
A Pragmatic Methodology for Blind Hardware Trojan Insertion in
Finalized Layouts

Alexander Hepp
alex.hepp@tum.de

Technical University of Munich
Department of Electrical and

Computer Engineering
Munich, Germany

Tiago Perez
Samuel Pagliarini
tiago.perez@taltech.ee

samuel.pagliarini@taltech.ee
Tallinn University of Technology
Department of Computer Systems

Tallinn, Estonia

Georg Sigl
sigl@tum.de

Technical University of Munich
Department of Electrical and

Computer Engineering
Munich, Germany
Fraunhofer AISEC
Munich, Germany

ABSTRACT
A potential vulnerability for integrated circuits (ICs) is the insertion
of hardware trojans (HTs) during manufacturing. Understanding
the practicability of such an attack can lead to appropriate mea-
sures for mitigating it. In this paper, we demonstrate a pragmatic
framework for analyzing HT susceptibility of finalized layouts. Our
framework is representative of a fabrication-time attack, where
the adversary is assumed to have access only to a layout represen-
tation of the circuit. The framework inserts trojans into tapeout-
ready layouts utilizing an Engineering Change Order (ECO) flow.
The attacked security nodes are blindly searched utilizing reverse-
engineering techniques. For our experimental investigation, we
utilized three crypto-cores (AES-128, SHA-256, and RSA) and a
microcontroller (RISC-V) as targets. We explored 96 combinations
of triggers, payloads and targets for our framework. Our findings
demonstrate that even in high-density designs, the covert insertion
of sophisticated trojans is possible. All this while maintaining the
original target logic, with minimal impact on power and perfor-
mance. Furthermore, from our exploration, we conclude that it is
too naive to only utilize placement resources as a metric for HT
vulnerability. This work highlights that the HT insertion success is
a complex function of the placement, routing resources, the position
of the attacked nodes, and further design-specific characteristics.
As a result, our framework goes beyond just an attack, we present
the most advanced analysis tool to assess the vulnerability of HT
insertion into finalized layouts.

CCS CONCEPTS
• Security and privacy → Malicious design modifications;
Hardware reverse engineering.

KEYWORDS
hardware security, reverse engineering, manufacturing-time attack,
hardware trojan horse, VLSI, ASIC
ACM Reference Format:
Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl. 2022. A
Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized
Layouts. In IEEE/ACM International Conference on Computer-Aided Design

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD ’22), October 30-November
3, 2022, San Diego, CA, USA, https://doi.org/10.1145/3508352.3549452.

(ICCAD ’22), October 30-November 3, 2022, San Diego, CA, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3508352.3549452

1 INTRODUCTION
Securing the development and manufacturing of integrated circuits
(ICs) is a problem that the Hardware Security community is trying
to solve [7]. As owning a foundry is not financially viable for most
design houses, they have become fabless entities that have to rely
on third-party foundries for manufacturing their designs. In this
business model, the circuit layout is developed in-house and its
manufacturing is outsourced. Exposing the layout to a third party
is a potential threat to the IC’s trustworthiness. A malicious indi-
vidual could take ownership of this layout and manipulate it for
his own purposes. Many potential threats have been discussed [30,
42], including insertion of hardware trojans (HTs), IP piracy, IC
overbuilding, reverse engineering, and counterfeiting.

Even though only a few validated examples have been observed
[13], the risk of a security breach due to hardware tampering has
been in focus for many years [42]. Thus, in the past decade many
potential vulnerabilities and possible countermeasures have been
demonstrated. In this work, we focus on the feasibility of HT inser-
tion during a fabrication-time attack.

HTs are designed to leak confidential information, to disrupt a
system’s specific functionality, or even to destroy the entire system
[35] and have a broad taxonomy [16]. They comprise a payload
implementing the malicious behavior and a trigger that ensures
that the HT remains dormant until a specific condition is met. The
target of an HT is the circuit into which the HT is inserted, e.g., a
crypto-core or any other IP in a SoC design.

Several digital HT architectures have been proposed recently
[42], with a few even demonstrated in silicon [13]. However, not
many disclosed how their HT is inserted during the attack. Fabri-
cation-time HT insertion in previous works relies on extensive
knowledge of the victim’s circuit [2, 27], for example of the security-
critical nodes. In a fabrication-time attack, only the layout is avail-
able to the attacker, limiting the applicability of the approaches.
The main contribution of our work is to shed light on how successful
an attack can be under the assumption of very limited information
about the target circuit.

High-level functionality reconstruction tools can be used to re-
construct the purpose of signals inside the design. For example, the
finite-state machine of a target design can be recovered and con-
trol and data paths nodes can be distinguished [22]. The output of
such tools can be utilized to automate the search of security-critical

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl

G1
G2 G3

G4

G5

G6

crpt_rnd_0

ctrl_0
ctrl_1

rt_0

rt_1

Third-Party
IPs Libraries

P
h

ys
ic

al
S

yn
th

es
is

In-House Team
Desigining

PDK

Finalized Layout

Sent to
Foundry

N
et

lis
t

E
xt

ra
ct

io
n

G1
G2 G3

G4

G5

G6

I0
I1

I2

I3
I4 I5

O1

O2

crpt_rnd_1

crpt_rnd_2

ctrl_3

Unnamed
Gate-level Netlist

F
u

n
ct

io
n

al
it

y
R

ec
o

n
st

ru
ct

io
n

Nodes
scores

List of
Nodes

Tr
o

ja
n

G
en

er
at

o
r

#N
Trojans

#N Eco
Files

Trial
ECO

Suitable
Trojans

Tr
o

ja
n

In
se

rt
io

n

M
an

u
fa

ct
u

ri
n

g

S0
S1

S3

Layout conception in a trusted facility Layout manipulation inside an untrusted foundry Test, assembly and packaging
in a trusted facility

Figure 1: A typical IC design flow. Highlighted in red is the stage where a rogue element may mount an attack.
nodes on a given layout – this is the case in our work. Our main
contribution is a full framework for inserting a HT utilizing only
the target layout as information. For assessing our methodology,
we utilized as targets the cryptocores AES-128, SHA-256, and RSA,
and the general purpose PULPino microcontroller. For each target,
multiple different HTs are selected for insertion. We report the
success of insertion based on stealthiness, impact on power and
performance and required time and discuss HT defense technique
capabilities in context of our attack.

2 BACKGROUND
2.1 Related Works and Motivation
Artificial HT creation is necessary, as no public HT examples are
known. The majority of published artificial HTs have been created
manually (e.g., Trust-Hub benchmarks [33]). Other HTs are de-
signed to test or overcome specific detection methods [9]. A recent
survey [42] lists 27 research articles presenting HTs, but only 4
of them perform insertion of a sophisticated, non-parametric HT
on the layout level. The constraints of manual HT insertion into
layouts have been studied in [2]. The authors conclude that a core
utilization rate of >80% will prohibit trojan insertion, but only use
one HT sample with varied parameters. In [39], the authors claim
that removing unused (“dead”) space is sufficient to thwart HT
insertion. Trippel et al. [37] analyze the susceptibility of layouts to
HTs by three metrics, the unused space available for HT gates, the
amount of space available for wires and the distance between HT
cell placement and attacked signals. However, the authors exper-
iment with only four HT samples and manually insert them into
three fully-known IC designs. This limits the explanatory power,
as we show in Section 4.

In [27], the authors propose a full framework for HT insertion
during a fabrication time-attack. The authors utilized engineering
change order (ECO) technique for inserting HTs, which allows the
attacker to perform the attack holding only the layout database.
Nevertheless, [27]makes a strong assumption on how the attacker
searches for the security-critical nodes: the attacker can spot these
nodes by visual inspection. This is not true for targets with little
available information or targets with irregular placement. This
limits their attack framework to a few targets, e.g., the AES core
used in their demonstration.

With the rise in popularity of machine learning, various auto-
mated HT insertion frameworks have been proposed and used to
provide enough HT samples to train on. Cruz et al. [4] present a
HT generator for gate-level netlists. Their tool generates diverse
triggers, but relies on manual insertion for payloads and does not
cover the insertion at layout. In addition, trigger location is deter-
mined by a simulation-based probability metric, requiring simula-
tion testbenches to be available. In [3] the authors improve upon

the previous tool. The authors emphasize that their tool generates
similar HTs to those in the training set (hence the name MIMIC).
This approach might not generate a trojan set that allows general-
ization in machine learning, as this requires a very diverse set of
trojan variants, locations, and target designs [11].

A similar tool is presented in [43], also only diversifying the
trigger insertion into netlists, but improving the trigger signal se-
lection method to be executed without a simulation testbench. Still,
payload location selection is simplistic and requires manual effort.

In [32], reinforcement learning is used for HT insertion, but
their targets are small ISCAS-85 benchmarks. The reinforcement
learning reward driving the insertion is chosen to be dependent
on the ratio of circuit inputs involved in HT activation, on the
observability of the payload changes, and on the usage of at least
one net with low controllability. This approach is more diverse, but
tuning the reward function is a non-deterministic task requiring
a high level of understanding of both the circuit and the machine
learning – which is infeasible for a blind attack.

As the implementations of previous works have not been pub-
lished, multiple authors of detection techniques resorted to imple-
menting template HT generators, varying the internal structure of
the HTs, but not the HT locations [11, 10].

In conclusion, existing methods lack crucial features; even au-
tomated methods require extensive knowledge about the attacked
design and thus are unfit for the blind insertion attacker model.
When utilizing prior knowledge, most automated tools cannot di-
versify payload insertion, either because payload locations must be
chosen with manual effort, or because only local variation around
known payload locations are possible. In this paper, we overcome
the limitations by the targeted usage of reverse engineering tech-
niques and integrate it into an end-to-end framework for blind HT
insertion.

2.2 Threat model and Attacker Capabilities
In our framework, we assume that an attacker within the foundry
has the objective of inserting malicious logic in a finalized layout.
Thus, since the attacker is familiar with the manufacturing pro-
cess of the foundry, he/she enjoys access to all technology and
cell libraries utilized by the victim when creating the layout. We
assume the attacker has no detailed knowledge about the victim’s
design, such as timing/power constraints, clock domains, exact
functionality of the input/output pins, or high-level functionality.

For performing the attack, we assume the adversary is skilled in
IC design and enjoys access to modern EDA tools including their
scripting languages. From the victim’s side, the attacker only has ac-
cess to the layout database – typically handled in the GDSII format.
For manipulating the victim’s layout, we also assume the attacker
knows how to apply reverse engineering techniques. Specifically,
for the attack proposed in this work, the adversary has access

A Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized Layouts ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

to tools for extracting the gate-level netlist [29] and partially re-
constructing the high-level functionality of the target design [22].
Furthermore, we also assume the attacker has no means to make
radical modifications to the layout, e.g., manipulating the clock
domains and/or changing the I/O configurations.

Designing an IC is typically executed as illustrated in Fig. 1. The
layout-level work is generally considered trusted, done in-house.
This is done using third-party IPs and a process design kit (PDK)
together with standard cells provided by the foundry for a given
technology. Here, we assume this process is trusted in which no
malicious alteration is made for generating the finalized layout.
The attack takes place when the victim’s layout is handed over to
the foundry. Precisely, the adversary is a rogue element inside the
foundry that can manipulate the victim’s layout before the start of
the manufacturing (see the red portion of Fig. 1). This resembles
attack model B as given in [41]. According to Karri et al. [16], the
attacker inserts digital, gate-level HTs during fabrication time. In
addition, we restrict the time when the rogue element has access
to the victim’s database to a full day (24 hours) [24]. This reduces
attacker’s capabilities to analyze and reverse engineer the victim’s
design, and to perform the HT insertion.

Typically, an ECO flow is used to fix small bugs in finalized
layouts. ECOs are designed for post-mask modifications utilizing
pre-populated gate-array cells, and pre-mask fixes, avoiding the
time-consuming re-implementation of a design. However, Perez
et al. [27] demonstrated that the ECO flow is a powerful tool for
inserting HTs. The layout changes are local routing perturbations,
as the original placement is kept intact. For inserting the HT, the
ECO re-purposes empty spaces (filled with filler and spare cells1)
with malicious logic. Since the ECO flow is executed by an industry-
grade EDA tool, potential errors from manual modifications and
design rule check (DRC) violations are avoided. The penalty for
HT insertion is a slightly negative impact on the overall target
performance due to the extra capacitance fromHTwiring (see Fig. 5
for a performance comparison before and after the HT insertion).
For a complete explanation of how to utilize the ECO for inserting
an HT, we direct the readers to [27].

3 BIOHT TOOL FRAMEWORK
Our main contribution is a framework for blind insertion of hard-
ware trojans in finalized layouts, termed BioHT. All the steps of
this framework are automated; inserting HTs requires just a push
of a button. Fig. 1 illustrates the BioHT framework, which com-
prises five distinct steps: 1) Netlist Recovery (Section 3.1), 2) Design
Analysis (Section 3.2), 3) HT Netlist Generation (Section 3.3), 4)
Hooking Signal Selection (Section 3.4), 5) HT insertion and Trigger
Validation (Section 3.5). Fig. 2 shows the flow in detail.
3.1 Netlist Recovery from Layout
The attack begins once the rogue element within the foundry re-
ceives the victim’s layout. First, a gate-level netlist has to be ex-
tracted from the layout. We refer to this gate-level netlist as un-
named, since the original hierarchy and names of cells and nets are
assumed to be absent in the layout. Only the individual functionality

1Typically, the placement density utilization (i.e, area with active cells versus unused
area) is in the range of 50 to 60% for modern SoCs in the FinFET era. Thus, nearly half
of the area of a commercial IC today can be populated by spare/filler cells.

of cells and their connectivity are recovered from the netlist extrac-
tion. Thus, in order to perform the attack, i.e., a HT-insertion with
meaningful functionality, further reverse engineering is necessary.

An HT targets a specific part of the circuit, thus, full under-
standing of the complete design is not necessary. Instead of
performing a full functional recovery, the attacker has to only iden-
tify security-critical signals and registers to hook the HT to. Using
available information such as layout markings, datasheets, market-
ing material or patents, I/O-port descriptions can be inferred [28].
Global signals such as clock and reset can be identified from their
connections to flip-flop pins. The resulting netlist is converted into
a verilog gate-level netlist and input to design analysis. The process
of netlist recovery can be seen in the top-left section of Fig. 2.

3.2 Design Analysis
During design analysis,metrics are generated to aid an adversary in
searching for signals to be used for trigger and payload. This search
requires a certain degree of understanding of the victim’s design.
For calculating those metrics, reverse engineering techniques are
applied. As reverse engineering takes some time, it is a tradeoff to
choose the desired level of design understanding. The metrics must
be chosen carefully to keep the total runtime for the attack low.

Suitable metrics are transition probability, imprecise information
flow tracking of selected signals, and the RELIC score [20]. Design
analysis can be paralellized, as shown in the bottom-left portion
of Fig. 2. In the remainder of this section, the calculation of these
metrics is outlined.
Transition Probability: The HT trigger must seldomly activate in
order to avoid detection during functional tests [41]. Thus, a metric
is necessary to identify signals with low probability to activate the
HT. In previous literature, the transition probability was introduced
[31, 43]. If the transition probability is low, the probability that
the required transitions for HT activation occur is also low. The
transition probability is a function of the signal probability. The
signal probability (𝑃𝑠 (𝑥)) of 𝑥 is the fraction of clock cycles during
which 𝑥 is 1. A transition occurs if a 1 follows a 0 or vice versa, i.e.
the transition probability can be estimated as 𝑃𝑡 (𝑥) = 2 · 𝑃𝑠 (𝑥) ·�
1 − 𝑃𝑠 (𝑥)

�
, assuming temporal independence [26].

To initialize the calculation, set 𝑃𝑠 = 0.5 for the primary in-
puts and all flip-flop outputs. This assumption is reasonable for
crypto-cores and approximately correct for other large circuits. For
each combinatorial gate in the fan-out of the initialization, 𝑃𝑠 of
the outputs is calculated. The output 𝑃𝑠 (𝑜) of a 2-input or-gate is
𝑃𝑠 (𝑎) + 𝑃𝑠 (𝑏) − 𝑃𝑠 (𝑎) · 𝑃𝑠 (𝑏), the output 𝑃𝑠 (𝑜) of a 2-input and-
gate is 𝑃𝑠 (𝑎) · 𝑃𝑠 (𝑏) and the output 𝑃𝑠 (𝑜) of a not-gate is 1 − 𝑃𝑠 (𝑎).
The necessary formulas for other n-input 1-output gates can be
produced by decomposing them into 2-input gates. In order to im-
prove the probability results for flip-flop outputs, further iterations
of the algorithm can be performed. In each iteration, the flip-flop
input probabilities override the initial 𝑃𝑠 = 0.5. Finally, the 𝑃𝑡 (𝑥) is
calculated for all signals and saved as the metric value.
Spatial Clustering: Co-location of HT hooking signals is desired
for short wire lengths, but repeated distance calculation has a high
overhead. Thus, BioHT precalculates using complete linkage clus-
tering [25] with a 𝐿1 distance metric: The target’s cells are agglom-
erated into larger clusters. The agglomeration stops once a distance
limit is reached, i.e., in the final clusters the cells remain closer than
the limit. The mapping of cells to these clusters is saved as a metric.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl

1) Netlist Recovery

2) Design Analysis 3) Trojan Netlist Generation 4) Signal Selection for Hooking 5) Trojan Insertion

Start

Netlist
Extraction

Target
Valuation

Layout

Global
Annotation

Available
Information

Transition
Probability IIFT

RELIC
Analysis

Spatial
Clustering

Analyzed
Netlist

Trojan
Config

Trigger
Generation

Payload
Generation

Top-level
Generation

Trojan
Synthesis

Trojan
Netlist

Analyzed
Netlist

Trojan
Netlist

Feedthrough
selection

SSF
Config

Independency
Check

Input/Output
selection

Hooking
Signals

Trigger
Assertions

Hooking
Signals

Trojan
Netlist

TCO
Generator

TCO
Database

Layout

TCO
Trial

HT is
unfit

TCO
execution

Tampered
Layout

Fail

OK

Figure 2: Steps 1)–5) of the BioHT Tool Framework explained in detail. Colored nodes represent an end-product of a previous
step in the flow. The flow starts at the top left, while the tampered layout (highlighted in red) is the end-result.
Imprecise Information Flow Tracking: A HT that leaks infor-
mation requires a metric that explains where valuable (tainted)
input data can be found inside the circuit. Imprecise Information
Flow Tracking (IIFT) [14] estimates an upper bound of information
flow, as it assumes that each logic gate carries tainted information
from its inputs to the output. The IIFT metric therefore marks as
tainted any signal that exists in the output cone of the initially
tainted signals. The mark, i.e., tainted or untainted, is saved as the
metric value. This metric overestimates the availability of secret
information at a specific signal. It must be complemented with
another metric that explains the functionality of signals, such as
the RELIC score.
RELIC Scoring and FSM identification: A valuable high-level
information is the identification of whether a register (flip-flop
or latch) belongs to the control logic or the data path. Using this
information, HT payloads can be targeted to specific parts of the
design functionality, for example to modify the control FSM or leak
valuable processed data.

Finding the registers belonging to either the control or datapath
logic can be performed with the NETA toolset [21]. RELIC 2 assigns
every register a z-score that explains the level of dis-similarity to
other registers. The underlying assumption is that data registers in
a data-word show similar fan-in structure, while control registers
are more unique. REDPEN returns pairs of dependent registers, i.e.,
a register dependency graph, in which every edge represents a path
from the first register to the second register. TJSCC analyzes the
register-dependency graph for its strongly connected components
(SCC). As a result, there is a SCC for each register in the design.
Combining RELIC and TJSCC, the SCC containing the register with
the highest RELIC z-score implements the (most important) FSM
in the design. Two metrics are saved for each register, its z-score
and the SCC number it belongs to.

3.3 Hardware Trojan Netlist Generation
The BioHT HT Netlist Generator receives a configuration file, in
which the user can choose any trigger/payload combinations and
parameter values from our templates (see Fig. 3). Our selection of
trigger and payloads covers known architectures [33, 18, 1], as well
as novel payloads (i.e., leakage through FSK/DBPSK, fault sweep-
ing). A configuration file generator is provided to ease the process
of generating multiple configuration files. Nevertheless, the HT
generation can be skipped, our framework is flexible enough for
the user to implement their own trigger and/or payload architec-
tures since the HT insertion only cares about the interface (i.e.,
where the HT is hooked to the target circuit).

For our HT architectures, we use three kinds of triggers; com-
binatorial, counter, and FSM; and four kinds of payloads; leak,
shift’n’burn, modify, and fault. The explanation of the triggers
and payloads is presented in Fig. 3. The HT triggers either wait for
a Combinatorial condition 𝑣 from 𝑛 bits, waiting for 𝑣 changes of 𝑛
bits using a Counter, or traverse a 𝑠-state FSM on 𝑛-bit conditions
𝑣𝑖 , masking some of the 𝑛 bits with𝑚𝑖 . The payloads Leak 𝑛 bits
through a side channel code𝑀 at a rate of 1/2𝑐 bits per clock cycle,
Shift’n’burn energy with 𝑛 transitions per clock cycle,Modify 𝑛-bits
to a value 𝑣 , or try to Fault 𝑛 bits by flipping them in any combi-
nation (inspired by [2]). In order to differentiate the interfacing
connections, we distinguish HT ports as: input-only, output-only,
and feedthrough. HT input-only ports are used for triggering or for
payloads that do not drive any node. HT output-only ports drive
nodes, however, do not have any corresponding input hooked to
the target circuit. HT feedthrough ports are a special case, they
are pairs of input-output ports that disrupt original connections
between two nodes of the original circuit. Thus, the HT has control
of the bit value of the disrupted connection. This type of port is
utilized by the Modify and Fault payloads (see Fig. 3). The entire
process of the HT Netlist Generator is shown in step 3) of Fig. 2.
3.4 Signal Selection for Hooking
The fourth step of the BioHT framework is to select appropriate
security-critical signals to hook the HT generated in the previ-
ous step. For searching those signals, the tool requires the metrics
calculated during the design analysis, and the HT interface charac-
teristics (i.e., number of input-only, output-only, and feedthrough
ports). The process starts by associating a signal selection function
(SFF) for each interface port of the HT. Then, the SSF iteratively
yields candidate signals from the target circuit to be hooked to each
HT port, all this based on one or multiple provided metrics. The T
SSF yields all signals in the circuit in increasing order of transition
probability, while ensuring that duplicate nets and buffer trees are
avoided. This SSF is used if the total trigger probability is a sum of
individual probabilities (e.g. for the Counter trigger). In contrast,
the TR SSF yields signals with low transition probability randomly
using a negative-exponential weighting function. This overcomes
detection tools searching for rare signals only, while providing bet-
ter diversity than a threshold-based approach [4]. These SFFs might
require the additional use of the spatial clustering metric (TC and
TCR) if signals selected by T and TR are spatially distant. Further
SSFs are tailored to selecting payload signals. An explanation of
SSFs implemented, and their behavior is given in Tab. 1.

Selection of signals to hook the HT to has to be meticulously
done, and it is not only a function of the calculated metrics. It is

A Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized Layouts ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

Trigger Payload

trigger in
payload in

feedthrough in

feedthrough out
payload out

#ti #pi
#ft

#po
#ft

#tr

=
trigger in

n

v n

trigger
1

=/
DQ
n-bit

clk

trigger in
n

EN =v
c-bit

Counter

clk

trigger
1

Counter Trigger (n, v, c)

Combinatorial Trigger (n, v)

HT Interface

𝑆𝑟𝑆𝑟 𝑆2

𝑆1

...𝑆𝑠

𝑖𝑛&𝑚1 = 𝑣1 &𝑚1 𝑖𝑛&𝑚2 = 𝑣2 &𝑚2

𝑖𝑛&𝑚𝑠 = 𝑣𝑠 &𝑚𝑠

always

else

else

...
1

0

1

0

1

0

payload in
n

n

𝑀 ∈ {am, fsk, dbpsk, lfsr}
rate: 1/2𝑐 bit/cc

trigger

Leak Payload (n, M, c)

FSM Trigger (n, s,𝑚1, . . . ,𝑚𝑠 , 𝑣1, . . . , 𝑣𝑠)

trigger in trigger𝑆 = 𝑆𝑠

rst=1 rst=0
rst=
𝑛%2

...

trigger

clk

n

trigger
...

feedthrough in
n

10

v[0]
10

v[1]
10

v[2]

feedthrough out
n

trigger
...

feedthrough in
n

10 10 10

feedthrough out
n

r1 r2 . . . rn n
LFSR

Shift’n’burn Payload (n)

Modify Payload (n, v)

Fault Payload (n)

Figure 3: HT Interface and available trojan triggers and payloads. Trigger and payload parameters are given in parentheses.
Table 1: Available Signal Selection functions

Function metrics used Behavior

T Trans. Prob. sample low probability signals
TC Trans. Prob.,

Spat. Clust.
sample low probability signals from
adjacent clusters.

TR Trans. Prob. randomly sample low probability
signals.

TCR Trans. Prob.,
Spat. Clust.

randomly sample low probability
signals from adjacent clusters.

RLR RELIC z-score randomly sample low z-score (i.e.
data) signals

RLT RELIC z-score,
IIFT

sample tainted signals with z-score
below threshold

RHS RELIC z-score,
SCC

sample signals from the highest-z-
score SCC (i.e. FSM)

RHST RELIC z-score,
SCC, IIFT

sample signals from the tainted
FSM (e.g. tainting instr. memory)

D — Connect no signal to this I/O. (e.g.
shift’n’burn feedback signal)

highly desirable to avoid mutually dependent signals: If a signal
used for triggering is dependent of an active payload signal, a
combinational loop could be generated. Also, hooked signals used
as Modify or Fault payloads should be independent, for maximizing
the effectiveness of the HT.

For avoiding the situations described above, our signal search
engine repeatedly checks the dependencies of each candidate signal.
Only independent signals are considered for hooking the HT. To
check the independence of two signals, a directed acyclic graph rep-
resentation of the target design is created by replacing all registers
by virtual input and output ports. Two signals are deemed indepen-
dent if they do not have a common ancestor in the directed acyclic
graph representation. This approach increases the amount of avail-
able trigger input signals significantly compared to the topological
order approach used in other works [4, 43].

3.5 Trojan Insertion
For inserting the HTs into the victim’s layout, we utilize an ECO
flow similar to [27], as described in Section 2.2. In our framework
(see Fig. 1), we approach the ECO differently than the one demon-
strated in [27]. Instead of directly modifying the victim’s netlist,

we utilized the ECO file format. This format is supported by EDA
tools and procedurally describes the modifications to be performed
by the ECO. The advantage of utilizing this format is doing the
ECO interactively. It is necessary to load the design only once for
analyzing multiple ECO files before committing the modifications.
By doing this, the adversary significantly saves execution time,
since loading large designs can take several hours. Instead, loading
an ECO file takes a few minutes. Before committing, the adversary
can check if the HT fits in terms of placement resources and timing
with a trial insertion.

To make the attack even faster, we introduce the concept of Tro-
jan Change Order (TCO) format file. The TCO file is generated from
the signals to hook the HT in combination with the HT netlist. We
utilize the same syntax as the ECO file, however, with commented
lines containing directives for the BioHT tool. Those directives are
used to configure the type of HT (e.g., leak, deplete, modify or fault),
number of connections and location of the HT gate-level netlist.
Thus, it is possible to pre-generate TCO files for several types of
HT, and specialize it according to the target’s evaluation. Thus, it is
feasible to create a database of HTs rapidly available for an attack,
as shown in Fig. 2. Finally, if the HT fits, the attacker can commit
the changes with a final TCO execution.

Trigger validation is performed after HT insertion by adding the
respective SystemVerilog assertions (Trigger Assertions in Fig. 2)
to the final netlist module and using any formal verification tool
capable of handling cover property assertions. Besides the netlist,
modern formal verification tools require only little additional infor-
mation to prove HT triggering. Clock and reset inputs and polarities
are found automatically, as well as most initialization sequences. If
available from the design analysis step, the user can specify addi-
tional formal verification constraints and constants, e.g., for scan
enable pins. If the validation is successful, the formal verification
tool provides the attacker with a testbench to trigger the HT.
4 BIOHT FRAMEWORK EVALUATION AND

RESULTS
In this section, we demonstrate our methodology and the settings
utilized for evaluating the BioHT framework. All experiments per-
formed in this work use industry-grade EDA tools. The layouts
generated during the experiments are tapeout-ready, meaning they
have proper power planning, timing closure, and no design rule
violations.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl

Targets, Evaluation Settings and Procedure: For evaluating
the BioHT capabilities, we have utilized four designs as targets –
three crypto cores and one microcontroller. We chose the crypto
cores AES-128, SHA-256, and RSA. The microcontroller utilized is
the open-source SoC PULPino featuring one 32-bit RISC-V core
[36]. The PULPino uses multiple memories and shows that BioHT
can insert into large and complex targets.

For the implementation, we have utilized a commercial 65nm
CMOS technology with a nominal voltage of 1.2V. For timing the
designs, we utilized the slow process corner (SS), temperature of
125◦C, and under voltage of 1.12. This is the worst case setup corner
recommended by the vendor. For reporting the power consumption,
we utilized the typical process corner (TT), temperature of 25◦C,
and the nominal voltage of 1.2V. These practices are in line with
the standard flow adopted by the IC industry.

The first step is to generate a tapeout-ready layout for each
target as the victim would do. For PULPino, RSA, and AES-128,
we balanced density and performance, with the goal to achieve
high-density designs operating at a considerably fast clock. For
SHA-256, we set the density to a less ambitious value (i.e., around
50%) and then aimed for maximum performance. The results are
presented in Tab. 2. It was possible to achieve both high-density
and high-speed for AES-128 and RSA, above 80% of utilization and
a clock frequency of 750MHz. In contrast, PULPino’s density and
clock frequency are low due to the presence of 8 memories (see
Fig. 4). However, the achieved frequency of 285MHz is competitive
with other PULPino implementations in a similar 65nm CMOS
technology [6].

We extracted the gate-level netlist from the layout, estimated
the operating frequency of the target and the power consumption
(see Tab. 2), similarly as done in [27]. Steps 2)–4) were implemented
in Python using several open-source libraries [8, 34, 23, 5]. Note
that for all targets except PULPino, we assumed that signal tainting
was only possible for the I/O. In PULPino, for the HT variant with
Combinatorial trigger and Modify payload, we assumed that the
attacker has acquired additional information, for example from an
insider. This shows that our framework is capable to adapt to any
additional available data about the design under attack. We assume
that the data allows to taint the core control FSM registers, so that
the payload can insert random pipeline flushes for performance
degradation. After generating the TCO files, the actual HT-insertion
is performed. To demonstrate the boundaries of HT insertion, we
also executed unfit HTs that lead to trivially tampered layouts.
Evaluation of the performance of the tampered layouts was done
using signoff settings and provides accurate performance impact.

Experimental Results: To show the diversity of achievable HTs
using BioHT, we performed the insertion of 96 variations of HTs.
In the remaining results presentation, we are going to show only a
handful of the possible HTs, the full results for all HT variants can be
found at [12]. The results in Tab. 2 show the injected type of trigger
and payload, the number of sequential/combinational cells, and the
number of connections that the HT hooks to the target circuit. As
mentioned before, BioHT can generate a vast number of HTs when
employing all configuration options and trigger-payload combina-
tions. Depending on the available target information, the attacker
can narrow the range of fitting configurations and trigger-payload
combinations. For example, a bit-flip fault as produced by the fault
payload fits a crypto-core better than PULPino. Parametrization

was guided by Trial TCO, as well as the independency check. For
example, the independency check highlighted for both AES and
RSA that there is no FSM, as only one independent FSM state regis-
ter was found. This is why the Modify payload was not used for
FSM tampering with these targets. Trial TCO guided towards low
register count (that is lower 𝑛 and 𝑐 parameters), as register count
was directly related to unfittability. Note that, among the selected
HTs presented in this work are smaller and larger possible HTs.
The SSFs were selected so that their behavior (see Tab. 1) fits the
HT. We can conclude that BioHT is capable to produce diverse
HTs for virtually any given target, while adapting to the amount of
available information.

One goal of HT insertion is to guarantee that layout performance
is not affected. The impact on the target layout is shown in Tab. 2 in
terms of density, total power, timing (critical path slack), and design
rules violations. An actual attacker would drop the HT variants that
show unfit timing (large negative slack) or design rules violations
(e.g. the last RSA variant). For all other variants, the impact of
their insertion is not enough for breaking the design, making the
resulting tampered layout manufacturable.

We selected the targets PULPino and RSA for demonstrating the
HT insertion results in more detail. The HT variant with a Counter
trigger and a Modify payload is challenging for its large number
of cells (highlighted in bold in Tab. 2). The contrast between the
layouts before and after the HT insertion is depicted in Fig. 4, where
the malicious cells are highlighted in red, and the hooked cells are
highlighted in light blue. For this image, we omitted the filler cells
to improve the contrast between the original cells and HT cells.

The impact on the timing performance is demonstrated in Fig. 5.
The green bars show the distribution of the timing slack of paths
before and the red bars after inserting the HT. As portrayed in this
figure, the overall impact is greater on the denser design, i.e., RSA.
This is expected since the increase in the routing congestion is lesser
in low-density designs. This claim is supported by the wire length
statistics reported in Tab. 32. From these results, it is clear that
routing the additional HT logic is easier in PULPino (low-density
design), because the additional wiring can be evenly distributed in
all metal layers. The opposite is true for RSA (high-density design),
where it was required to use an additional layer that was empty
before, and in M5 more than the double amount of routing metal
was used. Therefore, the timing impact on RSA from the additional
coupling capacitance is stronger.

For this work, we executed further fit and unfit HT TCOs for
demonstrating the dependency between the overall design imple-
mentation, HT architecture, and, number/location of chosen signals
to hook the HT. Tab. 2 shows that the density of the design is not
the only factor that makes an HT unfit. In the case of the AES-128,
even with a density of 84.54%, all HTs were inserted without break-
ing the target design. This contradicts previous works that stated it
would be impossible to insert HTs in designs with 80% of density or
higher [2], or being a very difficult task if the placement resource
available is small [37]. The size of the HT and the number of hooked
signals are also not a sufficient metric to decide if an HT is unfit.
Still using AES-128 as an example, the total timing impact does
not depend on those HT characteristics, where the large timing

2In the 9-metal stack used in our experiments, M1 cannot be used for signal routing.
For this reason, M1 is not shown. Similarly, M8/M9 are reserved for power distribution
and are not shown.

A Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized Layouts ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

impact is not from the largest HT. Therefore, it is not possible to
rely on these metrics to assess with precision the vulnerability of a
layout against HT insertion. Another experiment on PULPino was
performed using the cluster-based SSFs (TC, TCR). By enforcing
co-location of hooks, all PULPino variants become feasible. We
conclude that the feasibility to co-locate HT signals (for a given
attack objective) has a large impact on layout vulnerability.

When developing BioHT, an important aspect was to ensure
a runtime within the 24h time window available to perform the
attack. In Fig. 6, we show the runtime required for our attack in
contrast with the design implementation runtime for PULPino and
RSA. For PULPino, we show the HT-insertion with and without the
use of the Spatial Clustering (optimized) Metric for searching the
hooking signals. Trial TCO can easily determine if the overhead for
spatial clustering is required. The runtime for RSA, PULPino with
optimization, and PULPino without, are 50 minutes, 44 minutes,
and, 24 minutes, respectively. As shown in the Fig. 6, the most time
intensive tasks are the netlist extraction and power/time analysis.
Those tasks are mandatory if the intention of the attacker is to
insert meaningful and stealthy HTs. Our tool BioHT represents
less than 20% of the attack total runtime. We conclude that HT
generation with BioHT achieves competitive runtime overhead and
would allow repeated attack execution for optimum performance.

135um

13
5u

m
10

50
um

1050um

Before HT insertion After HT insertion

P
U

L
P

in
o

R

S
A

Data Memory
4096x32

Data Memory
4096x32

Data Memory
4096x32

Data Memory
4096x32

Instruction Memory
4096x32

Instruction Memory
4096x32

Instruction Memory
4096x32

Instruction Memory
4096x32

Figure 4: Layout contrast before and after HT insertion for
PULPino and RSA. The HT inserted has a trigger counter
and a modify payload. Its cells are highlighted in red.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 100 200 300 400 500 600 700

#
 o

f
pa

th
s

Time (ps)

Before HT Insertion
After HT Insertion

 0

 10

 20

 30

 40

 50

 60

-100 0 100 200 300 400 500 600 700

#
 o

f
pa

th
s

Time (ps)

Figure 5: Timing impact of the hardware trojan Insertion, for
PULPino (left) and RSA (right).

RSA
 HT insertion

PULPino
 HT insertion

PULPino
 Opt. HT insertion

RSA

PULPino

 0 1000 2000 3000 4000 5000 6000 7000 8000

Design Implementation

Attack

Time (s)

Placement
CTS

Route
Post-Route

Netlist Extraction
Power and Time Analysis

BioHT
ECO Flow

Figure 6: HT insertion using BioHT execution time (s) in
contrast with the physical implementation of a target.

5 DISCUSSION
During the experiments, the ease of the BioHT flow proved valuable,
as few configuration options have to be adapted to run HT insertion
on a new design. Configuration was also guided by the tool itself.
For example, the independency check proved to have a significant
advantage over mere topological ordering. It aids the exploration
of possible HT configurations, as it immediately highlights that
specific configuration parameters are infeasible. It must be noted,
however, that the experiments showed that, in rare cases, the inde-
pendency check cannot guarantee that a HT can be triggered. In
this case, the user is warned and recommended to use a different
random seed for the trigger SSFs configuration, or select a different
SSF. In our experiments, this occured once and was solved with a
new random seed immediately.

An important and unforeseen result is that the influence of circuit
cell density on the feasibility of HT insertion is much less than
expected. In the two low density designs, SHA and PULPino, the
HT insertion partially failed, while in the high density designs HT
insertion succeeded, even for large HTs with hundreds of cells, and
independent of the increase in wire length. We conclude that the
vulnerability of a layout for HT insertion cannot be assessed by
a few metrics. Instead, we propose to use BioHT as an empirical
solution to assess the vulnerability by random HT insertion. BioHT
goes beyond a proof-of-concept that blindly attacking a layout is
possible. The framework can quickly produce a boundary of HT
insertion feasibility, provide a risk assessment and guide physical
defense strategies for HT insertion. Our claim is that no other work
in the literature can provide this information.

In order to defend against sophisticated foundry-level attacks
as in this work, two possibilities are pre-silicon design-for-trust
or post-silicon detection techniques. Pre-silicon design-for-trust
implements measures to render HT insertion more difficult or to
provide trust anchors in the design to identify tampered locations.
For example, logic locking renders understanding an unknown
layout more difficult [17]. As previously explained, little available
information is enough to insert meaningful HTs with BioHT. In
how far this limits the effect of locking remains as a future work.
Other design-for-trust techniques such as on-chip sensors must be
circumvented, but automated solutions exist for many techniques
(e.g. [40]), which are easily integrated into BioHT.

Post-silicon detection generally is either an exhaustive, error-
prone and costly reverse engineering effort [19] to fully inspect
the design, or can by principle only achieve partial coverage (e.g.,
with side-channel analysis, logic testing, etc.) [17]. BioHT can be

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl

Table 2: Physical synthesis results before and after HT insertion for the target designs and several HT architectures.
Hardware Trojan Characteristics Physical synthesis results

Target Trigger Payload SSF Seq. Comb. Conn. Freq. Density Total power Slack Viol.
Trig. Payl. # # # (MHz) (%) (µW) (ps) #

before before after before after before after after
PULPino FSM Modify TR RHS 7 14 20 54.00 72.20 -4 0

FSM Shift’n’burn TR D 40 75 6 54.23 72.59 -8 0
Comb. Modify TR RHST 4 8 19 53.99 72.48 -9 0
Comb. Modify TCR RHST 4 15 31 54.03 72.77 2 0
Comb. Shift’n’burn TR D 37 71 8 285 53.97 54.26 74.64 72.61 15 -10 0

Counter Modify T RHS 24 79 18 54.33 72.52 -18 0
Counter Modify TC RHS 24 82 15 54.43 73.00 0 0
Counter Shift’n’burn T D 57 140 3 54.51 72.99 -46 0
Counter Shift’n’burn TC D 57 140 3 54.66 73.04 3 0

SHA-256 FSM Modify TR RHS 24 85 28 54.38 47.27 20 0
FSM Shift’n’burn TR D 40 75 6 54.54 47.28 31 0
Comb. Modify TR RHS 4 18 38 53.94 47.28 -7 0
Comb. Shift’n’burn TR D 37 71 8 500 53.84 54.58 46.48 51.74 49 34 0
Counter Modify T RHS 24 85 25 54.38 47.27 20 0
Counter Shift’n’burn T D 57 140 3 55.03 51.94 45 0

RSA FSM Fault TR RLR 13 31 30 87.40 15.58 -84 0
FSM Shift’n’burn TR D 40 75 6 89.62 15.73 139 0
Comb. Fault TR RLR 10 29 33 87.21 15.87 -46 0
Comb. Shift’n’burn TR D 37 71 8 750 86.19 89.39 15.58 15.62 196 194 0

Counter Fault T RLR 30 96 24 89.34 15.90 -108 0
Counter Shift’n’burn T D 44 109 3 91.57 15.97 N/A 71

AES-128 FSM Fault TR RLR 13 31 28 84.85 21.96 76 0
FSM Shift’n’burn TR D 40 75 6 85.85 22.11 30 0
Comb. Fault TR RLR 10 29 38 84.79 21.95 52 0
Comb. Shift’n’burn TR D 37 71 8 750 84.46 85.55 21.82 22.12 201 116 0
Counter Fault T RLR 30 96 24 85.99 22.15 119 0
Counter Shift’n’burn T D 10 29 2 84.78 21.94 163 0

Table 3: Routing length in µm per metal layer for PULPino
and RSA, before and after the HT-insertion.

RSA PULPino
Metal layer before after before after

M2 18.7k 18.9k 323.8k 326.5k
M3 23.2k 25.1k 439.2k 441.7k
M4 11.5k 15.9k 378.2k 382.4k
M5 2.5k 5.1k 357.1k 360.6k
M6 - 1.0k 221.3k 223.8k
M7 - - 161.6k 163.2k

adapted to evade non-exhaustive post-silicon detection by modi-
fying HT configuration and SSFs. An interesting approach is to
include self-test structures in pre-silicon to improve post-silicon
imaging detection [38]. In the end, post-silicon detection tries to
prove that the design is identical to the pre-silicon layout, but a
solution with guaranteed coverage is yet to be found.

As BioHT resembles a real-world blind foundry-level attack, the
framework can complement post-silicon inspection by guiding in-
spection to vulnerable locations. This reduces the effort required for
inspection, as only selected regions of the design must be inspected,
namely those where BioHT potentially attacked the circuit.

Orthogonally, the use of machine-learning in any pre- and post-
silicon HT detection is on the rise [17, 15]. Providing a vast amount
of diverse HT samples is essential to train any machine-learning
based detection technique. BioHT can be used blindly on any design
to generate diverse training samples. Unlike with previous methods,
it is not necessary to manually implement a sample set of trojans
or to perform manual adaptation of the HT insertion technique.
We expect the diversity of HTs and targets to be necessary and
beneficial to future work on machine-learning based HT detection.

6 CONCLUSION
In this work, we presented BioHT, a framework to insert hardware
trojans into unknown ASIC layouts. The tool is using an end-to-end
approach, starting at the victim’s layout delivered to the foundry
and ending with the tampered layout ready for fabrication. Through
the use of reverse engineering techniques, little knowledge about
the design is necessary to introduce sophisticated trojans into the
circuit. The use of state-of-the-art physical synthesis tools and an
ECO flow allows performing the actual insertion as trouble-free
as a layout bug fix. The end result is a DRC-clean layout that is
ready for manufacturing, or an error message to the attacker that
the parameters of insertion must be changed. Our experiments
show that the complete approach can be executed multiple times
in the time-frame between tape-out and manufacturing, so that
the optimum trojan could be selected out of several possibilities.
However, BioHT is also a tool to show how realistic trojan insertion
would be performed, and can guide risk assessment, defense, and
future research. To conclude, HT insertion in finalized layouts is a
real threat to today’s globalized IC manufacturing and must not be
taken lightly. Our framework provides the necessary capabilities
and information to advance countermeasures against this threat.

ACKNOWLEDGMENTS
This work has been partially conducted in the project “ICT pro-
gramme” which was supported by the European Union through the
European Social Fund. It was also partially supported by European
Union’s Horizon 2020 research and innovation programme under
grant agreement No 952252 (SAFEST).

A Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized Layouts ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

REFERENCES
[1] Alex Baumgarten, Michael Steffen, Matthew Clausman, and Joseph Zambreno.

2011. A case study in hardware Trojan design and implementation. Int. J. Inf.
Secur., 10, 1, (Feb. 1, 2011), 1–14. doi: 10.1007/s10207-010-0115-0.

[2] S. Bhasin, J. Danger, S. Guilley, X. T. Ngo, and L. Sauvage. 2013. Hardware
Trojan Horses in Cryptographic IP Cores. In 2013 Workshop on Fault Diagnosis
and Tolerance in Cryptography. (Aug. 2013), 15–29. doi: 10.1109/FDTC.2013.15.

[3] Jonathan Cruz, Pravin Gaikwad, Abhishek Nair, Prabuddha Chakraborty, and
Swarup Bhunia. 2022. Automatic Hardware Trojan Insertion using Machine
Learning. (2022). https://arxiv.org/abs/2204.08580 arXiv: 2204.08580.

[4] Jonathan Cruz, Y. Huang, P. Mishra, and S. Bhunia. 2018. An automated con-
figurable Trojan insertion framework for dynamic trust benchmarks. In 2018
Design, Automation Test in Europe Conference Exhibition (DATE). (Mar. 2018),
1598–1603. doi: 10.23919/DATE.2018.8342270.

[5] Chris Drake. 2015. PyEDA: Data Structures and Algorithms for Electronic
Design Automation. In Proceedings of the 14th Python in Science Conference.
Kathryn Huff and James Bergstra, (Eds.), 25–30. doi: 10.25080/Majora-7b98e3e
d-004.

[6] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Anto-
nio Pullini, Davide Rossi, Eric Flamand, Frank K. Gürkaynak, and Luca Benini.
2017. Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT End-
point Devices. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25, 10, (Oct. 2017), 2700–2713. doi: 10.1109/TVLSI.2017.2654506.

[7] Ujjwal Guin et al. 2014. Counterfeit integrated circuits: A rising threat in the
global semiconductor supply chain. Proceedings of the IEEE, 102, 8, 1207–1228.
doi: 10.1109/JPROC.2014.2332291.

[8] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network
Structure, Dynamics, and Function using NetworkX. In Proc. SciPy ’08, 11–15.

[9] S. K. Haider, C. Jin, M. Ahmad, D. Shila, O. Khan, andM. van Dijk. 2017. Advanc-
ing the State-of-the-Art in Hardware Trojans Detection. In IEEE Transactions
on Dependable and Secure Computing. Vol. PP, 1–1. doi: 10.1109/TDSC.2017.26
54352.

[10] Kento Hasegawa, Kazuki Yamashita, Seira Hidano, Kazuhide Fukushima, Kazuo
Hashimoto, and Nozomu Togawa. 2022. Node-wise Hardware Trojan Detection
Based on Graph Learning, (Mar. 15, 2022). Retrieved Apr. 4, 2022 from arXiv:
2112.02213.

[11] Alexander Hepp, Johanna Baehr, and Georg Sigl. 2022. Golden Model-Free
Hardware Trojan Detection by Classification of Netlist Module Graphs. In 2022
Design, Automation Test in Europe Conference Exhibition (DATE), 1317–1322.
doi: 10.23919/DATE54114.2022.9774760.

[12] Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl. 2022. BioHT
(Blind Insertion of Hardware Trojans) Tool. https://github.com/Centre-for-Ha
rdware-Security/bio_hardware_trojan.

[13] Alexander Hepp and Georg Sigl. 2021. Tapeout of a RISC-V crypto chip with
hardware trojans: a case-study on trojan design and pre-silicon detectability.
In Proceedings of the 18th ACM International Conference on Computing Frontiers.
CF ’21: Computing Frontiers Conference. (May 11, 2021), 213–220. doi: 10.114
5/3457388.3458869.

[14] Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. 2021. Hardware Informa-
tion Flow Tracking. ACM Comput. Surv., 54, 4, (May 3, 2021), 83:1–83:39. doi:
10.1145/3447867.

[15] Z. Huang, Q. Wang, Y. Chen, and X. Jiang. 2020. A Survey on Machine Learning
Against Hardware Trojan Attacks: Recent Advances and Challenges. IEEE
Access, 8, 10796–10826. doi: 10.1109/ACCESS.2020.2965016.

[16] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor. 2010. Trustworthy
Hardware: Identifying and Classifying Hardware Trojans. Computer, 43, 10,
(Oct. 2010), 39–46. doi: 10.1109/MC.2010.299.

[17] Konstantinos G Liakos, Georgios K Georgakilas, Serafeim Moustakidis, Nicolas
Sklavos, and Fotis C Plessas. 2020. Conventional and machine learning ap-
proaches as countermeasures against hardware trojan attacks. Microprocessors
and Microsystems, 79, 103295. doi: https://doi.org/10.1016/j.micpro.2020.103295.

[18] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson.
2009. Trojan Side-Channels: Lightweight Hardware Trojans through Side-
Channel Engineering. In Cryptographic Hardware and Embedded Systems -
CHES 2009. Christophe Clavier and Kris Gaj, (Eds.), 382–395.

[19] Matthias Ludwig, Ann-Christin Bette, and Bernhard Lippmann. 2021. ViTaL:
Verifying Trojan-Free Physical Layouts throughHardware Reverse Engineering.
In 2021 IEEE Physical Assurance and Inspection of Electronics (PAINE). 2021 IEEE
Physical Assurance and Inspection of Electronics (PAINE). (Nov. 2021), 1–8.
doi: 10.1109/PAINE54418.2021.9707702.

[20] T. Meade, Y. Jin, M. Tehranipoor, and S. Zhang. 2016. Gate-level netlist reverse
engineering for hardware security: Control logic register identification. In
2016 IEEE International Symposium on Circuits and Systems (ISCAS). 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), 1334–1337. doi:
10.1109/ISCAS.2016.7527495.

[21] [SW] Travis Meade, Netlist Analysis Toolset (NETA) Mar. 16, 2018. url: https:
//github.com/jinyier/NetA.

[22] Travis Meade, Shaojie Zhang, and Yier Jin. 2016. Netlist reverse engineering
for high-level functionality reconstruction. In 2016 21st Asia and South Pacific

Design Automation Conference (ASP-DAC), 655–660. doi: 10.1109/ASPDAC.201
6.7428086.

[23] Aaron Meurer et al. 2017. SymPy: symbolic computing in Python. PeerJ Com-
puter Science, 3, (Jan. 2017), e103. doi: 10.7717/peerj-cs.103.

[24] Michael Muehlberghuber, Frank K. Gürkaynak, Thomas Korak, Philipp Dunst,
and Michael Hutter. 2013. Red Team vs. Blue Team Hardware Trojan Analysis:
Detection of a Hardware Trojan on an Actual ASIC. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy (HASP ’13) Article 1, 8 pages. doi: 10.1145/2487726.2487727.

[25] DanielMüllner. 2011.Modern hierarchical, agglomerative clustering algorithms.
(2011). https://arxiv.org/abs/1109.2378 arXiv: 1109.2378.

[26] F.N. Najm. 1994. A survey of power estimation techniques in VLSI circuits.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2, 4, (Dec.
1994), 446–455. doi: 10.1109/92.335013.

[27] Tiago Perez, Malik Imran, Pablo Vaz, and Samuel Pagliarini. 2021. Side-Channel
Trojan Insertion - a Practical Foundry-Side Attack via ECO. In 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), 1–5. doi: 10.1109
/ISCAS51556.2021.9401481.

[28] Shahed E. Quadir, Junlin Chen, Domenic Forte, Navid Asadizanjani, Sina Shah-
bazmohamadi, Lei Wang, John Chandy, and Mark Tehranipoor. 2016. A Survey
on Chip to System Reverse Engineering. J. Emerg. Technol. Comput. Syst., 13, 1,
Article 6, (Apr. 2016), 6:1–6:34. doi: 10.1145/2755563.

[29] Rachel Selina Rajarathnam, Yibo Lin, Yier Jin, and David Z. Pan. 2020. ReGDS:
A Reverse Engineering Framework from GDSII to Gate-level Netlist. In 2020
IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
154–163. doi: 10.1109/HOST45689.2020.9300272.

[30] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. 2014. A primer on
hardware security: Models, methods, and metrics. Proceedings of the IEEE, 102,
8, 1283–1295. doi: 10.1109/JPROC.2014.2335155.

[31] H. Salmani, M. Tehranipoor, and J. Plusquellic. 2012. A Novel Technique for
Improving Hardware Trojan Detection and Reducing Trojan Activation Time.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20, 1, (Jan.
2012), 112–125. doi: 10.1109/TVLSI.2010.2093547.

[32] Amin Sarihi, Ahmad Patooghy, Peter Jamieson, and Abdel-Hameed A. Badawy.
2022. Hardware Trojan Insertion Using Reinforcement Learning. (2022). arXiv:
2204.04350 [cs.LG].

[33] Bicky Shakya, Tony He, Hassan Salmani, Domenic Forte, Swarup Bhunia, and
Mark Tehranipoor. 2017. Benchmarking of Hardware Trojans and Maliciously
Affected Circuits. Journal of Hardware and Systems Security, 1, 1, (Mar. 2017),
85–102. doi: 10.1007/s41635-017-0001-6.

[34] Shinya Takamaeda-Yamazaki. 2015. Pyverilog: A Python-Based Hardware De-
sign Processing Toolkit for Verilog HDL. In Applied Reconfigurable Computing
(Lecture Notes in Computer Science). Vol. 9040. (Apr. 2015), 451–460. doi:
10.1007/978-3-319-16214-0_42.

[35] Mohammad Tehranipoor and Farinaz Koushanfar. 2010. A survey of hardware
trojan taxonomy and detection. IEEE Design and Test of Computers, 27, 1, 10–25.
doi: 10.1109/MDT.2010.7.

[36] Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Germain Haugou,
Eric Flamand, Frank K. Gürkaynak, and Luca Benini. 2015. PULPino: A small
single-core RISC-V SoC. https://github.com/pulp-platform/pulpino.

[37] T Trippel et al. 2020. ICAS: An Extensible Framework for Estimating the
Susceptibility of IC Layouts to Additive Trojans. 2020 IEEE Symposium on
Security and Privacy (SP), 1078–1095. doi: 10.1109/SP40000.2020.00083.

[38] Nidish Vashistha, Hangwei Lu, Qihang Shi, Damon L.Woodard, NavidAsadizan-
jani, andMark Tehranipoor. 2021. Detecting Hardware Trojans using Combined
Self Testing and Imaging. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 1–1. doi: 10.1109/TCAD.2021.3098740.

[39] Xiaoxiao Wang, M. Tehranipoor, and J. Plusquellic. 2008. Detecting malicious
inclusions in secure hardware: Challenges and solutions. In Hardware-Oriented
Security and Trust, IEEE International Workshop on. (June 2008), 15–19. doi:
10.1109/HST.2008.4559039.

[40] Xinmu Wang, Seetharam Narasimhan, Aswin Krishna, Tatini Mal-Sarkar, and
Swarup Bhunia. 2011. Sequential hardware Trojan: Side-channel aware design
and placement. In 2011 IEEE 29th International Conference on Computer Design
(ICCD). 2011 IEEE 29th International Conference on Computer Design (ICCD).
(Oct. 2011), 297–300. doi: 10.1109/ICCD.2011.6081413.

[41] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, andM. Tehranipoor. 2016. Hardware
Trojans: Lessons Learned After One Decade of Research. ACM Trans. Des.
Autom. Electron. Syst., 22, 1, Article 6, (May 2016), 6:1–6:23. doi: 10.1145/29061
47.

[42] Mingfu Xue, Chongyan Gu, Weiqiang Liu, Shichao Yu, and Máire O’Neill.
2020. Ten years of hardware Trojans: a survey from the attacker’s perspective.
English. IET Computers & Digital Techniques, 14, 6, (Nov. 2020), 231–246, 6,
(Nov. 2020). eprint: https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049
/iet-cdt.2020.0041. doi: https://doi.org/10.1049/iet-cdt.2020.0041.

[43] S. Yu, W. Liu, and M. O’Neill. 2019. An Improved Automatic Hardware Trojan
Generation Platform. In 2019 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). (July 2019), 302–307. doi: 10.1109/ISVLSI.2019.00062.

