶𝑖 , 𝑖 = 1, · · · , 𝑁 + 𝐿 and 𝐶𝑁+𝐿+1, respectively. Its cor-

rectness can be checked by showing that
⊗𝑁+𝐿+1

𝑖=1 𝐶𝑖 �𝜌∗ 𝐶𝑝𝑒𝑟
and 𝑀𝑖 |=𝜌∗ 𝐶𝑖 , 𝑖 = 1, . . . , 𝑁 + 𝐿 + 1. The ACC system 𝑀𝑎𝑐𝑐 must
satisfy both the safety and comfort contracts 𝐶𝑠𝑎𝑓 𝑒 and 𝐶𝑐𝑜𝑚𝑓 , re-

spectively, which can be checked by showing that 𝑀𝑎𝑐𝑐 |=𝜌∗ 𝐶𝑠𝑎𝑓 𝑒
and 𝑀𝑎𝑐𝑐 |=𝜌∗ 𝐶𝑐𝑜𝑚𝑓 .

In this scenario, we focus on two case studies in Figure 4. In the
first case study, we design a multi-sensor perception system 𝑀𝑝𝑒𝑟
consisting of sensors with different noise levels. We synthesize
the sensor and the requirement parameters such that refinement⊗𝑁+𝐿+1

𝑖=1 𝐶𝑖 �𝜌∗ 𝐶𝑝𝑒𝑟 holds, while varying the number of sensors,
𝑁 and 𝐿. In the second case study, we explore the safety and comfort
requirements𝐶𝑠𝑎𝑓 𝑒 and𝐶𝑐𝑜𝑚𝑓 for the ACC system which regulates

the ego vehicle’s speed, based on the sensor measurements of the
distance and velocity of the ego and the leading vehicles. We model
the multi-sensor perception and ACC systems using the variables:

• 𝑥𝑒 , 𝑥𝑙 : location of the ego and the leading vehicle;
• 𝑣𝑒 , 𝑣𝑙 : velocity of the ego and the leading vehicle;
• 𝑑 = 𝑥𝑙 −𝑥𝑒 , 𝑣 = 𝑣𝑙 −𝑣𝑒 : relative distance and velocity between
the ego and the leading vehicles;

• 𝑎𝑒 , 𝑎𝑙 : acceleration of the ego and the leading vehicle.

We denote the values of these variables at time step 𝑘 with the
subscript 𝑘 , e.g., the relative velocity 𝑣 between the ego and the
leading vehicles at time step 𝑘 is denoted by 𝑣𝑘 .

7.1 Multi-Sensor Perception System

The multi-sensor perception system has 𝑁 specified sensors and
𝐿 unspecified sensors captured by parametric stochastic contracts.
In this case study, we aim to search for inexpensive sensors that
can be affected by noise, i.e., large standard deviations 𝜎 𝑗 within
the [0.2, 2] range, while still guaranteeing with probability (confi-
dence) 𝑝 𝑗 in [0.8, 1] that the sensor error lies in the [−1, 1] in-
terval, where 𝑗 = 1, · · · , 𝐿. The system 𝑀𝑝𝑒𝑟 has its contract

𝐶𝑝𝑒𝑟 = (G[0,10] (𝑑 ≤ 250), G[0,10] ( |𝑛𝑑 | −1)
[0.99] ), which expresses

the requirement that, if the distance 𝑑 is always less than or equal to
250𝑚, the absolute value of the distance sensor noise 𝑛𝑑 is always
less than or equal to 1 with probability larger than or equal to 0.99.
Let the dynamics of the specified sensors be 𝑧𝑖,𝑘 = 𝑑𝑘 + 𝑛𝑑,𝑖,𝑘 for

𝑖 = 1, · · · , 𝑁 , where 𝑛𝑑,𝑖,𝑘 ∼ N(0, 0.52). According to the cost func-

tion 𝐽 = −
∑𝑀
𝑗=1 (𝜎𝑁+𝑗 + 𝑝𝑁+𝑗 ), aiming to maximize the standard

deviations 𝜎 𝑗 and probabilities 𝑝 𝑗 , 𝑗 = 1, · · · , 𝐿, we determine the
set of optimal parameter values for the unspecified sensors with

dynamics 𝑧𝑁+𝑗,𝑘 = 𝑑𝑘 + 𝑛𝑑,𝑁+𝑗,𝑘 where 𝑛𝑑,𝑁+𝑗,𝑘 ∼ N(0, 𝜎2𝑁+𝑗 ),

and the corresponding contracts 𝐶𝑁+𝑗 , 𝑗 = 1, · · · , 𝐿.
We define the contracts for the specified and unspecified sensors

and the data fusion module as follows:

𝐶𝑖 =
(
G[0,10] (𝑑 ≤ 300), G[0,10]

(
|𝑛𝑑,𝑖 | − 2

) [0.95] )
𝑖 = 1, 2, · · · , 𝑁 ,

𝐶𝑁 +𝑗 (𝑝) =
(
G[0,10] (𝑑 ≤ 250), G[0,10]

(
|𝑛𝑑,𝑁 +𝑗 | − 1

) [𝑝 ] )
𝑗 = 1, 2, · · · , 𝐿,

𝐶𝑁 +𝐿+1 =

(
�, G[0,10]

(
𝑛𝑑 =

𝑁 +𝐿∑
𝑖=1

𝑛𝑑,𝑖
𝑁 + 𝐿

))
.

We first assume that there exists only one unspecified sensor,
i.e., L = 1, and find the optimal set of parameters (𝑝𝑁+1, 𝜎𝑁+1) for

# of

Specified

Sensors, 𝑁

# of Unspecified

Sensors, 𝐿

(Parameters, 2𝐿)

Execution Time [s]

# of Maximum Partitions, 𝑁𝑚𝑎𝑥

10 100 200 500 1,000

1 1 (2) 0.75 5.61 7.12 16.18 34.01

10 1 (2) 0.90 6.49 14.11 42.40 75.80

50 1 (2) 2.69 20.09 37.47 105.03 246.93

100 1 (2) 4.76 44.66 78.81 208.23 402.82

200 1 (2) 14.94 112.68 271.54 506.17 1,024.74

100 2 (4) *1.75 33.60 72.40 183.98 365.81

100 3 (6) *1.52 *36.81 83.33 191.79 406.42

100 4 (8) *0.69 *0.75 *0.68 *144.92 384.57

Table 1. Execution time of parametric refinement for the multi-sensor
perception system. When the optimal parameters could not be found before
reaching the maximum number of partitions, the execution time is marked
with ∗.

the unspecified sensor such that the composition of the component-
level contracts robustly refines the system-level contract, i.e.,⊗𝑁

𝑖=1𝐶𝑖 ⊗𝐶𝑁+1 ⊗𝐶𝑁+2 �𝜌∗ 𝐶𝑝𝑒𝑟 and 𝑀𝑁+1 (𝜎𝑁+1) |=𝜌∗ 𝐶 (𝑝𝑁+1).
Figure 5 illustrates the parameter synthesis results. All the parame-
ter values in the green boxes (SAT partitions) guarantee that the
robust refinement holds. The red boxes indicate UNSAT partitions
and the grey boxes indicate UNDET partitions.We report the results
for a systemmade of one (left), 2 (center), and 3 (right) specified sen-
sors, respectively, and one unspecified sensor. The result suggests
that an accurate, but possibly expensive, sensor has to be chosen
to satisfy the system requirements in 𝐶 when only one specified
sensor is available. As the number of available high-quality sen-
sors increases, we can choose a cheaper sensor 𝑀𝑁+1 with a large
standard deviation 𝜎𝑁+1 for its error.

Algorithm 1 requires at most 2𝑁𝑚𝑎𝑥 MILPs or MIQCPs iterations
to find the optimal parameter values. In this case study, MIQCPs
are solved since the 𝜎𝑁+𝑗 parameters lead to quadratic constraints.
Table 1 reports the execution times of PyCASSE for multiple com-
binations of specified and unspecified sensors and 𝑁𝑚𝑎𝑥 . While the
execution time for solving each MIQCP problem depends on the
number of parameters and sensors, the results in Table 1 demon-
strate that the execution time scales linearly as 𝑁𝑚𝑎𝑥 increases.
We also observe that, as the number of parameters increases, finer
partitions are required, hence a higher 𝑁𝑚𝑎𝑥 , to determine whether
a box is SAT or UNSAT.

7.2 Adaptive Cruise Control

The adaptive cruise control (ACC) system controls the ego vehicle to
keep it as close as possible to a target distance 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑑𝑠𝑎𝑓 𝑒 +𝜏𝑣𝑒 ,
while adapting to the leading vehicle’s behavior. 𝑑𝑠𝑎𝑓 𝑒 is the pre-
determined safe distance and 𝜏 is the time gap. Several parts of
such system are intrinsically of stochastic nature, e.g., the noise of
the sensors detecting the distance and velocity, and the behavior of
the leading vehicle. In this case study, we illustrate the parameter
synthesis process on an ACC system whose safety and comfort
requirements are specified by two parametric stochastic contracts.
The dynamics of the ACC system is given by the state-space

representation in (11) with:

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 Δ𝑡 0 0

0 1 0 0

0 0 1 Δ𝑡

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎣
0

Δ𝑡

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
,𝐶 =

⎡⎢⎢⎢⎢⎣
−1 0 1 0

0 −1 0 1

0 1 0 0

⎤⎥⎥⎥⎥⎦ , (16)

where Δ𝑡 is the size of each time step, 𝑥𝑘 = [𝑥𝑒,𝑘 , 𝑣𝑒,𝑘 , 𝑥𝑙,𝑘 , 𝑣𝑙,𝑘 ]
𝑇 is

the state vector,𝑢𝑘 = [𝑎𝑒,𝑘 ] is the control input, 𝑧𝑘 = [𝑑𝑘 , 𝑣𝑘 , 𝑣𝑒,𝑘 ]
𝑇
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Figure 5. Results for the parameter synthesis problem under refinement
⊗𝑁

𝑖=1𝐶𝑖 ⊗𝐶𝑁 +1 (𝑝) ⊗𝐶𝑁 +2 � 𝐶 with 𝑁𝑚𝑎𝑥 = 200. Each figure reports on the
horizontal axis the confidence level 𝑝 of the unspecified sensor, and the standard deviation of the noise 𝜎 of the unspecified sensor on the vertical axis.

is the measurement vector modeling the sensor readings of 𝑑𝑘 ,
𝑣𝑘 , and 𝑣𝑒,𝑘 . 𝑤𝑘 = [0, 0, 0, 𝑎𝑙,𝑘 ]

𝑇 ∼ N(0, 𝑄) is the process input
modeling the behavior of the leading vehicle where 𝑉𝑎𝑟 [𝑎𝑙,𝑘 ] =
(Δ𝑡𝜎𝑎𝑙 )

2 is the variance of the leading vehicle’s acceleration;

𝑣𝑘 = [𝑛𝑑,𝑘 , 𝑛𝑣,𝑘 , 𝑛𝑣𝑒 ,𝑘 ]
𝑇 ∼ N(0, 𝑅) is the measurement noise where

𝑉𝑎𝑟 [𝑛𝑑,𝑘 ] = 𝑉𝑎𝑟 [𝑛𝑣,𝑘 ] = 12 and 𝑉𝑎𝑟 [𝑛𝑣𝑒 ,𝑘 ] = 0.52 for time step
𝑘 . We assume that 𝑛𝑑,𝑘 , 𝑛𝑣,𝑘 , and 𝑛𝑣𝑒 ,𝑘 are independent and identi-
cally distributed (i.i.d.). Finally, the ACC control policy [35, Figure

5] is given by 𝑢𝑘 = 𝐷𝑧𝑘 + 𝐸 where 𝐷 =
[
𝐾𝐼 𝐾𝑃 −𝜏𝐾𝐼

]
and

𝐸 =
[
−𝑑𝑠𝑎𝑓 𝑒𝐾𝐼

]
. Larger 𝜎2𝑎𝑙 indicates more aggressive accelera-

tion and deceleration of the leading vehicle. On the other hand,
large values of 𝐾𝑃 and 𝐾𝐼 produce more aggressive acceleration
and deceleration for the ego vehicle.
In this case study, we search for the sets of optimal parameter

values 𝜋𝑠𝑎𝑓 𝑒 = (𝑐𝑠 , 𝑝𝑠 ) and 𝜋𝑐𝑜𝑚𝑓 = (𝑐𝑐 , 𝑝𝑐 ) for two requirements
expressed as the parametric stochastic contracts 𝐶𝑠𝑎𝑓 𝑒 (𝜋𝑠𝑎𝑓 𝑒 ) and
𝐶𝑐𝑜𝑚𝑓 (𝜋𝑐𝑜𝑚𝑓 ). 𝐶𝑠𝑎𝑓 𝑒 requires that the probability of maintaining
the distance 𝑑 larger than or equal to 𝑐𝑠 is greater than or equal
to 𝑝𝑠 when the initial distance is greater than or equal to 𝑑𝑡𝑎𝑟𝑔𝑒𝑡
and the initial relative velocity between the ego and the leading
vehicle is smaller than or equal to 5 𝑚/𝑠 . We define the safety
contract as 𝐶𝑠𝑎𝑓 𝑒 = (𝜙𝐴,𝑠𝑎𝑓 𝑒 , 𝜙𝐺,𝑠𝑎𝑓 𝑒 ) where 𝜙𝐴,𝑠𝑎𝑓 𝑒 := (𝑑 ≥

𝑑𝑡𝑎𝑟𝑔𝑒𝑡 ) ∧ (|𝑣 | ≤ 5) and 𝜙𝐺,𝑠𝑎𝑓 𝑒 := G[0,20] (𝑐𝑠 − 𝑑) [𝑝𝑠 ] . On the

other hand, 𝐶𝑐𝑜𝑚𝑓 requires that the acceleration of the ego vehicle

be larger than or equal to 𝑐𝑐 𝑚/𝑠2 with a probability larger than
or equal to 𝑝𝑐 , to avoid abrupt decelerations [36] under the same
assumptions as 𝐶𝑠𝑎𝑓 𝑒 . We define the comfort contract as 𝐶𝑐𝑜𝑚𝑓 =

(𝜙𝐴,𝑠𝑎𝑓 𝑒 , 𝜙𝐺,𝑐𝑜𝑚𝑓 ) where 𝜙𝐺,𝑐𝑜𝑚𝑓 := G[0,20] (𝑐𝑐 − 𝑎𝑒 )
[𝑝𝑐 ] .

Our goal is to find a set of optimal parameters such that𝑀𝑎𝑐𝑐 |=𝜌∗
𝐶𝑠𝑎𝑓 𝑒 (𝑐𝑠 , 𝑝𝑠 ) and 𝑀𝑎𝑐𝑐 |=𝜌∗ 𝐶𝑐𝑜𝑚𝑓 (𝑐𝑐 , 𝑝𝑐 ) (Problem 3). We assume

that Δ𝑡 = 0.5 𝑠 , 𝜎2𝑎𝑙 = 0.5, 𝐾𝑃 = 𝐾𝐼 = 0.5, 𝑑𝑠𝑎𝑓 𝑒 = 10 𝑚, 𝜏 = 1.6 𝑠 ,
𝐽 (𝑐𝑠 , 𝑝𝑠 ) = −100𝑝𝑠−𝑐𝑠 , and 𝐽 (𝑐𝑐 , 𝑝𝑐 ) = −100𝑝𝑐−𝑐𝑐 to maximize the
probabilities of robust satisfaction while guaranteeing safety and
comfort of the ACC. The larger 𝑐𝑠 , the safer the ACC becomes; the
larger 𝑐𝑐 , the more comfortable the ride becomes for the passengers.

As shown in Figure 6, Algorithm 1 provides the optimal param-
eter sets (𝑐∗𝑠 , 𝑝∗𝑠 ) = (5.625, 0.99375) and (𝑐∗𝑐 , 𝑝∗𝑐 ) = (−7.5, 0.99375).
To validate the result, we ran 105 simulations in Matlab under a
pre-determined initial state that satisfies the assumptions specifi-
cation 𝜙𝐴,𝑠𝑎𝑓 𝑒 , i.e., 𝑥𝑒 = 0𝑚, 𝑣𝑒 = 0𝑚/𝑠, 𝑥𝑙 = 50𝑚, and 𝑣𝑙 = 0𝑚/𝑠 .
In Table 2, the rate of violation of the constraint 𝑑 ≥ 𝑐∗𝑠 = 5.625𝑚
in simulations is approximately equal to 1 − 𝑝∗𝑠 = 0.00625. The
rate of violation of the constraint 𝑎𝑒 ≥ 𝑐∗𝑐 = −7.5 is smaller than

Figure 6. Parameter synthesis results for𝐶𝑠𝑎𝑓 𝑒 (left) and𝐶𝑐𝑜𝑚𝑓 (right).

Approaches Requirements 𝐶𝑠𝑎𝑓 𝑒 𝐶𝑐𝑜𝑚𝑓

Our Approach
Execution Time [s] 433.76078 444.94791

Violation Probability 0.00625 0.00625

105 Simulations
Execution Time [s] 263.18550 201.91763

Violation Probability 0.00819 0.00546

Table 2. Results from our approach and 105 simulation runs.

1 − 𝑝∗𝑐 = 0.00625. Solving the parameter synthesis problem takes

longer time than executing 105 simulation runs for estimating the
probability of violating 𝐶𝑠𝑎𝑓 𝑒 and 𝐶𝑐𝑜𝑚𝑓 . However, PyCASSE per-

forms exhaustive search over a range of the parameter design space
and initial conditions. On the other hand, simulations are only lim-
ited to the evaluation of the requirements in a particular case, with
fixed parameter values and initial state.

8 Conclusions
We presented an automated framework for quantitative verification
and design space exploration of CPSs under uncertainty, leveraging
the robust semantics of stochastic A/G contracts expressed in StSTL.
We illustrated the effectiveness of our approach on the design and
verification of a multi-sensor perception system and an ACC sys-
tem. Future work includes the extension of the proposed framework
to non-Gaussian processes and the investigation of adaptive parti-
tion mechanisms guided by robustness estimates to improve the
scalability of our algorithms.
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