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ABSTRACT

To this day, there are still some countries where the exchange of

kidneys between multiple incompatible patient-donor pairs is re-

stricted by law. Typically, legal regulations in this context are put

in place to prohibit coercion and manipulation in order to prevent a

market for organ trade. Yet, in countries where kidney exchange is

practiced, existing platforms to facilitate such exchanges generally

lack sufficient privacy mechanisms. In this paper, we propose a

privacy-preserving protocol for kidney exchange that not only ad-

dresses the privacy problem of existing platforms but also is geared

to lead the way in overcoming legal issues in those countries where

kidney exchange is still not practiced. In our approach, we use the

concept of secret sharing to distribute the medical data of patients

and donors among a set of computing peers in a privacy-preserving

fashion. These computing peers then execute our new Secure Multi-

Party Computation (SMPC) protocol among each other to determine

an optimal set of kidney exchanges. As part of our new protocol,

we devise a privacy-preserving solution to the maximum matching

problem on general graphs. We have implemented the protocol

in the SMPC benchmarking framework MP-SPDZ and provide a

comprehensive performance evaluation. Furthermore, we analyze

the practicality of our protocol when used in a dynamic setting

(where patients and donors arrive and depart over time) based on a

data set from the United Network for Organ Sharing.

CCS CONCEPTS

•Mathematics of computing→Graph algorithms; • Security
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1 INTRODUCTION

According to the World Health Organization kidney disease is the

10th most common cause of death worldwide [34]. While the prefer-

able treatment for patients with kidney disease is transplantation,

the waiting lists for post-mortem kidney donation are very long,

e.g., more than 90000 patients are currently on the waiting list for

a kidney transplant in the US [36]. An alternative to post-mortem

donation is to find a friend or relative who is willing to donate

one of their kidneys. While many patients find such a living donor,

often this donor is not compatible with the patient’s medical char-

acteristics.

A recent development to solve this problem is kidney exchange.

The idea is to consider multiple patients with incompatible living

donors (also referred to as incompatible patient-donor pairs) and

find exchanges among them (e.g., crossover exchanges where the

donor of one patient-donor pair donates to the patient of another

pair and vice versa). While there are many countries around the

world where kidney exchange is already practiced, to date there are

still some countries (e.g., Germany
1
) where kidney exchange faces

legal obstacles. This is mainly due to fear of manipulation, corrup-

tion, and coercion. In those countries where kidney exchange is

already practiced, it is usually organized by large centralized plat-

forms which are responsible for the computation of the exchanges.

Thus, the patient-donor pairs have to fully trust these platforms

not only with their medical data but also with the correct and fair

computation of the exchanges. Furthermore, such a centralized

approach makes the platforms a desirable target for attackers. Com-

promising a single entity allows them to access the medical data of

all pairs or to manipulate the computation of the exchanges which

could have life-threatening consequences for the involved patients.

To mitigate these shortcomings, we devise a decentralized ap-

proach for kidney exchange where medical data and exchange

computation are distributed among multiple parties. This ensures

privacy of the data as well as protection against manipulation, cor-

ruption, and coercion for existing platforms. Also, this may lead to

an adoption of kidney exchange in countries where it is still off lim-

its today. Specifically, this work provides four main contributions:

First, we devise the first privacy-preserving protocol for crossover

kidney exchange based on secret sharing which at the same time

is the first privacy-preserving protocol for kidney exchange with

polynomial communication complexity. At the heart of our protocol

is a privacy-preserving solution to the maximummatching problem

on general graphs. To the best of our knowledge, we are the first

to solve the maximum matching problem on general graphs in a

privacy-preserving fashion which we consider to be of independent

interest beyond the use case of kidney exchange.

Second, we implement our protocol in the state-of-the-art SMPC

benchmarking framework MP-SPDZ [30] and carry out a compre-

hensive performance analysis. The source code is published in [17].

Third, we compare the implementation of our protocol to the

only other privacy-preserving protocol for kidney exchange [18]

known to date. To this end, we implement the protocol from [18]

in MP-SPDZ based on secret sharing and thereby significantly
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improve its performance. While the protocol from [18] solves a

more general problem than our newly developed protocol, we show

that our protocol considerably outperforms the protocol from [18]

for the special case of crossover exchanges.

Fourth, we establish the practicality of our protocol when used as

part of a dynamic kidney exchange platform where patient-donor

pairs arrive and leave over time. To this end, we run simulations

based on real-world data from the United Network for Organ Shar-

ing (UNOS) which is a major kidney exchange platform in the US.

We compare the performance of a kidney exchange platform using

our protocol to a conventional (non-privacy-preserving) approach

and measure the number of transplants for both scenarios. As kid-

ney exchange platforms differ substantially around the world, we

run simulations for a wide range of parameters reflecting many

different characteristics of various kidney exchange platforms. Our

simulations show that the performance difference between our

privacy-preserving approach and the conventional approach is neg-

ligible for those parameters that are most likely to occur in practice.

2 INTUITION AND APPROACH

Traditional Platforms. Typically, at the core of today’s tradi-
tional kidney exchange platforms (cf. Figure 1) is the pool of those

patient-donor pairs that are currently registered and seek for an

exchange partner. Usually, a patient-donor pair is associated with a

transplant center or hospital which registers it with a central plat-

form by providing them the medical data of both patient and donor.

Operators of these central platforms then carry out so-called match
runs at specific points in time (denoted as 𝑡 and 𝑡 + 1 in Figure 1).

Amatch run corresponds to solving theKidney Exchange Problem
(KEP) among all patient-donor pairs within the pool. The KEP is

defined as finding a set of exchanges that maximizes the number of

patients that can receive a transplant [1]. Usually, it is modeled as

a graph problem where each patient-donor pair corresponds to one

node and an edge is added between two nodes if the donor of the

first pair can donate to the patient of the second pair. Exchanges

are then computed such that the donor of a patient-donor pair only

donates her kidney if the corresponding patient also receives a

compatible kidney transplant in return.

The simplest form of such an exchange is a crossover exchange
where the donor of an incompatible patient-donor pair 𝐴 donates

to the patient of another incompatible patient-donor pair 𝐵 and

vice versa. Larger exchange cycles where the donor of a pair al-

ways donates to the patient of the succeeding pair are also possible.

However, large cyclic exchanges require a lot of medical resources

as all involved transplants have to be carried out simultaneously to

prevent a donor from backing out after the corresponding patient al-

ready received a transplant. Therefore, most countries only consider

exchange cycles of maximum size three (e.g., Netherlands, Spain,

UK, and the major exchange platforms in the US [7, 11]) or even

only crossover exchanges (e.g., all countries of Scandinavia [5, 11]).

Besides such cyclic exchanges, also chains initiated by an altruistic

donor without a corresponding patient are possible. However, they

are still not allowed in many countries [11].

After the execution of a match run, those pairs that werematched

are removed from the pool and informed of the computed exchange

partner. If the match results in a transplant, the pairs leave the

Pool𝑡 Pool𝑡+1

Match offered

Unmatched

New patient-donor pairs

Transplant succeeded,

death, donor reneged, ...

Transplant succeeded,

death, donor reneged, ...

Figure 1: Model of a dynamic kidney exchange platform,

adapted from [22].

platform. If the match fails, they reenter the pool. Pairs that were

not matched, simply remain in the pool until the next match run is

executed. In between two match runs new patient-donor pairs may

arrive at the pool and pairs that are already in the pool may leave

for various reasons (e.g., death or illness of patient or donor).

Privacy Concerns. The traditional centralized setting exhibits

two major shortcomings. First, the patient-donor pairs (or their rep-

resentative hospitals) have to completely trust the single operator of

the centralized platform in computing the exchanges correctly and

treating each patient-donor pair equally. Second, an attacker only

has to compromise a single entity in order to gain complete control

over the exchange computation as well as the sensitive medical

data of all patients and donors registered with the platform.

Intuition for the Privacy-Preserving Approach. Pursuing a

decentralized approach based on Secure Multi-Party Computation
(SMPC) allows for the distribution of the exchange computation

among multiple parties, making it privacy-preserving. In our ap-

proach we substitute the central kidney exchange platform bymulti-

ple so-called computing peerswho execute an SMPC protocol among

each other to compute the exchanges in a distributed fashion. The

patient-donor pairs are then also referred to as input peers as they
(or their representative hospitals) just send their input (medical

data) to the computing peers. They use secret sharing to guarantee

that a single computing peer does not gain any knowledge on the

actual medical data of any patient or donor. After the protocol exe-

cution, the computing peers then send the shares of the computed

exchanges to the corresponding input peers. During the protocol

execution, the computing peers do not learn anything about the

medical data of the patient-donor pairs or the computed exchanges.

Choosing the optimal number of computing peers here means a

trade-off between privacy and performance. On one hand, a larger

number of computing peers, increases the number of peers that

need to be corrupted in order to compromise the privacy of the

patient-donor pairs. On the other hand, a smaller number of com-

puting peers decreases the communication overhead induced by the

protocol and thus also decreases the protocol runtime. For our run-

time measurements (cf. Section 5.3), we use three computing peers

which is usually considered a good trade-off (e.g., [15, 16]). The

computing peers could be governmental institutions, transplant

centers, or institutions that cover the patients’ interests.

For the actual SMPC protocol that is executed between the com-

puting peers we then focus on pure crossover exchanges. This

allows us to reduce the KEP to finding a maximum matching in



a general graph where an undirected edge is added between two

nodes if the donor of one pair is compatible with the patient of

the other and vice versa, i.e., if a crossover exchange between the

two pairs is possible. Thus, computing a maximum matching is

equivalent to maximizing the number of crossover exchanges. This

is a huge advantage since the KEP is NP-complete if the cycle size

is restricted to three or larger [1]. Solving the maximum match-

ing problem on general graphs instead is possible in polynomial

time (e.g., [24]). Using an efficient algorithm as basis for a privacy-

preserving protocol is important as such protocols in general in-

troduce additional overhead to the original algorithm. Another

advantage that comes along with crossover exchanges is that in

some countries, e.g., Germany a transplantation is only allowed if

patient and donor know each other well which is much easier to

guarantee for crossover exchanges than for larger cycles.
2

3 PRELIMINARIES

In this section, we establish the relevant background for our privacy-

preserving protocol for kidney exchange including basic termi-

nology from graph theory (Section 3.1) and a description of the

considered setting for secure multi-party computation (Section 3.2).

3.1 Graph Theory

An undirected graph is denoted as 𝐺 = (𝑉 , 𝐸) where 𝑉 is a finite

set of nodes and (𝑢, 𝑣) ∈ 𝐸 indicates an undirected edge between

nodes 𝑢, 𝑣 ∈ 𝑉 with 𝑢 ≠ 𝑣 . Two nodes 𝑢 and 𝑣 are called adjacent
if there is an edge (𝑢, 𝑣) ∈ 𝐸 and an edge (𝑢, 𝑣) ∈ 𝐸 is said to be

incident to node 𝑢 and 𝑣 . A matching is a set of edges𝑀 such that

each node 𝑣 ∈ 𝑉 is incident to at most one edge in 𝑀 . An edge

(𝑢, 𝑣) ∈ 𝑀 is called a matched edge and an edge (𝑢, 𝑣) ∉ 𝑀 is called

an unmatched edge. A node 𝑣 ∈ 𝑉 that is incident to an edge in

𝑀 is referred to as a matched node and the nodes 𝑢, 𝑣 of an edge

(𝑢, 𝑣) ∈ 𝑀 are called mates. All nodes 𝑣 ∈ 𝑉 that are not incident

to an edge in𝑀 are called exposed nodes. A path is a sequence of

pairwise different nodes 𝑝 = 𝑣1, ..., 𝑣𝑘 such that for all 𝑣𝑖 with 𝑖 ∈
{1, ..., 𝑘−1} it holds that (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸. A path 𝑃 is called alternating
w.r.t. a matching𝑀 if the edges in 𝑃 are alternately matched and

unmatched edges. We refer to an alternating path 𝑃 beginning at an

exposed node 𝑣1 and ending at an exposed node 𝑣2 (with 𝑣1 ≠ 𝑣2)

as an augmenting path. A cycle is a path with (𝑣𝑘 , 𝑣1) ∈ 𝐸. We

call a cycle odd if it contains an odd number of edges and even,
otherwise. A fundamental property for matching algorithms is

Berge’s Theorem.

Definition 3.1. (Berge’s Theorem [9]) Amatching𝑀 in a graph𝐺
is called a maximum matching if and only if 𝐺 has no augmenting
path with respect to𝑀 .

Intuitively, Berge’s Theorem states that if there is an augmenting

path 𝑃 = (𝑣1, ..., 𝑣𝑘 ) with respect to 𝑀 in the graph 𝐺 , then it is

possible to increase the matching by adding all edges (𝑣𝑖 , 𝑣𝑖+1) ∉ 𝑀

with 𝑖 ∈ {1, ..., 𝑘 − 1} to 𝑀 and removing all edges (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝑀
with 𝑖 ∈ {1, ..., 𝑘 − 1} from𝑀 . Thereby, we obtain a new matching

𝑀 ′ with |𝑀 ′ | = |𝑀 | + 1. Thus,𝑀 cannot be a maximum matching.

2
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3.2 Secure Multi-Party Computation

Generally speaking, SMPC allows a set of 𝑛 parties to jointly com-

pute a functionality in a distributed fashion such that no party

learns anything beyond its private input and output and what can

be deduced from both. We adopt the well-established approach

(e.g., [15, 16]) of distinguishing between two sets of parties, so-

called input peers and computing peers. While the former provide

input to the functionality and receive their corresponding output,

the latter execute the actual protocol among each other. In our proto-

col (cf. Section 5.2), the input peers correspond to the patient-donor

pairs and the computing peers can be governmental institutions,

transplant centers, or institutions that cover the patients’ interests.

To realize SMPC, we use Shamir’s (𝑡, 𝑛) threshold secret sharing

scheme [38] which allows the input peers to share a secret value 𝑥

among 𝑛 computing peers such that possession of a subset of at

most 𝑡 shares does not reveal any information on 𝑥 itself. Restoring

the secret 𝑥 is possible iff at least 𝑡 + 1 computing peers collaborate.

We require that all computations are carried out over a finite

field Z𝑝 for a prime 𝑝 > 𝑛 and we represent a negative value −𝑥 as

𝑝 − 𝑥 ∈ Z𝑝 . This allows for the correct addition and multiplication

of negative values. We denote that a value 𝑥 is secret shared among

the 𝑛 computing peers by [𝑥]. For a vector [𝑉 ] of shared values,

we write [𝑉 ] (𝑖) to denote the 𝑖-th entry of the vector. Analogously,

we write [𝑀] (𝑖, 𝑗) for the entry in the 𝑖-th row and the 𝑗-th column

of a matrix [𝑀] of shared values.

Building Blocks. Using Shamir’s secret sharing scheme enables

the computing peers to compute any linear combination of secret

shared values locally whereas for multiplication the peers have

to interact with each other by means of a multiplication protocol

which can be constructed such that it runs in a constant number

of rounds [8]. For the sake of readability we use the infix notation

[𝑥] ← [𝑦] · [𝑧] to denote the execution of a multiplication proto-

col. Note that we measure the communication complexity of an

SMPC protocol in terms of the number of calls to the multiplication

protocol. The round complexity refers to the number of messages

transmitted during the SMPC protocol.

In addition to multiplication, we require several other primitives

as building blocks for our main protocol (cf. Section 5.2). Secure

comparison of two shared values [𝑥], [𝑦] is denoted by [𝑥]
?
< [𝑦]

and can be implemented such that it has linear communication and

constant round complexity [19]. Similarly, protocols for equality

and inequality test can be constructed. We also require a protocol

for conditional selection, i.e., given a secret shared bit [𝑏], choose
[𝑥] if 𝑏 is equal to 1 and [𝑦], otherwise. Such a protocol can be

realized by computing [𝑏] · ( [𝑥] − [𝑦]) + [𝑦] and we denote it by

[𝑏] ? [𝑥] : [𝑦]. Finally, we sometimes require to access or update

an entry [𝑉 ] ( [𝑖]) of a vector where the index [𝑖] is a secret value.
Such a secret index is first translated into a vector [𝐼 ] containing
the value 1 at position 𝑖 and zeros at all other positions. This can be

done in linear communication and constant round complexity [32].

Based on the index vector [𝐼 ], entry [𝑉 ] ( [𝑖]) can then be accessed

by computing the inner product of [𝑉 ] and [𝐼 ] and updated by

computing [𝑉 ] ( 𝑗) ← [𝐼 ] ( 𝑗) ? [𝑥] : [𝑉 ] ( 𝑗) for 𝑗 ∈ {1, |𝑉 |}. Both
operations require | [𝑉 ] | multiplications which can be executed



in parallel. Thus, accessing or updating an entry [𝑉 ] ( [𝑖]) overall
requires linear communication and constant round complexity.

3

Security. For our protocol (cf. Section 5.2), we consider security

in the semi-honest model where the corrupted computing peers

strictly follow the protocol specification but try to learn as much

as possible on the honest computing peers’ input. Security in this

sense can be considered sufficient for kidney exchange as it prevents

an adversary from learning the medical data of the patient-donor

pairs and thus from influencing the computed exchanges in any

meaningful way. Note that for the input peers it is guaranteed that

they do not learn anything beyond their private input and output

as they do not participate in the actual protocol execution. Further-

more, we assume an honest majority of computing peers as well

as encrypted and authenticated channels between the computing

peers and between computing peers and input peers.

To prove the security of ourmain protocol (cf. Section 5.2), we use

the standard simulation-based security paradigm which intuitively

states that the parties do not learn anything beyond their private

input and output. For a detailed definition of the security setting

and the adversary models, we refer the reader to [28].

4 RELATEDWORK

In this section, we review pertinent related work: state-of-the-art

algorithms for maximum matching on general graphs (Section 4.1);

existing privacy-preserving protocols for matching on bipartite

graphs (Section 4.2); and the only other privacy-preserving protocol

known to date in the context of kidney exchange (Section 4.3).

4.1 Matching Algorithms

The first efficient algorithm to solve the maximum matching prob-

lem on general graphs was devised by Edmonds [24] and is based on

Berge’s Theorem (Definition 3.1). It starts with an initial matching

𝑀 which can also be the empty matching. Then, it tries to find an

augmenting path 𝑃 with respect to𝑀 and revert the path such that a

new matching𝑀 ′ of cardinality |𝑀 | +1 is obtained. This is repeated
until no further augmenting path can be found. Due to Berge’s

Theorem the thus obtained matching is a maximum matching.

The major challenge when designing a matching algorithm in

this way is the handling of so-called blossoms. A blossom is a cycle

of odd length in the graph that contains alternating matched and

unmatched edges. The problem with blossoms is that it is not trivial

how to choose the matching edges of the blossom such that a pos-

sibly existing augmenting path is indeed found. Edmonds proposes

to shrink a blossom into a single supernode and then continue the

algorithm on the shrunken graph. After finding an augmenting

path in this adapted graph, the supernode is expanded again and

the matching edges of the blossom are chosen accordingly. While

this concept is quite simple, the shrinking and expanding of blos-

soms are computationally rather complex operations leading to a

complexity of O(|𝑉 |4) for Edmonds’ algorithm.

The approach by Edmonds has been refined many times by in-

troducing different techniques for handling blossoms, e.g., labeling

3
This can also be realized with sub-linear complexity using ORAM techniques

(e.g., [31]). However, in practice ORAM only provides for a performance improvement

for large vector sizes (≥ ∼1000) [31] and the vectors in our protocols are much

smaller.

techniques that allow to avoid the explicit shrinking and expand-

ing of blossoms (e.g., [26, 35]). The most efficient solutions for the

maximum matching problem run in O(
√︁
|𝑉 | · |𝐸 |) time [14, 27, 33].

However, for an algorithm to be suitable as the basis for a privacy-

preserving protocol it is also important that it has an easy structure

and does not rely on complex and dynamically growing datastruc-

tures as we have tomake sure that the datastructures do not leak any

information on the underlying data. Therefore, we use the matching

algorithm designed by Pape and Conradt [35] which uses a very

simple labeling technique to avoid the shrinking of blossoms as

basis for our privacy-preserving protocol. Their approach is based

on Edmonds’ algorithm and achieves a complexity of O(|𝑉 |3).

4.2 Privacy-Preserving Bipartite Matching

While to the best of our knowledge we are the first to propose a

privacy-preserving protocol for maximum matching on general

graphs, there are privacy-preserving solutions for maximummatch-

ing on bipartite graphs (e.g., [4, 12, 40]) with complexities ranging

from 𝑂 ( |𝑉 |3) [12] to 𝑂 ( |𝑉 |6) [40]. Furthermore, the maximum

matching problem on bipartite graphs can be translated into the

maximum flow problem. Aly et al. [3] present two protocols for the

maximum flow problem based on the Edmonds-Karp algorithm and

the Push-Relabel algorithm with complexities𝑂 ( |𝑉 |4) and𝑂 ( |𝑉 |5),
respectively. Blanton et al. [13] compute a maximum flow based on

the Ford-Fulkerson algorithm in 𝑂 ( |𝑉 |3 |𝐸 |𝑙𝑜𝑔( |𝑉 |)).
Another related problem is private stable matching where two

groups of individuals state their preferences over each other and

are matched such that there are no pairs from the two groups who

would prefer each other over their computed match. In private sta-

ble matching the individuals’ preferences and the outcome of the

computation are kept private. The first private stable matching algo-

rithm goes back to Golle [29] and has complexity𝑂 ( |𝑉 |5). The cur-
rently best solutions achieve complexity 𝑂 ( |𝑉 |2𝑙𝑜𝑔3 ( |𝑉 |)) [23, 37].

However, it is not possible to adapt these solutions to crossover

kidney exchange as a bipartite graph requires the division of the

patient-donor pairs into two sets. The only meaningful way to do so,

is to consider donors and patients as two separate sets which makes

it impossible to guarantee that a donor only donates her kidney if

the corresponding patient also receives a kidney transplant.

4.3 Privacy-Preserving Kidney Exchange

To the best of our knowledge, the only existing privacy-preserving

approach for kidney exchange is the SMPC protocol for solving the

kidney exchange problem by Breuer et al. [18]. The authors rely on

SMPC based on additive homomorphic encryption and use a brute

force approach to compute a set of exchange cycles that maximizes

the number of patients that can receive a kidney transplant.

While their approach solves the KEP for an arbitrary maximum

cycle size, the runtime of their protocol increases very fast for in-

creasing numbers of patient-donor pairs as the KEP is NP-complete

for a cycle size larger than 2. Therefore, we restrict our approach

to crossover exchange enabling the computation of exchanges be-

tween a much larger number of patient-donor pairs.

Another drawback of their approach is that it requires each

patient-donor pair to participate in the whole protocol execution

which does not reflect a realistic scenario for the use case of kidney



exchange since the patient-donor pairs lack the required expertise

and the medical data lies with the transplant centers or hospitals

anyway. Our approach instead only requires the pairs (or hospitals)

to send the medical data to three computing peers using secret

sharing and then wait for their output.

5 PROTOCOL FOR CROSSOVER KIDNEY

EXCHANGE

Before providing the detailed specification of our privacy-preserving

protocol for crossover kidney exchange (Section 5.2), we introduce

the matching algorithm by Pape and Conradt [35] on which our pro-

tocol is based (Section 5.1). In Section 5.3, we present a performance

analysis of the implementation of our protocol in MP-SPDZ [30].

5.1 Algorithm by Pape and Conradt

The main idea of the matching algorithm by Pape and Conradt [35]

is to develop a blossom (an odd cycle) in two alternating paths

instead of shrinking it which is a computationally expensive op-

eration. Thereby, a node that is part of a blossom will be once at

even distance along the path from the root and once at odd distance

along a second path from the root. Thus, if nodes of the blossom

are part of an augmenting path, this path is guaranteed to be found.

To develop a blossom in two alternating paths, an alternating
tree is grown from each exposed node until either an augmenting

path has been found or the tree can be grown no more. The root of

an alternating tree is the exposed node 𝑟 which forms level 0 of the

tree. All nodes adjacent to 𝑟 are added on level 1 and all matched

edges incident to the nodes on level 1 (i.e., their mates) form the

nodes on level 2. Level 3 then again contains all nodes adjacent to

the nodes on level 2 (which are not already part of the tree) and so

on. More formally, an alternating tree with respect to a matching𝑀

is rooted at an exposed node and all paths emanating from the root

are alternating paths. The nodes at even levels of the tree are called

inner nodes and those at odd levels are called outer nodes.
In the algorithm, three datastructures are used to represent an

alternating tree. The queue Q contains all outer nodes that are

currently in the tree but from which the tree has not been explored

further. The binary array nonTree of size |V| keeps track of the

nodes that are in the tree at even levels (i.e., the root node and

all inner nodes). The entry nonTree(𝑣) is set to 0 if 𝑣 is the root

node or an inner node and to 1 if it is an outer node. The array

grandfather of size |V| is used to trace back the path up to the

root if an augmenting path has been found. For an outer node𝑤 ,

grandfather(𝑤) = 𝑢 indicates that there is a path (𝑢, 𝑣,𝑤) in the

alternating tree from 𝑢 to𝑤 such that (𝑣,𝑤) is a matched edge.

Algorithm 1 contains pseudocode for the matching algorithm

by Pape and Conradt [35]. The algorithm starts with an initial

matching which can be any matching𝑀 in 𝐺 including the empty

matching. The matching is given by the arraymate of size |V| which
encodes the mate of each node 𝑣 ∈ V. The number of exposed nodes

is given by expo. The algorithm iterates over all potential root nodes

𝑟 ∈ 𝑉 and starts growing an alternating tree from 𝑟 if 𝑟 is an exposed

node. The tree is grown based on a breadth-first search. Note that if

the number of exposed nodes is less than 2, the matching is already

a maximum matching and the algorithm can be aborted.

Algorithm 1 Matching Algorithm by Pape and Conradt [39]

1: Start with an initial matching

2: for 𝑟 ∈ V do

3: if mate(𝑟 ) = 0 ∧ expo ≥ 2 then

4: for 𝑣 ∈ V do

5: nonTree(𝑣) ← 1

6: nonTree(𝑟 ) ← 0
7: Q.insert(r)
8: found← 0

9: while Q ≠ ∅ ∧ found = 0 do

10: 𝑥 ← Q.removeHead()
11: for 𝑦 adjacent to 𝑥 do

12: if nonTree(𝑦) = 1 then

13: if mate(𝑦) = 0 then

14: Update matching

15: expo← expo − 2
16: found← 1

17: else if mate(𝑦) ≠ 𝑥 then

18: if 𝑦 is not an ancestor of 𝑥 then

19: 𝑧 ← mate(𝑦)
20: nonTree(𝑦) ← 0
21: grandfather(𝑧) ← 𝑥

22: Q.insert(z)

If𝑀 is not yet a maximum matching, the array nonTree is initial-
ized such that only the entry for the root node 𝑟 equals 0 indicating

that the tree currently only contains 𝑟 . Also, 𝑟 is added to the

queue Q of outer nodes to be explored from and the boolean found
is set to 0 stating that an augmenting path has not yet been found.

Then, the first node 𝑥 is removed fromQ (which is the root node 𝑟

in the first iteration) and a tree is grown from 𝑥 . The algorithm

parses over each node 𝑦 that is adjacent to 𝑥 . If nonTree(𝑦) = 0, the
edge (𝑥,𝑦) is ignored as 𝑦 is an inner node, i.e., it is already part of

the tree. If nonTree(𝑦) = 1, the node is either matched or exposed.

If 𝑦 is exposed (i.e., mate(𝑦) = 0), an augmenting path from root

node 𝑟 to 𝑦 has been found. In that case, the matching𝑀 is updated,

the number of exposed nodes is decreased by 2, the current tree is

abandoned, and an alternating tree is grown from the next exposed

node. If 𝑦 is not exposed and the mate of 𝑦 is not 𝑥 itself, it has to be

checked whether 𝑦 is an ancestor of 𝑥 in the tree. If 𝑦 is an ancestor

of 𝑥 , they are part of a blossom (an odd cycle) which could lead to

a false augmenting path. In that case the algorithm just continues

with the next value for 𝑦. If 𝑦 is not an ancestor of 𝑥 , the inner

node 𝑦 and the outer node 𝑧 = mate(𝑦) are added to the tree, i.e., 𝑧

is added to Q, grandfather(𝑧) is set to 𝑥 , and nonTree(𝑦) is set to 0.
A maximum matching has been found if there are less than two

exposed nodes or if every exposed node has been tried as the root of

an alternating tree. The complete algorithmhas complexityO(|𝑉 |3).
For a detailed complexity analysis, we refer the reader to [39].

5.2 SMPC Protocol Specification

Our privacy-preserving protocol for kidney exchange is based on

the matching algorithm by Pape and Conradt [35] (in the following

referred to as conventional PC algorithm) introduced in Section 5.1.

Specifically, we first have to construct the graph on which we

compute the matching such that each node corresponds to one

patient-donor pair and an undirected edge is added between two



nodes if the corresponding pairs are medically compatible, i.e., the

donor of one pair can donate to the patient of the other and vice

versa. Since each edge then corresponds to one crossover exchange,

computing a maximum matching on the constructed graph then is

equivalent to maximizing the number of crossover exchanges.

The detailed specification of protocol Crossover-KE for privacy-

preserving crossover kidney exchange is given in Protocol 1. Note

that prior to the protocol execution, all input peers (patient-donor

pairs) send their input (medical data) to the computing peers using

secret sharing. Thus, each computing peer holds a share of the

medical data of each patient-donor pair 𝑃𝑣 with 𝑣 ∈ V where |V|
corresponds to the number of patient-donor pairs for which the

protocol is executed.

Graph Initialization Phase. At the beginning of the protocol,

a shared adjacency matrix [A] is computed such that an entry

[A] (𝑢, 𝑣) encodes whether patient-donor pairs 𝑃𝑢 and 𝑃𝑣 (𝑢, 𝑣 ∈ V)
are compatible. To this end, we use the building block Comp-Check

introduced by Breuer et al. [18]. The input to the compatibility

check comprises secret binary indicator vectors for the donor blood-

type [𝐵𝑑 ], the patient bloodtype [𝐵𝑝 ], the donors’ antigens [𝐴𝑑 ],
and the patients’ antibodies [𝐴𝑝 ] for both patient-donor pairs. The

donor of pair 𝑃𝑢 is then considered compatible with the patient of

pair 𝑃𝑣 if 𝐵𝑑𝑢 (𝑖) = 𝐵
𝑝
𝑣 (𝑖) = 1 for at least one 𝑖 ∈ {1, ..., |𝐵𝑑 |} and

if for all 𝑖 ∈ {1, ..., |𝐴𝑝 |} with 𝐴𝑑
𝑢 (𝑖) = 1 it holds that 𝐴

𝑝
𝑣 (𝑖) ≠ 1,

i.e., if the patient has no antibody against the donor’s antigens.
4

As compatibility has to be computed between the donor of pair 𝑃𝑢

and the patient of pair 𝑃𝑣 and vice versa, this requires 2 · |𝐵𝑑 | · |𝐴𝑑 |
comparisons which can be executed in parallel. Note that even if

the protocol indicates that two pairs are compatible, the final choice

of whether a transplant is carried out still lies with medical experts.

Before starting the matching computation, the adjacency matrix is

shuffled at random to ensure that two pairs with the same input

have the same probability of being matched independent of their

index. It is sufficient that
𝑛
2 + 1 of the 𝑛 computing peers each input

a secret permutation matrix. All rows and columns of the matrix

are then shuffled once with each of these permutation matrices.
5

Path Finding Phase. After the computation of the adjacency

matrix, we initialize an empty matching by setting the mate of each

patient-donor pair 𝑃𝑢 (∀𝑢 ∈ V) to [0]. In the privacy-preserving

setting the initial matching does not influence the protocol perfor-

mance as the worst case number of iterations have to be executed

for all loops in order to hide the structure of the alternating trees.

The computation of a maximum matching then starts with the

for-loop over all potential root nodes 𝑟 . In contrast to the conven-

tional PC algorithm, we cannot abort the tree construction if the

node 𝑟 is not exposed as we have to keep all information about the

structure of the underlying graph private. Thus, we set [root] to
[0] if 𝑟 is not exposed, i.e., all relevant conditions in the remainder

of the loop will also be equal to [0] and thus the matching will not

be altered for [root] = [0]. Note that the entire protocol is designed

4
Additional criteria for compatibility can be checked in the same way if required.

5
The graph initialization phase is the only part of protocol Crossover-KE specific to

kidney exchange. To consider a different use case, one just has to change the computa-

tion of the adjacency matrix. Thus, our protocol is of independent interest for any use

case requiring the privacy-preserving computation of a matching on general graphs.

Protocol 1 Crossover-KE

1: for 𝑢, 𝑣 ∈ V do

2: [𝐴] (𝑢, 𝑣) ← Comp-Check( [𝐵𝑑
𝑢 ], [𝐴𝑑

𝑢 ], [𝐵
𝑝
𝑢 ], [𝐴

𝑝
𝑢 ],

[𝐵𝑑
𝑣 ], [𝐴𝑑

𝑣 ], [𝐵
𝑝
𝑣 ], [𝐴

𝑝
𝑣 ])

3: [A] ← Shuffle( [A])
4: for 𝑢 ∈ V do

5: [mate] (𝑢) ← [0]
6: for 𝑟 ∈ V do

7: [root] ← ( [mate] (𝑟 ) ?
= [0]) ? [𝑟 ] : [0])

8: for 𝑣 ∈ V do

9: [nonTree] (𝑣) ← [1]
10: [nonTree] (𝑟 ) ← [root] ?

= [0]
11: [Q] ← [Q].insert( [root])
12: [found] ← [0]
13: for |V | times do

14: [𝑥 ] ← [Q].deleteHead()
15: [𝑥 ] ← [found] ? [0] : [𝑥 ]
16: for 𝑦 ∈ V do

17: [augPath] ← [nonTree] (𝑦) · [𝐴] ( [𝑥 ], 𝑦) ·
( [mate] (𝑦) ?

= [0]) · ( [mate] (𝑟 ) ?
= [0])

18: [found] ← [augPath] + [found] − [augPath] · [found]
19: [mate] ← Update-M( [augPath], [mate], [grandf.], [𝑥 ], 𝑦)
20: [y_anc_x] ← Anc-Check( [grandfather], [𝑥 ], 𝑦)
21: [c2 ] ← [nonTree] (𝑦) · ( [𝑥 ]

?
≠ [mate] (𝑦)) ·

( [found] ?
= [0]) · [𝐴] ( [𝑥 ], 𝑦) · ( [y_anc_x] ?

= [0])
22: [𝑧 ] ← [c2 ] ? [mate] (𝑦) : [0])
23: [nonTree] (𝑦) ← ( [𝑧 ]

?
≠ [0]) ? [0] : [nonTree] (𝑦)

24: [grandfather] ( [𝑧 ]) ← [𝑥 ]
25: [Q] ← [Q].insert( [𝑧 ])
26: [mate] ← Reverse-Shuffle( [mate])
27: for 𝑣 ∈ V do

28: Send share of [mate] (𝑣) to patient-donor pair 𝑃𝑣

such that if a node 𝑣 has value 0, no further modifications to the

current state of the tree are made (i.e., we use 0 as a dummy node).
Then, we initialize the array [nonTree], the queue [Q], and the

boolean [found] as in the conventional PC algorithm. If [root] = [0],
[nonTree] (𝑟 ) is set to [1] and [0] is inserted into the queue [Q].

In the conventional PC algorithm, one would now iterate over

the entries in the queue [Q] until it is empty or an augmenting

path is found. However, to avoid any information leakage w.r.t. the

structure of the alternating tree, we have to execute the loop for

a fixed number of iterations. In particular, we have to execute the

loop for the worst case number of iterations which is |V| as each
node can be added at most once to the queue [Q].

The loop then starts with the first node [𝑥] from the queue [Q].
In the privacy-preserving setting, the queue has to be implemented

such that it returns [0] if it is empty. Thus, if the queue is empty,

the protocol continues computing on the dummy node 0.
In the next step, we check whether we have already found an

augmenting path for this tree (i.e., [found] = [1]). If that is the case,
we set [𝑥] to [0]. Otherwise, [𝑥] remains unchanged.

In the conventional PC algorithm, one would now only iterate

over those nodes that are adjacent to [𝑥]. However, as we have to
keep the nodes that are indeed adjacent to [𝑥] hidden, we have
to iterate over all nodes 𝑦 ∈ V. First, we check if there is an aug-

menting path rooted at 𝑟 and ending in 𝑦. This is the case if 𝑦 is



Protocol 2 Update-M

1: [mate] (𝑦) ← [augPath] ? [𝑥 ] : [mate] (𝑦)
2: for |V | times do

3: [next] ← [augPath] · [mate] ( [𝑥 ])
4: [mate] ( [𝑥 ]) ← [augPath] ? [𝑦 ] : [mate] ( [𝑥 ])
5: [𝑥 ] ← [augPath] · [grandfather] ( [𝑥 ])
6: [mate] ( [next]) ← [augPath] · [𝑥 ]
7: [𝑦 ] ← [augPath] · [next]

still not part of the tree (i.e., [nonTree] = [1]), 𝑦 is adjacent to [𝑥]
(i.e., [A] ( [𝑥], 𝑦) = [1]), and 𝑦 and 𝑟 are both exposed nodes (i.e.,

[mate] (𝑦) = [mate] (𝑟 ) = [0]). If all these conditions hold, their
product equals [1] and thus [augPath] is set to [1]. Afterwards, we
can update the secret variable [found] which is used in the next

round to check whether we have already found an augmenting path

for the tree rooted at 𝑟 . Furthermore, we call the protocol Update-M

to increase the matching along the found augmenting path.

MatchingUpdate Phase. The specification of protocolUpdate-M
is given in Protocol 2. The general idea of the protocol is to trace

back the path from the exposed node𝑦 to the root node 𝑟 and change

all matched edges to unmatched edges and vice versa. Thereby, the

cardinality of the matching is increased by exactly 1. Of course, this
should only be done if we indeed found an augmenting path, i.e.,

[augPath] = [1]. To this end, at the beginning of protocol Update-M
[mate] (𝑦) is set to [𝑥] if [augPath] = [1]. Afterwards, we iterate
over the edges of the path and switch matched with unmatched

edges. We use an auxiliary variable next which stores the next node

on the path. If [augPath] = [1], we set [next] to the mate of [𝑥] and
thus to the next node on the path from 𝑦 to 𝑟 . Furthermore, we set

the new mate of [𝑥] to [𝑦] and [𝑥] itself to the grandfather of [𝑥].
Then, we set the new mate of [next] to the next value for [𝑥], i.e., to
the grandfather of [𝑥]. Furthermore, we update [𝑦] such that it now
contains the next node to consider on the path (i.e., [next]). Thereby,
[𝑦] and [𝑥] become the two next nodes on the path to the root. We

have to execute the whole loop |V| times as this is the maximum

number of nodes of the augmenting path. Note that Update-M does

not alter the matching if [𝑥] = [0] or [augPath] = [0].

Tree Extension Phase. In the last part of the tree growing in

Protocol 1, we check if the nodes 𝑦 and [𝑧] ([𝑧] is the mate of 𝑦)

have to be added to the tree. First, we check if 𝑦 is an ancestor of

[𝑥] in the tree rooted at 𝑟 using the protocol Anc-Check. If this is

the case, the two nodes are part of an odd cycle and should not be

added to the tree as they could lead to a false augmenting path.

The specification of Anc-Check is given in Protocol 3. In each

iteration, we check whether the current node [𝑥] is equal to 𝑦. If
this is the case, we know that [𝑥] is an ancestor of 𝑦. Otherwise,

we update the value of [𝑥] to its grandfather. If we reach the root,

[𝑥] is set to [0] as [grandfather] (𝑟 ) = [0]. Thus, at the end of the
protocol [y_anc_x] = [1] if and only if 𝑦 is an ancestor of [𝑥].

Returning to Protocol 1, we add [𝑧] and [𝑦] to to the tree if all
of the following conditions hold: 𝑦 is not part of the tree already

(i.e., [nonTree] (𝑦) = 1), [mate] (𝑦) is not equal to [𝑥], no path has

been found in the current tree so far (i.e., [found] = [0]), 𝑦 is

adjacent to [𝑥] (i.e., [A] ( [𝑥], 𝑦) = [1]), and 𝑦 is not an ancestor of

[𝑥]. Otherwise, we set [𝑧] to [0]. Afterwards, we update [nonTree],

Protocol 3 Anc-Check

1: [y_anc_x] ← [0]
2: for ⌈ |V |/2⌉ times do

3: [y_anc_x] ← ( [𝑥 ] ?
= [𝑦 ]) ? [1] : [y_anc_x]

4: [𝑥 ] ← [grandfather] ( [𝑥 ])

[grandfather], and [Q] accordingly, i.e., if [𝑧] = [mate] (𝑦), we set
[nonTree] (𝑦) to [0], [grandfather] (𝑧) to [𝑥], and add [𝑧] to [Q].

Output Phase. At the end of the protocol, the entries in [mate]
are unshuffled using the inverses of the permutation matrices that

were used to shuffle the adjacency matrix during the graph initial-

ization phase. Afterwards, each patient-donor pair 𝑃𝑣 with 𝑣 ∈ V
obtains the shares of [mate] (𝑣) indicating its exchange partner.

Correctness. The correctness of Protocol 1 follows from the cor-

rectness of the conventional PC algorithm and the fact that compu-

tations on the dummy node 0 do not alter the computed matching.

Security. Since throughout Protocol 1 all computations are exe-

cuted on shared values and all building blocks are called on shared

inputs, the simulator can just call the simulator of the correspond-

ing building block on random input for each building block that is

executed during protocol Crossover-KE. Security then follows from

the properties of Shamir’s secret sharing scheme, the security of the

primitives introduced in Section 3.2, and the data-obliviousness of

Protocol 1. The latter refers to the property that no information on

the structure of the trees is leaked as always all possible branches

of a tree are considered (using dummy iterations if an augmenting

path has already been found or the queue is empty).

Complexity. The computation of the adjacency matrix can be

done in O(|V|3) communication and O(|V2 |) round complexity

as protocol Comp-Check exhibits linear communication and con-

stant round complexity. The most time consuming part of proto-

col Crossover-KE, however, is the construction of the alternating

trees for all potential root nodes. The corresponding loop is exe-

cuted |V| times as are the inner loops in lines 12 and 15 of Protocol 1.

Note that it is not possible to abort these loops early as this would

leak information on the underlying graph. Protocols Update-M

and Anc-Check both have communication complexity O(|V2 |) and
round complexity O(|V|) and are called once in the innermost loop.

Thus, the construction of the alternating trees has communication

complexity O(|V5 |) and round complexity O(|V|4) which are also

the complexities for the complete protocol Crossover-KE.

5.3 Performance Analysis

We have implemented our novel protocol Crossover-KE in the

SMPC benchmarking framework MP-SPDZ [30] and evaluated its

performance. The source code is published in [17].

In our evaluation, we use LXC containers on a single server with

an AMD EPYC 7702P 64-core processor for the computing peers

and the input peers. Each container runs Ubuntu 20.04 LTS and

is equipped with one core and 4GB RAM. Each computing peer

corresponds to a single container and a fourth container manages

sending input and receiving output for all input peers (patient-

donor pairs). For all measurements where the runtime of a single

protocol execution is less than one hour, we execute ten repetitions



Table 1: Runtime and network traffic of proto-

col Crossover-KE for different numbers of input peers

and different latencies L for a fixed bandwidth B = 1Gbps.

input peers
runtime

traffic

𝐿 = 1ms 𝐿 = 5ms 𝐿 = 10ms

5 21s 97s 192s 51MB

10 6m 27m 53m 759MB

15 30m 2h 5h 4GB

20 96m 7h 15h 13GB

25 4h 18h 35h 33GB

30 8h 37h 73h 70GB

35 15h 68h 134h 148GB

40 25h 116h - 260GB

45 40h - - 423GB

50 61h - - 663GB

55 89h - - 990GB

60 127h - - 1440GB

and average the results. For all others, we only execute the protocol

once as deviations between the different runs are comparably low

for such long runtimes. As performance measures we consider the

runtime and the induced network traffic which corresponds to the

accumulated network traffic of all three computing peers. We start

a measurement when the computing peers have received all inputs

and end it when they have sent the output back to the input peers.

Since all containers are hosted on the same server, the latency 𝐿 in
our setup is very low. In order to mimic real-world scenarios, we in-

clude the capability to artificially set the latency and the bandwidth

to realistic values. As these may differ considerably depending on

the setup of the three computing peers in practice, we have to deter-

mine values that resemble pertinent use cases. With respect to the

bandwidth, it seems reasonable to assume that the computing peers

have a high-end Internet connection as they are hosted by large

(possibly governmental) institutions. Thus, we assume a bandwidth

𝐵 = 1Gbps for all our measurements.
6
Concerning the latency, the

values may differ considerably depending on the location of the

different institutions that host the computing peers. Therefore, we

consider three different values for the latency 𝐿. For a best-case

scenario, where all institutions are hosted in the same network,

we consider latency L = 1ms. As an average case latency, we use

L = 5ms, and as a worst-case setup, we use L = 10ms.
Table 1 shows runtime and network traffic for increasing num-

bers of input peers.We stopped ameasurement if it took longer than

7 days.
7
Let us first consider the runtimes for L = 1ms. We observe

that the runtime increases considerably for increasing numbers of

input peers. For up to 5 input peers, the protocol still finishes within
one minute for L = 1ms, whereas the runtime for 20 input peers

amounts to more than 1 hour and for 40 input peers the protocol

requires more than 24 hours to finish. Finally, for 60 input peers

the protocol runs for 5 days and 7 hours. The network traffic scales

similarly: for up to 5 input peers it is still below 50MB, for 20 input

peers it increases to more than 10GB, for 40 input peers 260GB,
and for 60 input peers 1.4TB are sent in one protocol run.

6
Results for smaller bandwidths can be found in Appendix A.

7
We decided to only allow protocol runtimes for up to 7 days as for longer runtimes

the state of the patient-donor pairs inside the pool of a kidney exchange platform may

already have changed substantially before the actual protocol execution is finished.

Figure 2: Runtime of protocol Crossover-KE for different la-

tencies L and fixed bandwidth B = 1Gbps.

We also observe that the runtime increases for increasing laten-

cies. On average the runtime for 𝐿 = 1ms is about 4.66 times larger

than for 𝐿 = 5ms and about 9.22 times larger than for 𝐿 = 10ms.
Figure 2 shows plots of the runtime for the three considered

latencies. Note that the scale of the y-axis is logarithmic.We observe

that the overall runtime is less than exponential. Furthermore, the

plots show that the factor between the runtimes for the different

latencies is nearly constant. This is as expected since the latency is

a constant offset by which each sent message is delayed.

While the runtimes of Protocol 1 may seem large, this is not

necessarily an issue for our use case as most kidney exchange

platforms typically compute a matching only once every couple of

days and some even only once every three months [7]. In Section 6,

we analyze to what extent the runtimes of Protocol 1 allow for its

application in large scale kidney exchange platforms.

5.3.1 Comparison to Related Work. We compare our novel pro-

tocol Crossover-KE to the privacy-preserving protocol for kidney

exchange by Breuer et al. [18] (cf. Section 4.3). While their proto-

col allows to solve the KEP for any maximum cycle size, it is also

possible to restrict it to pure crossover exchange. To enable a fair

comparison between the two approaches, we implemented the pro-

tocol from [18] in MP-SPDZ considering the same setting as for our

protocol Crossover-KE (secret sharing is used instead of homomor-

phic encryption and the protocol is run by three computing peers

whereas the patient-donor pairs correspond to the input peers). We

refer to the implementation from [18] based on homomorphic en-

cryption as protocol KEP-Rnd-HE and to our implementation of the

protocol from [18] based on secret sharing as protocol KEP-Rnd-SS.

We publish the source code for protocol KEP-Rnd-SS in [17].

Table 2 shows the results for our protocol Crossover-KE and the

two protocols KEP-Rnd-SS and KEP-Rnd-HE (restricted to crossover

exchange).
8
We observe that the runtime of protocol KEP-Rnd-HE is

worse than for both other protocols for all numbers of input peers.

In particular, by using secret sharing instead of homomorphic en-

cryption we improved the performance of the protocol from [18]

8
We only evaluated the protocol KEP-Rnd-HE for up to 10 parties as this already

showed that the other two protocols drastically outperform protocol KEP-Rnd-HE.



Table 2: Runtime and network traffic for our protocol

Crossover-KE (for latency L = 1ms), our implementation

KEP-Rnd-SS of the protocol from [18] (for latency L = 1ms),
and the implementation KEP-Rnd-HE from [18] where all

parties are connected by a LAN with latency L < 0.5ms.

input Crossover-KE KEP-Rnd-SS KEP-Rnd-HE

peers runtime traffic runtime traffic runtime traffic

2 0.5s 4MB 0.2s 0.4MB 14s 1MB

3 3s 10MB 0.7s 0.8MB 23s 4MB

4 9s 24MB 2s 2MB 36s 11MB

5 21s 51MB 3s 3MB 64s 32MB

6 43s 101MB 4s 6MB 136s 93MB

7 83s 186MB 5s 12MB 6m 307MB

8 2m 318MB 8s 39MB 19m 1GB

9 4m 492MB 13s 147MB 66m 5GB

10 6m 759MB 30s 585MB 4h 23GB

11 8m 1GB 2m 2GB - -

12 12m 1.5GB 7m 10GB - -

13 16m 2GB 26m 40GB - -

14 22m 3GB 115m 166GB - -

15 30m 4GB 8.5h 684GB - -

significantly. When comparing our novel protocol Crossover-KE to

the protocol KEP-Rnd-SS, we observe that for up to 12 input peers,

protocol KEP-Rnd-SS outperforms our protocol Crossover-KE. How-

ever, for larger numbers of input peers, our protocol Crossover-KE

is much more efficient. We prescribe this to the brute-force nature

of the approach from [18], i.e., an exhaustive search is run over the

set of all possible exchange constellations that can exist between

the input peers. Since this set increases very fast for increasing

numbers of input peers, their approach is only feasible for small

numbers of input peers (e.g., for 15 input peers protocol KEP-Rnd-SS
already takes 17 times longer than our protocol Crossover-KE).

Our results show that for countries where only crossover ex-

change is allowed our specialized protocol for crossover exchange

is better suited than the existing approach from [18]. This was to

be expected as the general KEP is an NP-complete problem [1].

6 DYNAMIC KIDNEY EXCHANGE

Our protocol Crossover-KE (Protocol 1) allows for the computation

of a maximum matching between a fixed set of patient-donor pairs.

However, kidney exchange is dynamic by nature, i.e., patient-donor

pairs arrive at and leave from the platform over time. In this sec-

tion, we analyze the performance of a dynamic kidney exchange

platform (cf. Section 2) using our protocol compared to a non-

privacy-preserving approach (as explained in Section 2). To this

end, we developed a simulation framework based on DESMO-J [21]

which is a discrete event simulation framework written in Java.

Recall that at the core of a kidney exchange platform is the

pool of patient-donor pairs who want to find an exchange partner.

We simulate the computed transplants over time using our proto-

col Crossover-KE (Protocol 1) for computing the matching inside

the pool at a certain point in time. Depending on the number of

pairs in the pool at the time of a match run, the runtime of our

protocol may be infeasible. This means that the protocol execution

does not finish before the next match run is scheduled, e.g., if we

compute a matching once a week, the protocol runtime should be

below 7 days. In such a case, we split the pool into multiple sub-

pools and distribute the pairs uniformly at random among these. Of

course, this may lead to fewer pairs being matched in the privacy-

preserving case than in the conventional case (where a matching

can always be computed efficiently among all pairs in the pool). Our

policy is to split the pool into the minimum number of equally sized

sub-pools whose execution time is below the match run interval.

The goal of our simulations is then to evaluate the impact of this

pool splitting on the number of patient-donor pairs that can receive

a transplant. Thereby, we can evaluate the impact of the larger

runtimes of our privacy-preserving protocol compared to the non-

privacy-preserving solution and thus determine the practicality of

our protocol when used in a real-world kidney exchange platform.

6.1 Data Set

We use a data set from the Organ Procurement and Transplanta-

tion Network (OPTN) provided by the United Network for Organ

Sharing (UNOS) containing all patients and donors that have par-

ticipated in their living donor exchange program between 27th

October 2010 and 29th December 2020.
9
The data set contains 2738

patients that were registered with UNOS. There are 150 patients

that have registered with more than one donor over time. We con-

sider these as different unique pairs leading to an overall number

of 2913 unique patient-donor pairs from which we sample in our

simulations. We use the straight-forward approach of choosing the

entering patient-donor pairs as described in [7], i.e., we sample

randomly from all pairs when inserting a new pair into the pool.

6.2 Simulation Setup

For each simulation run, we consider a time horizon of five years

and evaluate the number of patients that receive a kidney transplant

as well as the average waiting time (i.e., the average time a patient

has to wait until receiving a transplant). We compare the approach

using our protocol Crossover-KE (Protocol 1) to a conventional

approach which is not resistant against manipulation and does not

protect the privacy of the patient-donor pairs’ medical data. For the

conventional approach, we assume that computing the matching is

done instantly using a state-of-the-art matching algorithm. In the

privacy-preserving case, we simulate the protocol execution using

a non-privacy-preserving implementation of our protocol and then

schedule the completion of the protocol execution by adding the

runtime measured in Section 5.3 to the simulation time. Thereby,

we reduce the time and resources required by the simulations which

allows us to simulate larger parameter ranges.

A platform as described in Section 2 suggests the following

parameters that can vary among different platforms (and countries)

and for which we run simulations to determine those platforms (and

countries) for which our privacy-preserving protocol scales best:

The arrival rate states the frequency at which new patient-donor

pairs register with the platform (e.g., arrival rate 2 indicates that

a new pair arrives every 2 days). In the UNOS data set, a new

pair registers every 1.4 days on average. However, the arrival rate

9
The data reported here have been supplied by the United Network for Organ Sharing

as the contractor for the Organ Procurement and Transplantation Network. The

interpretation and reporting of these data are the responsibility of the author(s) and in

no way should be seen as an official policy of or interpretation by the OPTN or the

U.S. Government.



differs among existing platforms dependingmainly on the size of the

population that participates in the exchange. Therefore, we follow

Ashlagi et al. [6] who suggest arrival rates between 1 and 14 days.

Thematch run interval is the interval at which amatching among

the pairs in the pool is computed (e.g., a match run interval of size 1
indicates that a matching is computed on a daily basis). While

platforms in the US such as APKD (Alliance for Paired Kidney Do-

nation) and NKR (National Kidney Registry) have switched to daily

match runs or at least multiple match runs per week (UNOS), other

countries such as Australia, UK, Netherlands, and Canada compute

a matching only once every 2-4 months [7, 10, 20, 25]. Therefore,

we consider values spanning from one day to four months.

The departure rate is the probability that a patient-donor pair

leaves the pool due to illness/death of donor/patient or due to a donor

backing out. Based on data from APKD, Ashlagi et al. [6] estimate

that a pair on average stays for about 420 days in the pool without

being matched. They simulate this by assuming that a pair leaves

each day with probability
1

420 . Besides, they also consider pairs

staying for 800 and 1000 days on average.We follow their approach

and consider pairs staying for 400, 800, and 1000 days on average.

The match refusal probability is the probability that a match

is refused by the patient-donor pair or the hospital for any other

reason than a positive crossmatch.
10

For large US exchanges, this

probability lies between 20% and 35% [2, 6] whereas in reports

on kidney exchange platforms in Europe there is no mention of

such high match refusal probabilities [10, 25]. As we aim to cover

all existing platforms, we consider match refusal probabilities 0%,

10%, 20%, 30%, and 40%.

The crossmatch failure probability states the failure rate of offered
matches due to a positive crossmatch. Platforms in the US (AKPD,

UNOS, NKR) [7] as well as in other countries, e.g., Canada [20]

report that the rate lies at about 35% for highly sensitized patients

and 10% for others. We adopt these values for our simulations.

The reentering delay indicates the time it takes for a patient-

donor pair to reenter the pool in case of a match offer and a positive

crossmatch failure or a refusal of a matched pair. We follow Ashlagi

et al. [6] who suggest a delay of 2 days for reentering to account

for a match refusal and 7 days to account for a positive crossmatch.

Table 3 shows all parameters together with the values for which

we run simulations. For each combination, we execute 50 simulation

runs with different seeds for the random sampling of entering pairs.

6.3 Evaluation Results

The performance of the privacy-preserving approach depends highly

on the runtime of the underlying SMPC protocol which in turn

depends on the network latency 𝐿 (cf. Section 5.3). Therefore, we

evaluate the privacy-preserving approach for three different sce-

narios each using the runtime for a different latency (cf. Table 1).

As we cannot present the results for all parameter values in

this paper, we focus on an average time before departure of 400
days and a match refusal probability of 20% as these are the values

most commonly found in existing platforms. Besides, our simula-

tions have shown that departure rate and match refusal probability

10
A crossmatch is a test stating if a patient and a donor are medically compatible. In

Protocol 1, we compute a virtual crossmatch which does not always match the result

of a physical crossmatch. A physical crossmatch, however, can only be carried out

after a match is computed as it requires mixing the blood of patient and donor.

Table 3: Simulation parameters and their respective values.

parameter values

arrival rate 1, 2, 4, 7, 14 days

match run interval 1, 2, 4, 7, 14, 30, 60, 120 days

average time before departure 400, 800, 1000 days

match refusal probability 0, 10, 20, 30, 40 %

only slightly influence the performance of the privacy-preserving

approach compared to the conventional approach. Results for addi-

tional values are included in the Appendix B.

Table 4 shows the number of transplants for a departure rate

of 1/400 and a match refusal probability of 20%. To compare the

two approaches, we compute the percentage of transplants mea-

sured for the privacy-preserving approach compared to those mea-

sured for the conventional approach (e.g., a percentage of 95%
indicates that the privacy-preserving approach only leads to 5%
fewer transplants over the considered time horizon of five years).

We highlight all entries where the percentage is larger than 95% in

Table 4 indicating those parameters for which the negative impact

of the privacy-preserving approach on the number of transplants

is very small.

General Observations. The privacy-preserving approach is bet-
ter suited for large arrival rates. This was to be expected since in the

privacy-preserving approach the pool has to be split into multiple

sub-pools if the number of pairs inside the pool becomes too large.

This potentially leads to two pairs which are compatible ending up

in different sub-pools. Thus, it is better for the privacy-preserving

approach if the patient-donor pairs arrive less frequently as this

also means that on average there are fewer patient-donor pairs in

the pool which in turn decreases the necessity for pool splitting.

The privacy-preserving approach performs best if the match

run interval is low. This is also as expected since a low match run

interval also means that in general fewer patient-donor pairs are in

the pool at each match run. Furthermore, if match runs are executed

frequently, the probability that two potentially matching pairs are in

the same sub-pool is higher since the pairs are distributed uniformly

at random among all sub-pools for each match run.

The privacy-preserving approach sometimes even outperforms

the conventional approach. We prescribe this to the fact that there

is no known best policy for choosing the match run interval [6].

While, in general, executing match runs with a high frequency

seems to be best, there are cases where waiting for further pairs to

enter the pool can be better. Consider the following example: Pair𝐴

is compatible with pairs 𝐵 and𝐶 whereas pair 𝐷 is only compatible

with pair 𝐵. If a match run is executed before pairs 𝐶 and 𝐷 arrive,

only 𝐴 and 𝐵 can be matched. If one however waits until pairs 𝐶

and 𝐷 have arrived, then 𝐴 can be matched with 𝐶 and 𝐵 with 𝐷 .

Influence of the Latency. We observe that the smaller the la-

tency in the network connecting the three computing peers, the

better the performance of the privacy-preserving approach. This

was to be expected as the runtime of the protocol determines the

number of pairs for which the pool can still be executed without

splitting it into sub-pools. For latency 𝐿 = 1ms, we are able to

find nearly the same number of transplants as in the conventional

approach independent of the arrival rate when considering a small



Table 4: Comparison between the number of transplants measured for the conventional approach and the privacy-preserving

approach (for different values for the latency 𝐿) with a departure rate of 1/400 and a match refusal probability of 20%. The

percentages state how close the privacy-preserving approach comes to the conventional approach.

conv. model privacy-preserving model

arrival match run
transplants

𝐿 = 1ms 𝐿 = 5ms 𝐿 = 10ms
rate interval transplants percentage transplants percentage transplants percentage

1

1 690.52 682.24 98.80% 676.52 97.97% 676.80 98.01%

2 689.80 672.88 97.55% 669.24 97.02% 661.08 95.84%

4 683.72 655.60 95.89% 645.16 94.36% 640.96 93.75%

7 678.84 642.36 94.63% 621.04 91.49% 615.64 90.69%

14 658.92 604.04 91.67% 578.36 87.77% 560.68 85.09%

30 612.24 529.36 86.46% 489.52 79.96% 480.20 78.43%

60 555.12 440.20 79.30% 399.44 71.96% 383.88 69.15%

120 460.48 329.84 71.63% 297.04 64.51% 282.84 61.42%

2

1 298.96 299.12 100.05% 295.52 98.85% 295.28 98.77%

2 298.68 295.12 98.81% 294.60 98.63% 290.28 97.19%

4 296.88 288.68 97.24% 283.44 95.47% 286.52 96.51%

7 291.36 283.72 97.38% 279.44 95.91% 277.44 95.22%

14 282.64 272.80 96.52% 264.88 93.72% 260.08 92.02%

30 264.16 242.52 91.81% 229.44 86.86% 227.56 86.14%

60 239.00 206.52 86.41% 188.56 78.90% 182.56 76.38%

120 199.96 158.92 79.48% 146.52 73.27% 140.52 70.27%

4

1 123.48 122.44 99.16% 122.48 99.19% 124.88 101.13%

2 123.20 122.40 99.35% 124.40 100.97% 123.20 100.00%

4 123.84 122.28 98.74% 122.08 98.58% 119.00 96.09%

7 122.20 119.64 97.91% 120.04 98.23% 117.64 96.27%

14 117.44 115.00 97.92% 113.84 96.93% 113.08 96.29%

30 109.80 104.12 94.83% 103.04 93.84% 101.20 92.17%

60 99.56 93.20 93.61% 87.92 88.31% 85.64 86.02%

120 80.72 70.76 87.66% 67.32 83.40% 66.56 82.46%

7

1 56.52 57.16 101.13% 57.08 100.99% 57.00 100.85%

2 56.40 56.56 100.28% 57.28 101.56% 56.12 99.50%

4 55.68 56.40 101.29% 57.44 103.16% 55.00 98.78%

7 56.92 56.60 99.44% 55.48 97.47% 55.84 98.10%

14 54.20 54.20 100.00% 53.92 99.48% 52.76 97.34%

30 50.80 50.84 100.08% 49.00 96.46% 48.32 95.12%

60 45.68 44.88 98.25% 42.72 93.52% 40.64 88.97%

120 38.16 38.12 99.90% 33.28 87.21% 31.28 81.97%

14

1 20.00 20.76 103.80% 19.76 98.80% 19.60 98.00%

2 19.76 19.48 98.58% 20.00 101.21% 20.12 101.82%

4 19.96 21.04 105.41% 21.12 105.81% 21.72 108.82%

7 19.96 20.00 100.20% 20.00 100.20% 19.88 99.60%

14 20.44 20.32 99.41% 20.32 99.41% 20.24 99.02%

30 17.48 17.48 100.00% 17.40 99.54% 17.44 99.77%

60 17.08 17.08 100.00% 17.12 100.23% 17.04 99.77%

120 13.72 13.72 100.00% 13.76 100.29% 13.24 96.50%

match run interval (e.g., over the complete time span of 5 years

there are on average only 8.28 fewer transplants for arrival rate 1
and even 0.76 additional transplants for arrival rate 14). We observe

similar findings for 𝐿 = 5ms while the percentages are in general a

bit smaller than for 𝐿 = 1ms. The same holds for 𝐿 = 10ms. How-
ever, even for such a large latency, the number of transplants for

small match run intervals is still very close to the conventional ap-

proach (e.g., independent of the arrival rate the privacy-preserving

approach still achieves more than 98% of the number of transplants

for the conventional approach if a match runs are executed daily).

Average Waiting Time. The average waiting time (i.e., the av-

erage time a patient waits until receiving a transplant) is nearly

always larger for the privacy-preserving approach as the SMPC

protocol execution may take up to 7 days whereas the runtime of

the matching algorithm in the conventional approach is negligible.

However, for those parameters where the number of transplants

in the privacy-preserving approach is close to the conventional

approach, the average waiting time only differs by a few days. This

is acceptable as even in the conventional approach the patients

on average wait multiple months before receiving a transplant.

The corresponding simulation results can be found in Appendix C.

Summary. The negative impact of the privacy-preserving ap-

proach can be considered negligible for arrival rates of 4 to 14 days

if the match run interval is between 1 and 7 days and for arrival

rates of 1 or 2 days if thematch run interval equals 1 or 2 days. Thus,
our approach is even practical for large platforms such as UNOS in

the US where patient-donor pairs arrive very frequently. Also, our

approach performs best for those parameters for which the number

of transplants is highest. This coincides with those values which one

would prefer in real-world platforms. Thus, the worse performance

of our approach for large match run intervals is not of relevance in

practice. Finally, while 95% of the number of transplants compared

to the conventional approach may not seem acceptable in countries

where kidney exchange is already practiced, our approach would

increase the number of possible transplants from 0% to 95% of



the maximum possible number of transplants in countries such as

Germany where kidney exchange is still not practiced.

7 CONCLUSION AND FUTUREWORK

We have presented a privacy-preserving protocol for crossover kid-

ney exchange and evaluated its performance for different properties

of the underlying network. Our protocol clearly outperforms the

existing protocol for kidney exchange and offers reasonable run-

times for up to 64 patient-donor pairs depending on the network

latency. We evaluated the practicality of our protocol when used in

a dynamic kidney exchange platform and compared it to a conven-

tional approach. Overall, the cost induced by adding privacy is low.

Specifically, if match runs are executed frequently, the difference

between the privacy-preserving and the conventional approach is

negligible w.r.t. the number of transplants that can be found.

One direction for future work is the development of protocols

that can handle larger exchange cycles or chains such that also plat-

forms that allow for such more sophisticated exchange structures

can be made privacy-preserving. Furthermore, we will strive to

add the possibility of prioritization and robustness (in case a com-

puted match fails) to our protocol further closing the gap between

conventional and privacy-preserving kidney exchange.
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A ADDITIONAL RUNTIME MEASUREMENTS

In Sections 5.3 and 6.3, we always assume a bandwidth of 𝐵 =

1Gbps in the underlying network. We now show that our protocol

(Protocol 1) is practical even for smaller bandwidth values.

Table 5 shows the runtimes for protocol Crossover-KE (Proto-

col 1) for latency 𝐿 = 1ms and different bandwidths ranging from

10Mbps to 1Gbps. We observe that on average the runtime increases

by 9% for 𝐵 = Mbps, by 18% for 𝐵 = 50Mbps, and by 102% for

𝐵 = 10Mbps. Thus, the protocol runtime only slightly increases for

bandwidths 100Mbps and 50Mbps and only increases significantly

for a very small bandwidth of 10Mbps.
The measured runtimes for the different values of the bandwidth

show that the bandwidth has much less influence on the protocol

runtime than the network latency (cf. Table 1). Furthermore, the

fact that there is only a slight runtime increase for bandwidths as

small as 50Mbps suggests that the performance of a dynamic kidney

exchange platform using our protocol with such bandwidths is very

close to the performance measured for 𝐵 = 1Gbps (cf. Section 6.3).

B ADDITIONAL SIMULATION RESULTS

In Section 6.3, we evaluated the performance of our approach for

privacy-preserving kidney exchange compared to the conventional

approach for different arrival rates and match run intervals. In this

section, we additionally evaluate the results for different match

refusal probabilities and departure rates.

Table 6 contains the number of transplants for the conventional

approach as well as for the privacy-preserving approach for match

refusal probability 0%which is the lowest match refusal probability

for which we executed simulations. First of all, we notice that the

overall number of transplants is larger for match refusal probabil-

ity 0% than for 20% (cf. Table 4) independent of the considered

approach and latency. The is an expected observation since due to

the larger match refusal probability the percentage of computed

matches that do not result in a transplant is larger.

Comparing the performance of the privacy-preserving approach

for the two cases, we observe that on average the performance

is about 0.09% better for match refusal probability 0% than for

20%. Thus, the difference between the results for the two match

refusal probabilities can be considered negligible andwe can resume

that the performance of the privacy-preserving approach does not

depend on the match refusal probability.

Table 7 shows the number of transplants for a departure rate

of 1/800 whereas in Section 6.3 we considered a departure rate

of 1/400. We observe that the number of transplants is larger for

departure rate 1/800 independent of the considered approach. This
is very intuitive since for a smaller departure rate, the parties stay

longer in the pool on average which increases their probability of

being matched.

With respect to the performance of the privacy-preserving ap-

proach, the difference between the percentage of matched parties

between departure rates 1/400 and 1/800 is very small, i.e., on aver-

age the performance decreases by 0.77% for departure rate 1/800.
Thus, we can conclude that the departure rate does not significantly

influence the performance of the privacy-preserving approach com-

pared to the conventional approach although it does influence the

overall number of transplants in both approaches.

Table 5: Runtime and network traffic of proto-

col Crossover-KE for different numbers of input peers

and different bandwidths B for a fixed latency L = 1ms.

input peers
runtime

1Gbps 100Mbps 50Mbps 10Mbps

5 21s 22s 24s 42s

10 6m 6m 7m 11m

15 30m 33m 36m 59m

20 96m 104m 112m 188m

25 4h 4h 4.5h 8h

30 8h 9h 9.5h 16h

35 15h 16h 18h 31h

40 25h 28h 30h 53h

C AVERAGEWAITING TIME

Until now, we have focused on the number of transplants as the key

performance indicator for kidney exchange. However, the different

approaches can also be compared w.r.t. the average waiting time

which indicates how long it takes on average for a patient to obtain

a transplant.

Table 8 shows the average waiting times for the conventional ap-

proach and the privacy-preserving approach for different latencies

and for departure rate 1/400 and match refusal probability 20%.

Thus, it contains the average waiting times corresponding to the

number of transplants given in Table 4. The percentages for the

privacy-preserving approach indicate the increase (or decrease) of

the average waiting time compared to the conventional approach

(e.g., the entry 5.32% in the first row for latency 𝐿 = 1ms indicates
that the runtime for this parameter constellation is 5.34% larger

than for the same parameter constellation in the conventional ap-

proach). Those entries for which the average waiting time is less

than 5% worse than in the conventional approach are highlighted

in the table.

We observe that in general the average waiting time is larger

for the privacy-preserving approach. We attribute this mainly to

two facts. First, on average there are more transplants for the con-

ventional approach than for the privacy-preserving approach. This

leads to smaller average waiting times as in general a high number

of transplants also means that transplants occur more frequently

and thus the patients wait less time on average until receiving a

transplant. Second, the protocol execution in the privacy-preserving

approach may take up to 7 days (depending on the number of

patient-donor pairs in the pool) whereas the computation of the

matching algorithm in the conventional approach completes in-

stantly in our simulation.

However, the results also show that the average waiting time is

nearly identical in both approaches for those parameter constella-

tions where the number of transplants in the privacy-preserving

approach is very close to the number of transplants in the conven-

tional approach, i.e., for large arrival rates and small match run

intervals (cf. Section 6.3). Thus, the results for the average waiting

time confirm our observation for the number of transplants that the

performance impact of the privacy-preserving approach is small for

those parameter values which are most likely to occur in practice.



Table 6: Comparison between the number of transplants measured for the conventional approach and the privacy-preserving

approach (for different values for the latency 𝐿) with a departure rate of 1/400 and a match refusal probability of 0%. The

percentages state how close the privacy-preserving approach comes to the conventional approach.

conv. model privacy-preserving model

arrival match run
transplants

𝐿 = 1ms 𝐿 = 10ms 𝐿 = 20ms
rate interval transplants percentage transplants percentage transplants percentage

1

1 725.28 710.12 97.91% 705.64 97.29% 702.80 96.90%

2 719.00 705.72 98.15% 701.88 97.62% 695.16 96.68%

4 716.36 690.72 96.42% 677.00 94.51% 670.44 93.59%

7 710.76 675.40 95.03% 655.40 92.21% 646.20 90.92%

14 689.48 632.48 91.73% 612.88 88.89% 600.04 87.03%

30 655.20 567.00 86.54% 529.48 80.81% 522.68 79.77%

60 602.92 486.76 80.73% 442.92 73.46% 432.28 71.70%

120 519.48 380.72 73.29% 337.40 64.95% 323.48 62.27%

2

1 312.80 313.40 100.19% 311.00 99.42% 310.16 99.16%

2 314.68 312.36 99.26% 310.40 98.64% 308.44 98.02%

4 314.64 309.40 98.33% 302.48 96.14% 307.36 97.69%

7 309.08 305.24 98.76% 298.08 96.44% 296.76 96.01%

14 303.88 288.04 94.79% 279.64 92.02% 273.84 90.11%

30 285.80 259.28 90.72% 249.60 87.33% 245.12 85.77%

60 265.60 226.80 85.39% 214.64 80.81% 204.32 76.93%

120 228.24 182.36 79.90% 166.28 72.85% 160.48 70.31%

4

1 132.48 131.84 99.52% 131.76 99.46% 131.00 98.88%

2 134.12 133.56 99.58% 132.00 98.42% 132.00 98.42%

4 132.28 131.00 99.03% 130.92 98.97% 130.28 98.49%

7 129.04 129.44 100.31% 129.40 100.28% 127.36 98.70%

14 127.08 126.68 99.69% 124.36 97.86% 121.36 95.50%

30 121.12 115.96 95.74% 112.40 92.80% 111.68 92.21%

60 111.32 103.76 93.21% 97.88 87.93% 96.80 86.96%

120 96.00 81.84 85.25% 77.72 80.96% 75.68 78.83%

7

1 61.16 62.40 102.03% 62.00 101.37% 60.80 99.41%

2 62.52 62.88 100.58% 60.68 97.06% 61.44 98.27%

4 61.64 60.32 97.86% 61.36 99.55% 61.24 99.35%

7 62.28 61.44 98.65% 60.40 96.98% 60.52 97.17%

14 60.48 60.48 100.00% 58.76 97.16% 58.56 96.83%

30 55.72 56.24 100.93% 55.12 98.92% 52.52 94.26%

60 51.80 51.88 100.15% 48.32 93.28% 47.12 90.97%

120 44.44 44.20 99.46% 40.00 90.01% 38.60 86.86%

14

1 22.40 22.68 101.25% 22.72 101.43% 22.28 99.46%

2 21.72 21.88 100.74% 22.32 102.76% 21.96 101.10%

4 22.96 23.24 101.22% 23.52 102.44% 23.28 101.39%

7 23.16 23.20 100.17% 23.20 100.17% 23.20 100.17%

14 22.36 22.12 98.93% 22.12 98.93% 22.12 98.93%

30 19.84 19.84 100.00% 19.80 99.80% 20.00 100.81%

60 19.16 19.16 100.00% 19.04 99.37% 19.04 99.37%

120 16.40 16.40 100.00% 16.12 98.29% 16.36 99.76%



Table 7: Comparison between the number of transplants measured for the conventional approach and the privacy-preserving

approach (for different values for the latency 𝐿) with a departure rate of 1/800 and a match refusal probability of 20%. The

percentages state how close the privacy-preserving approach comes to the conventional approach.

conv. model privacy-preserving model

arrival match run
transplants

𝐿 = 1ms 𝐿 = 10ms 𝐿 = 20ms
rate interval transplants percentage transplants percentage transplants percentage

1

1 751.52 740.52 98.54% 731.80 97.38% 730.80 97.24%

2 748.60 732.80 97.89% 725.60 96.93% 718.88 96.03%

4 747.80 717.68 95.97% 707.88 94.66% 703.44 94.07%

7 744.36 701.28 94.21% 689.32 92.61% 679.16 91.24%

14 730.48 668.00 91.45% 644.56 88.24% 636.24 87.10%

30 696.48 601.48 86.36% 568.36 81.60% 561.64 80.64%

60 659.52 528.28 80.10% 486.92 73.83% 472.80 71.69%

120 589.96 424.52 71.96% 381.04 64.59% 369.60 62.65%

2

1 332.72 329.52 99.04% 327.64 98.47% 325.36 97.79%

2 331.08 325.52 98.32% 327.84 99.02% 323.92 97.84%

4 331.32 322.36 97.30% 321.52 97.04% 321.12 96.92%

7 328.44 317.24 96.59% 313.20 95.36% 310.88 94.65%

14 321.76 306.96 95.40% 299.52 93.09% 296.16 92.04%

30 310.68 282.40 90.90% 268.96 86.57% 262.88 84.61%

60 291.20 250.20 85.92% 233.80 80.29% 225.64 77.49%

120 260.20 206.16 79.23% 185.88 71.44% 180.40 69.33%

4

1 141.24 141.64 100.28% 141.32 100.06% 141.16 99.94%

2 141.76 140.92 99.41% 141.76 100.00% 140.44 99.07%

4 141.52 137.72 97.31% 139.32 98.45% 140.04 98.95%

7 141.60 138.24 97.63% 136.84 96.64% 136.64 96.50%

14 137.60 134.40 97.67% 133.76 97.21% 132.92 96.60%

30 130.56 126.24 96.69% 121.48 93.05% 117.84 90.26%

60 123.36 115.68 93.77% 107.56 87.19% 106.40 86.25%

120 111.12 97.40 87.65% 88.28 79.45% 84.76 76.28%

7

1 67.28 67.32 100.06% 66.24 98.45% 68.24 101.43%

2 67.92 66.28 97.59% 68.00 100.12% 66.40 97.76%

4 67.24 66.60 99.05% 65.72 97.74% 66.76 99.29%

7 66.76 66.24 99.22% 66.48 99.58% 65.72 98.44%

14 65.36 64.84 99.20% 63.96 97.86% 63.68 97.43%

30 62.08 61.00 98.26% 59.84 96.39% 58.76 94.65%

60 60.76 55.28 90.98% 54.48 89.66% 54.52 89.73%

120 53.32 48.52 91.00% 46.80 87.77% 46.08 86.42%

14

1 25.05 25.64 102.40% 25.28 100.96% 25.44 101.60%

2 26.44 25.48 96.37% 24.96 94.40% 25.24 95.46%

4 25.84 25.12 97.21% 24.92 96.44% 25.44 98.45%

7 25.08 25.40 101.28% 25.32 100.96% 24.88 99.20%

14 24.64 24.72 100.32% 24.40 99.03% 23.96 97.24%

30 23.44 23.40 99.83% 23.92 102.05% 23.08 98.46%

60 22.32 22.32 100.00% 21.48 96.24% 21.32 95.52%

120 20.52 20.64 100.58% 20.08 97.86% 17.96 87.52%



Table 8: Comparison between the average waiting time measured for the conventional approach and the privacy-preserving

approach (for different values for the latency 𝐿) with a departure rate of 1/400 and a match refusal probability of 20%. The

percentages state howmuch larger or smaller the average waiting time is in the privacy-preserving approach compared to the

conventional approach.

conv. model privacy-preserving model

arrival match run avgerage waiting 𝐿 = 1ms 𝐿 = 10ms 𝐿 = 20ms
rate interval time [days] time [days] percentage time [days] percentage time [days] percentage

1

1 91.44 96.58 5.32% 96.71 5.45% 98.09 6.78%

2 92.59 99.95 7.36% 106.26 12.86% 102.28 9.47%

4 93.01 103.46 10.10% 109.91 15.38% 108.39 14.19%

7 96.54 109.30 11.67% 114.81 15.91% 118.48 18.52%

14 100.80 119.41 15.58% 125.72 19.82% 126.44 20.28%

30 115.77 141.73 18.32% 149.08 22.34% 152.15 23.91%

60 140.45 170.42 17.59% 178.00 21.10% 184.44 23.85%

120 179.36 210.67 14.86% 219.37 18.24% 221.60 19.06%

2

1 103.30 103.22 -0.08% 104.40 1.05% 105.99 2.54%

2 100.79 104.32 3.38% 109.57 8.01% 106.13 5.03%

4 101.62 107.51 5.48% 112.00 9.27% 112.90 9.99%

7 107.50 114.67 6.25% 118.37 9.18% 121.80 11.74%

14 109.13 122.67 11.04% 124.03 12.01% 127.88 14.66%

30 123.85 140.78 12.03% 145.62 14.95% 150.03 17.45%

60 146.13 166.34 12.15% 175.29 16.64% 179.49 18.59%

120 185.77 201.72 7.91% 213.80 13.11% 215.51 13.80%

4

1 109.05 114.75 4.97% 116.75 6.60% 114.95 5.13%

2 114.00 112.60 -1.24% 117.12 2.66% 117.87 3.28%

4 114.48 115.27 0.69% 120.43 4.94% 117.20 2.32%

7 116.98 120.99 3.31% 126.17 7.28% 124.88 6.33%

14 118.93 128.03 7.11% 131.83 9.79% 135.44 12.19%

30 134.74 139.74 3.58% 149.55 9.90% 147.16 8.44%

60 157.52 165.99 5.10% 173.74 9.34% 176.69 10.85%

120 191.35 206.88 7.51% 207.51 7.79% 215.72 11.30%

7

1 126.31 124.68 -1.31% 121.56 -3.91% 118.85 -6.28%

2 121.08 125.35 3.41% 126.16 4.03% 121.05 -0.02%

4 122.89 124.17 1.03% 124.14 1.01% 124.62 1.39%

7 119.94 125.92 4.75% 129.53 7.40% 129.06 7.07%

14 129.34 130.58 0.95% 129.76 0.32% 133.49 3.11%

30 140.83 140.46 -0.26% 153.78 8.42% 150.09 6.17%

60 162.04 167.49 3.25% 173.66 6.69% 169.47 4.38%

120 194.92 198.94 2.02% 210.70 7.49% 212.29 8.18%

14

1 130.20 132.61 1.82% 126.12 -3.24% 128.69 -1.17%

2 130.57 137.74 5.21% 142.27 8.22% 144.55 9.67%

4 124.63 126.25 1.28% 127.13 1.97% 134.88 7.60%

7 129.19 123.97 -4.21% 124.42 -3.83% 125.02 -3.34%

14 139.12 139.05 -0.05% 139.52 0.29% 138.84 -0.20%

30 144.24 144.35 0.08% 144.44 0.14% 147.28 2.06%

60 163.31 163.43 0.07% 166.79 2.09% 167.62 2.57%

120 212.94 213.11 0.08% 212.02 -0.43% 212.48 -0.22%
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