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ABSTRACT
The use of data combined with tailored statistical analysis have

presented a unique opportunity to organizations in diverse fields to

observe users’ behaviors and needs, and accordingly adapt and fine

tune their services. However, in order to offer utilizable, plausible

and personalized alternatives to users, this process usually also

entails a breach of their privacy. The use of statistical databases

for releasing data analytics is growing exponentially, and while

many cryptographic methods are utilized to protect the confiden-

tiality of the data – a task that has been ably carried out by many

authors over the years – only a few works focus on the problem

of privatizing the actual databases. Believing that securing and

privatizing databases are two equilateral problems, in this paper

we propose a hybrid approach by combining Functional Encryp-

tion with the principles of Differential Privacy. Our main goal is

not only to design a scheme for processing statistical data and re-

leasing statistics in a privacy-preserving way but also provide a

richer, more balanced and comprehensive approach in which data

analytics and cryptography go hand in hand with a shift towards

increased privacy.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols;Man-
agement and querying of encrypted data; Cryptography.
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1 INTRODUCTION
The continually increasing sophistication of technology is shap-
ing the unceasing evolution of data and analytics. Industries are 
undergoing persistent digital transformation resulting in an ever 
increasing amount of data collected. Today, every business relies 
on small or big data and valuable insights derived from it. Data 
analytics is highly resourceful when it comes to understanding 
the target audience and their preferences. Using this information, 
organizations can easily anticipate customer needs and potentially 
gain significant competitive advantage in the market. Telecom and 
financial services industries are the most active early adopters of 
big data analytics, with technology and healthcare following in the 
third and fourth place.

The agressive penetration of data analytics inevitably raises 
companies’ concerns regarding the usage of users’ data and possible 
breaches of privacy. For example, a recent study [23] found that 19 
out of a sample of 24 general-purpose mobile health apps shared 
user data with more than 50 unique companies, most of which were 
data analytics companies. This, along with other older reported 
privacy attacks [16, 29] are very alarming developments considering 
that statistical databases are of significant importance for decision 
making in numerous fields ranging from sports and entertainment 
to national security. A response to such attacks was presented 
in [17] with the formalization of differential privacy.

Differential privacy allows sharing information about a dataset, 
while simultaneously withholding information about individuals. 
A curator (data owner) creates the database and then periodically 
releases statistics upon receiving request from an analyst. In order 
to ensure the individuals’ privacy, the curator filters the statistics 
through a privacy mechanism and replies to the analyst with a 
noisy result. The results must be presented in a form allowing 
the analyst to deduce accurate enough results about the dataset, 
without breaching individuals’ privacy. While the problem of pri-
vatizing datasets has been thoroughly studied, further securing the 
datasets through the use of cryptography has not yet drawn much 
attention. However, this is an issue of paramount importance when 
the database is outsourced to a possibly malicious cloud service 
provider (CSP). To the best of our knowledge, the only work that 
considered this scenario is the one presented in [5], where authors 
rely on homomorphic encryption (HE) [30] and structured encryp-
tion (SE) [25] to design a scheme for private histogram queries. 
In this paper, we approach a similar problem by using Functional 
Encryption (FE) as the starting point.
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Functional Encryption (FE) is an emerging cryptographic tech-

nique that allows selective computations over encrypted data. FE

schemes provide a key generation algorithm that outputs decryp-

tion keys with remarkable capabilities. More precisely, each de-

cryption key sk𝑓 is associated with a function 𝑓 . In contrast to

traditional cryptographic techniques, using sk𝑓 on a ciphertext

Enc(𝑥) does not recover 𝑥 but a function 𝑓 (𝑥) – thus keeping the

actual value 𝑥 private. While the first constructions of FE allowed

the computation of a function over a single ciphertext, more recent

works [21] introduced the more general notion of multi-input FE

(MIFE). In a MIFE scheme, given ciphertexts Enc(𝑥1), . . . , Enc(𝑥𝑛), a
user can use sk𝑓 to recover 𝑓 (𝑥1, . . . , 𝑥𝑛). The function 𝑓 can allow

only highly processed forms of data to be learned by the functional

key holder. Unfortunately, while MIFE seems to be a perfect fit for

many real-life applications – especially cloud-based ones where

multiple users store large volumes of data in remote and possibly

corrupted entities – most of the works in the field revolve around

constructing generic schemes that do not support specific functions.

Hence, while the concept of FE has the potential to unleash new,

creative, useful and emerging applications, from a practical perspec-

tive, it still holds a largely unfulfilled promise. Having identified

the importance of FE and believing that it is a family of modern

encryption schemes that can push us into an uncharted technologi-

cal terrain, we made a first attempt at smoothing out the identified

asymmetries betwixt theory and practice.

Contributions. We make the following contributions:

(1) First, we design a MIFE scheme in the public key setting for

the sum of a vectors’ components and then we generalize

our construction to further support the inner product func-

tionality. We also show how our scheme transformed from

the single-client to the multi-client setting. This transforma-

tion requires the users to perform a Multi-Party Computa-

tion (MPC). More precisely, each user generates their own

public/private key pair for the same public-key encryption

scheme and then they collaborate to calculate a functional

decryption key sk𝑓 which is derived from a combination

of all the generated private keys. This result is quite re-

markable since users generate their private keys locally and

independently. As a result, the keys are never exposed to

unauthorized parties and thus, no private information about

the content of the underlying ciphertexts is revealed. At the

same time, sufficient information to generate the functional

decryption key is provided without the use of a fully trusted

party.

(2) Our second contribution derives from the identified need to

create a dialogue between the theoretical concept of FE and

real life applications. We tried to provide a pathway towards

new prospects that show the direct and realistic applicabil-

ity of this promising encryption technique when applied to

concrete obstacles. To this end, we showed how our MIFE

scheme can be used to provide a solution to the problem

of designing encrypted private databases. In particular, we

present three different solutions two of which remain pri-

vate under continual observations, while our third solution

satisfies the traditional definition of differential privacy but

in the multi-client setting.

(3) In comparison with the seminal work [5], our scheme of-

fers more functionalities as it allows an analyst to perform

different kind of queries, and not only request the value of

a counter. This is because our construction is based on FE

which is a better fit for such a scenario, and outperfroms

HE in terms of efficiency. Moreover, we consider a stronger

threat model by allowing the malicious analyst to collude

with the CSP in an attempt to remove the noise from the

results. Finally, in contrast with the purely theoretical work

in [5], we present extensive experiments to prove that en-

hancing the security of an encrypted dataset with differential

privacy does not add significant computational costs.

2 MOTIVATION AND APPLICATION DOMAIN
The use of analytics and data processing has been used produc-

tively in various fields, including the healthcare sector (e.g. medical

diagnosis), intelligence analysis, finance, safety, military services

and many more. However, the importance of performing privacy-

preserving analytics is an issue that has lately gained momentum

in public’s mind. As a result, a significant number of companies are

moving towards implementing services that respect users’ privacy.

To facilitate the reader’s understanding of the motivation, and

the type of problem we are trying to solve, we considered a spe-

cific example capable of showing the immediate application of our

research. In layman’s terms, the goal of this work, is to allow autho-

rized users to perform statistical analyses over arbitrary datasets

in a privacy-preserving way. To achieve this, we built a functional

encryption scheme that can protect users’ data and their privacy

against both internal (e.g. malicious servers) and external (e.g mali-

cious analysts) attacks.

Our solution utilizes a binary range tree, similar to the one

descibed in [14]. The binary range tree is a complete binary tree in

which each node represents a numerical range. Moreover, in each

node we store the sum of the values stored in its children nodes.

In other words, each node contains a partial sum corresponding to

a specific range. To release statistics in a privacy-preserving way,

this binary mechanism outputs noisy sums. To make things clearer

let us consider the following example:

We consider a scenario in which 40 students have enrolled in a

university course. After the final exam, the professor grades stu-

dents. Grades are assigned as numbers in the range (1-8) where 8

corresponds to the highest possible mark. The professor creates

a complete binary tree in which all grades are stored. Finally, the

tree is outsourced to the university’s cloud server. Without loss of

generality, we can assume that the binary tree looks like the one in

figure 1, where the content of each node refers to the number of

students whose grades were in a specific range and each 𝑐𝑥 denotes

the ciphertext corresponding to a plaintext 𝑥 . Furthermore, we as-

sume that there exists a service in the university through which

authorized users (e.g. an analyst) can evaluate any course based on

students’ grades. The analyst should be able to execute any query

on the server. A query could be of the form “How many students got
a grade between 1 and 7?". To answer this query, the server should

release the sum of the nodes that correspond to the specified range.

In our example, this would be the nodes representing the ranges

(1-4), (5-6) and (7). Our goal is to design an encryption scheme that
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Figure 1: Complete Binary Tree for 40 students graded in the
scale [1-8]

will allow an analyst to perform a set of computations on stored

data without learning anything about the individual values. In addi-

tion to that, our scheme will have to be secure against both internal

(compromised university service) and external attacks (corrupted

analyst).

We consider for example that Alice, another enrolled student,

missed the first exam and participated in a new exam after the

tree was already published. Now, an analyst by issuing a query

for an average upgrade, could easily deduce Alice’s grade just by

observing how the average was influenced by Alice’s grade. To

ensure Alice’s privacy, we rely on the differential privacy under
continual observations model that was formalized independently

in [18] and [14]. Differential privacy under continual observations

ensures that even if the data is constantly modified and updated,

the privacy of the individuals will not be compromised. Our so-

lution focuses on combining Differential privacy under continual

observations with FE.

Given that the ciphertexts are produced using an FE scheme, the

professor can issue functional decryption keys to any party (i.e.

an analyst) that wishes to perform statistics based on the grades

of the students. Given such a functional key, the server will be

able to output results identical to those where the contents of the

nodes were in plaintext. To make the data private apart from just

encrypting the individual records we embed a randomized error in

the plaintext prior to the encryption.

3 RELATEDWORK
Functional Encryption. Functional encryption was formalized

as a generalization of public-key encryption in [12]. Since then, nu-

merous studies with general definitions and generic constructions

of FE have been proposed [21, 22, 33, 35]. Despite the promising

works that have been published, there is a clear lack of works

proposing FE schemes supporting specific functions – a necessary

step that would allow FE to transcend its limitations and provide

the foundations for reaching its full potential. To the best of our

knowledge, currently the number of supported functionalities is

limited to sums [6, 10], inner products [2–4] and quadratic polyno-

mials [34]. In this work, we propose a MIFE scheme for the sum

of a vector’s components. We first present a generic construction

and then show how to instantiate our scheme from well-studied

public-key schemes.

Differential Privacy. Differential privacy is a notion first for-

malized in [17], where authors focused on ensuring the privacy

of individuals. More precicely, it was proved that by adding well-

calibrated noise to the data, the presence or absence of an individ-

ual’s information is irrelevant to the output of a database query.

Since then, differential privacy has drawn the attention of both re-

searchers [11, 28] and key industrial players such as Google [19, 20],

Uber [24] and organizations like the US Census Bureau [27]. An-

other interesting application of differential privacy was deployed

by Apple with the recent release of iOS 14 [1]. In iOS 14 Apple

offers its users the ability to enable a feature called “approximated
location". More specifically, for apps that require location access, a

user can choose to share an Approximate Location, which is close

to the real location but not precisely spot on, making it harder for

apps to keep track of where the user is going and better protecting

location privacy.

Continual Observations. Modern applications require data to

be constantly modified and updated. Having identified this need as

well as its possible difficulties and implications, authors in [18] pro-

posed a new model of differential privacy having in mind scenarios

such as real-time traffic analysis, social trends observations and

disease outbreaks discovery. In [13], authors proved that continual

release of statistics, tend to leak more information. This problem

was addressed independently in [18] and [14] and since then, the

continual observations model is considered to be the new standard

in the field of differential privacy [26, 36]

Crypto-assistedApproaches.Over the past few years researchers

have started exploring the possibilities of combining differential

privacy with cryptographic primitives in an attempt to provide

stronger security guarantees [5, 31, 32]. In particular, in [32] au-

thors proposed a framework for combining differential privacy with

cryptography in the centralized differential privacy (CDP) model. In

the CDP model, data are collected and stored in plaintext in a fully

trusted entity. In [32], authors relied on traditional cryptographic

techniques to obviate the need of a trusted entity. However, they

only managed to replace the trusted entity with two semi-honest

servers. Another interesting approach is presented in [31], where

authors combine differential privacy with searchable encryption to

construct a volume-hiding scheme. Such schemes always return the

maximum number of data among all possible queries in an attempt

to hide the access pattern. Unfortunately, volume-hiding schemes

are designed with single-keyword search in mind, and hence, can

not be used for range queries.

Most Relevant Related Work. In [5], authors designed the first

private encrypted database, and they proved that their construction

is 𝜖-differential private in the continual observation model. More

specifically, their scheme consists of an encrypted counter that is

homomorphically encrypted using the Paillier cryptosystem. A data

owner periodically updates the value of the counter and can also

release its current noisy value. Moreover, they combine their en-

crypted counter with techniques from structured encryption [25], a

generalization of symmetric searchable encryption [7, 8], to design
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a scheme for private histogram queries. Inspired by their work,

we sought to explore the new but already emerging field of pri-

vate encrypted databases in an attempt to build up a feel for what

might be an interesting research direction in which to head in the

future. With [5] as a starting point of our research, this work is

differentiated as follows:

• Instead of using structured and homomorphic encryption, we base

our work on FE
1
. We firmly believe that FE is a cryptographic

primitive that squarely fits applications where statistics need to

be periodically released. As such, to the best of our knowledge,

we construct the first scheme for functionally-encrypted private

databases.

• Using FE instead of structured encryption as a basis, allow us

to release a number of different statistics and not only the cur-

rent value of a counter. This is a significant result as it is more

applicable to a plethora of applications. Our scheme enables the

privacy-preserving publication of statistics that can be computed

using a sum. Such statistics may involve, but not limited to, aver-

ages, range queries, top-k/bot-k queries etc.

• We consider a stronger threat model. More precisely, in [5], the

authors suggest that the noise is added to the data by the cloud

service provider. Hence, in their model the cloud must be a trusted

entity. Otherwise, an attack in which the server colludes with a

malicious analyst can be launched and the actual noise used to

mask users data can be easily removed. While this is a simple

attack, it cancels out the property of differential privacy and, as a

result, any malicious analyst can breach the privacy of individuals.

To address this problem, in our approach the error is added to the

initial data by the actual data owner prior to outsourcing them to

the cloud. Hence, the only information that is leaked to the CSP

is the final noisy result.

4 PRELIMINARIES
In this section, we present the necessary notation and definitions

needed to follow this paper. The section is divided into five parts:

We start by describing the basic notations, then we give definitions

about Public-Key Encryption, Functional Encryption, Homomor-

phic Encryption and differential privacy.

Notation. If Y is a set, we use 𝑦
$←− Y if 𝑦 is chosen uniformly

at random from Y. The cardinality of a set Y is denoted by |Y|.
For a positive integer 𝑚, [𝑚] denotes the set {1, . . . ,𝑚}. Vectors
are denoted in bold as x = [𝑥1, . . . , 𝑥𝑛]. A PPT adversary ADV is

a randomized algorithm for which there exists a polynomial 𝑝(𝑧)

such that for all input 𝑧, the running time of ADV(𝑧) is bounded

by 𝑝(|𝑧 |). A function 𝑛𝑒𝑔𝑙 (·) is called negligible if ∀ 𝑐 ∈ N, ∃ 𝜖0 ∈ N
such that ∀ 𝜖 ≥ 𝜖0 : 𝑛𝑒𝑔𝑙(𝜖) < 𝜖−𝑐 .

Definition 4.1 (Inner Product). The inner product (or dot product)
of Z𝑛 , for two vectors x, y ∈ Z𝑛 is a function ⟨·, ·⟩ defined by:

𝑓 (x, y) = ⟨x, y⟩ = 𝑥1𝑦1 + · · · + 𝑥𝑛𝑦𝑛

1
We first present PLMH – a scheme that uses homomorphic encryption and then, we

move on to present PLM – a variation where homomorphic encryption is not taken

into account.

Definition 4.2 (ℓ2 norm). The ℓ2 norm of Z𝑛 for a vector x ∈ Z𝑛
is a function ∥·∥2 defined by:

𝑓 (𝑥 ) = ∥x∥2 =

√√
𝑖=𝑛∑︁
𝑖=1

𝑥2
𝑖

4.1 Public-Key Encryption
Definition 4.3 (Public-Key Encryption scheme). A public-key en-

cryption scheme PKE for a message space M, consists of three

algorithms PKE = (Gen, Enc,Dec). A PKE scheme is said to be cor-

rect if:

𝑃𝑟 [Dec(sk, 𝑐) ̸=𝑚 | [(pk, sk)← Setip(1_)]

∧ [𝑚 ∈ M] ∧ [𝑐 ← Enc(pk,𝑚)]] = 𝑛𝑒𝑔𝑙(_)

To formalize the security of a PKE scheme, we follow the IND-

CPA paradigm.

Definition 4.4 (Indistinguishability-Based Security). Let PKE =

(Gen, Enc,Dec) be a public-key encryption scheme. We define the

following experiments:

𝐸𝑥𝑝𝑠−𝐼𝑁𝐷−𝐶𝑃𝐴−𝛽 (ADV)

Initialize(_, 𝑥0, 𝑥1)

(pk, sk)
$←− Gen(1_ )

Return pk
Challenge()

𝑐𝛽
$←− Enc(pk,𝑚𝛽 )

Finalize(𝛽′)
𝛽′ = 𝛽

The advantage 𝜖 of ADV is defined as:

𝜖 =

����𝑃𝑟 [𝐸𝑥𝑝𝑠−𝑖𝑛𝑑−𝐶𝑃𝐴−0(ADV) = 1

−𝑃𝑟 [𝐸𝑥𝑝𝑠−𝑖𝑛𝑑−𝐶𝑃𝐴−1(ADV) = 1]

����
We say that PKE is s-IND-CPA-𝛽 secure if

𝜖 = 𝑛𝑒𝑔𝑙(_)

Definition 4.5 (Linear Ciphertext Homomorphism (LCH)). We say

that a PKE scheme has linear ciphertext homomorphism if:

𝑛∏
𝑖 =1

Enc(pk𝑖 , 𝑥𝑖 ) = Enc

(
𝑛∏
𝑖=1

pki,
𝑛∑︁
𝑖=1

𝑥𝑖

)
Definition 4.6 (Linear Key Homomorphism (LKH)). Let (pk

1
, sk1)

and (pk
2
, sk2) be two public/private key pairs that have been gener-

ated using PKE.Gen. We say that PKE has linear key homomorphism
if sk1 + sk2 is a private key to a public key computed as pk

1
· pk

2
.

A direct result of definitions 4.5 and 4.6 is that if a PKE scheme

is linear ciphertext and key homomorphic, then the public keys of

PKE live in multiplicative groupG𝑝𝑢𝑏 = (G, ·, 1G𝑝𝑢𝑏 ) and the private
keys in an additive group H𝑝𝑟𝑖𝑣 = (H, +, 0H𝑝𝑟𝑖𝑣 ).

4.2 Multi-Input Functional Encryption
Definition 4.7 (Multi-Input Functional Encryption). A Multi-Input

Functional Encryption scheme MIFE for a message spaceM is a

tuple MIFE = (Setup, Enc,KeyGen,Dec) such that:
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• Setup(1_): The Setup algorithm is a probabilistic algorithm

that on input the security parameter _, outputs a master

public/private key pair (mpk,msk).
• Enc(mpk, x): The encryption algorithm Enc is a probabilistic
algorithm that on input the master public key mpk and a

message x = {𝑥1, . . . , 𝑥𝑛} ∈ M, outputs a ciphertext c =

{𝑐1, . . . , 𝑐𝑛}.
• KeyGen(msk, f): The key generation algorithm KeyGen is a

deterministic algorithm that on input the master secret key

msk and a function 𝑓 , outputs a functional key sk𝑓 .
• Dec(sk𝑓 , 𝑐): The decryption algorithm Dec is a deterministic

algorithm that on input a functional key sk𝑓 and a ciphertext
c, outputs 𝑓 (𝑥1, . . . , 𝑥𝑛).

A MIFE scheme is said to be correct if:

𝑃𝑟 [Dec(sk𝑓 , c) ̸= 𝑓 (x) | [(mpk,msk)← Setup(1_)]

∧ [c← Enc(mpk, x)] ∧ [sk𝑓 ← KeyGen(msk, 𝑓 )]] = 𝑛𝑒𝑔𝑙(_)

Just like in the case of PKE we base our security definition on

the selective-IND-CPA formalization:

Definition 4.8 (MIFE Indistinguishanility-Based Security). For a
MIFE scheme MIFE = (Setup, Enc,KeyGen,Dec) we define the fol-
lowing experiments:

𝐸𝑥𝑝𝑠−𝐼𝑁𝐷−𝐹𝐸−𝐶𝑃𝐴−𝛽 (ADV)

Initialize(_, 𝑥0, 𝑥1)

mpk,msk
$←− Setup(1_ )

𝐿 ← ∅
Output mpk
Key Generation(𝑓 )
𝐿 ← 𝐿 ∪ {𝑓 }
sk𝑓

$←− KeyGen(msk, f)
Output sk𝑓

Challenge()

c𝛽
$←− Enc(mpk, x𝛽 )

Finalize(𝛽′)
If ∃ 𝑓 ∈ 𝐿 :

yoyo 𝑓 (x0) ̸= 𝑓 (x1)
yoyo Output ⊥
Else

𝛽′ = 𝛽

The advantage 𝜖 of ADV is defined as:

𝜖 =

����𝑃𝑟 [𝐸𝑥𝑝𝑠−𝑖𝑛𝑑−𝐹𝐸−𝐶𝑃𝐴−0(ADV) = 1

−𝑃𝑟 [𝐸𝑥𝑝𝑠−𝑖𝑛𝑑−𝐹𝐸−𝐶𝑃𝐴−1(ADV) = 1]

����
We say that PKE is s-IND-FE-CPA-𝛽 secure if

𝜖 = 𝑛𝑒𝑔𝑙(_)

4.3 Homomorphic Encryption
A homomorphism is a structure-preserving map between two alge-

braic structures. Homomorphic Encryption is simply an encryption

scheme that retains the homomorphic property. Let us consider

the function Enc : (G, ⊕)→ (H, ⊗), for some groups G, H and some

operators ⊕, ⊗. Then, the function Enc is a homomorphism if and

only if for any 𝑥,𝑦 ∈ G:
(1)Enc(𝑥 ⊕ 𝑦) = Enc(𝑥) ⊗ Enc(𝑦)

4.4 Differential Privacy
We proceed by providing the main definitions of 𝜖-differential pri-

vacy and the main properties of the Laplace mechanism. For the rest

of the paper, two databases 𝐷𝐵 and 𝐷𝐵′ are called neighbouring if

they differ at most in one entry.

Definition 4.9 (𝜖-Differential Privacy). A privacy mechanismM :

N |𝐷𝐵 | → 𝐼𝑚(M) is 𝜖-Differentially private if ∀S ⊂ 𝐼𝑚(M) and ∀
neighboring databases 𝐷𝐵, 𝐷𝐵′ ∈ N |D | :

𝑃𝑟 [M(𝐷𝐵) ∈ S] ≤ 𝑒𝜖𝑃𝑟 [M(𝐷𝐵′) ∈ S]
It needs to be noted, that the above definition assumes a static

database and a curator who must reply to queries non-interactively.

In our approach, the database is dynamic and a mechanism must

update the published statistics as new data arrived. To this end,

we rely on the continual observations model of differential pri-

vacy. However, to work on the continual observations model, we

first need to formalize the curator operations. To do so, we use a

similar formalization to the one presented in [14]. More precisely,

we assume that curator’s operations are given by an input stream

𝝈 ∈ {0, 1}N. The bit 𝝈 (𝑡 ), denotes the occurrence of an event at

time 𝑡 . We consider two cases of update: we assume that the only

update possible, is to increase or decrease the value of a database

entry.

Definition 4.10 (𝜖-Differential privacy under Continual Observa-
tions). AprivacymechanismM : N |𝐷𝐵 | → 𝐼𝑚(M) is 𝜖-Differentially

private under continual observations if ∀S ⊂ 𝐼𝑚(M), ∀ neighbor-
ing databases𝐷𝐵, 𝐷𝐵′ and for all neighbouring sequences of curator
operations 𝝈 = (𝜎1, . . . , 𝜎𝑛) and 𝝈 ′

= (𝜎 ′
1
, . . . , 𝜎 ′𝑛):

𝑃𝑟 [M(𝐷𝐵1), . . .M(𝐷𝐵𝑛) ∈ S]
≤ 𝑒𝜖𝑃𝑟 [M(𝐷𝐵′

1
), . . .M(𝐷𝐵′𝑛) ∈ S]

In this work we only consider two cases of update. In particular,

we assume that the only update possible, is to increase or decrease

the value of a database entry.

Apart from being private, we would also like the private mecha-

nism to be useful. In other words, we would likeM to return well

approximated results after any update.

Definition 4.11. A mechanism M is said to be (𝑎, 𝛿)-useful at

time 𝑡 , if for any string 𝝈 with probability at leat 1 − 𝛿 , we have
|∑𝑡

1
𝜎(𝑡 ) −M(𝜎(𝑡 ))|≤ 𝑎.

One of the most used privacy mechanisms in literature is the

Laplace mechanism, in which the noise is drawn form the Laplace

distribution. We use 𝐿𝑎𝑝(𝑏) to denote the Laplace distribution with

mean 0 and variance 2𝑏2. Its probability density function is given

by 𝑥 ← 1

2𝑏
𝑒𝑥𝑝

(
− |𝑥 |
𝑏

)
.

We are now ready to proceed with the definition of the Laplace

Mechanism [17].

Definition 4.12 (LaplaceMechanism). Given a query𝑞 : N |𝐷𝐵 | → R,
the Laplace Mechanism is:

𝑀𝐿(𝐷𝐵,𝑞, 𝜖) = 𝑞(𝐷𝐵) + 𝑌𝑖 ,

where 𝑌𝑖 ∼ 𝐿𝑎𝑝(𝑏)

A proof showing that the Laplace Mechanism is 𝜖-differentially

private can be found in [17]. In particular in [17], the authors proved

the following:

Lemma 4.13 (The Laplacemechanismmaintains 𝜖-differential

privacy). Let 𝛼, 𝛽 ∈ R such that |𝛼 − 𝛽 |≤ 1. Moreover, let 𝑒 ∼
𝐿𝑎𝑝

(
1

𝜖

)
. Then ∀measurable subsets 𝑆 ⊆ R:

𝑃𝑟 [𝛼 + 𝑒 ∈ 𝑆] ≤ 𝑒𝑥𝑝(𝜖) · 𝑃𝑟 [𝛽 + 𝑒 ∈ 𝑆]
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A private mechanismM is said to be 𝐵-bounded if it only accepts

strings 𝝈 of length 𝐵.

We will now present two important results from [14] that are

crucial for our work:

Lemma 4.14 (Sum of Independent Laplace Distributions).

Suppose 𝑒𝑖 ’s are independent random variables, where each 𝑒𝑖 has
Laplace distribution 𝐿𝑎𝑝(𝑏𝑖 ). Suppose 𝑌 =

∑
𝑖 𝑒𝑖 , and 𝑏𝑚 =𝑚𝑎𝑥(𝑏𝑖 ).

Let 𝑣 ≥
√︃∑

𝑖 𝑏
2

𝑖
and 0 < _ <

2

√
2𝑣2

𝑏𝑚
. Then 𝑃𝑟 [𝑌 > _] ≤ 𝑒𝑥𝑝

(
− _2
8𝑣2

)
Corollary 4.15 (Measure Concentration). Let 𝑌, 𝑣, 𝑏𝑖 , 𝑏𝑚 be

defined as in Lemma 4.14. Then if we set 𝑣 =
√︃∑

𝑖 𝑏
2

𝑖
·
√︃
𝑙𝑛 2

𝛿
we get

that 𝑌 is at most 𝑂
(√︃∑

𝑖 𝑏
2

𝑖
log

(
1

𝛿

))
The proofs for both Lemma 4.14 and Corollary 4.15 can be found

in [14].

5 MULTI-INPUT FUNCTIONAL ENCRYPTION
FOR SUMS

In this Section, we present MIFE𝑠𝑢𝑚 – a functional encryption

scheme for the sum of a vector’s components x = {𝑥1, . . . , 𝑥𝑛}.

Construction. Let PKE = (Gen, Enc,Dec) be an IND-CPA se-

cure cryptosystem, that also fulfils the LCH and LKE properties.

Then we define ourMIFE𝑠𝑢𝑚 asMIFE = (Setup, Enc,KeyGen,Dec)
where:

(1) Setup(1_, 𝑛): The setup algorithm invokes the PKE’s key gen-
eration algorithm Gen and generates 𝑛 public/private key

pairs as (pk1, sk1), (pk2, sk2) . . . , (pkn, skn). The public keys
are then used to create and output a master public/private

key pair (mpk,msk), wherempk = (params, pk1, . . . , pkn) and
msk = (sk1, . . . , skn)2.

(2) Enc(mpk, x): The encryption algorithm Enc, takes as input
the master public key mpk and a vector x and outputs c =
{𝑐1, . . . , 𝑐𝑛}, where 𝑐𝑖 = Enc(pki, 𝑥𝑖 ).

(3) KeyGen(msk): The key generation algorithm, takes as in-

put the master secret key msk and outputs a functional key

sk𝑠𝑢𝑚 as sk𝑠𝑢𝑚 =

∑𝑛
1
ski3.

(4) Dec(sk𝑠𝑢𝑚, c): The decryption algorithm takes as input the

functional key sk𝑠𝑢𝑚 and an encrypted vector c and outputs

PKE.Dec(sk𝑠𝑢𝑚,
𝑛∏
𝑖=1

c).

Correctness. The correctness of our construction follows di-

rectly since:

MIFEsum .Dec (sk𝑠𝑢𝑚, c) = PKE.Dec

(
sk𝑠𝑢𝑚,

𝑛∏
𝑖=1

PKE.Enc(pki, 𝑥𝑖 )

)
= PKE.Dec

(
sk𝑠𝑢𝑚, PKE.Enc(

𝑛∏
𝑖=1

pki,
𝑛∑︁
𝑖=1

𝑥𝑖 )

)
=

𝑛∑︁
𝑖=1

𝑥𝑖

2
The public parameters params depend on the choice of the PKE scheme.

3
We omit the description of the function since in this case we are only focusing on

the sum

Proof Overview

(1) ADV𝑃𝐾𝐸 sends (0, `) to the challenger C.
(2) C flips a random coin, and sends (𝑐𝑏 , pkC ), back to ADV𝑃𝐾𝐸 ,

where 𝑏 ∈ {0, ` }.
(3) ADV𝑃𝐾𝐸 invokes ADV𝑀𝐼𝐹𝐸 onmpk and receives two mes-

sages 𝑥0, 𝑥1 .

(4) ADV𝑀𝐼𝐹𝐸 ADV𝑃𝐾𝐸 for functional keys for vectors

x1, . . . , xn , such that ∥𝑥𝑖 ∥1= ∥𝑥 𝑗 ∥1, ∀ 𝑖, 𝑗 ∈ [1, 𝑛].
(5) ADV𝑃𝐾𝐸 flips a random coin, and sends 𝑐𝛽 back to

ADV𝑀𝐼𝐹𝐸 .
(6) ADV𝑀𝐼𝐹𝐸 outputs a bit 𝑎1 .

(7) ADV𝑃𝐾𝐸 outputs a bit 𝑎2 .

Figure 2: Sketch of our Security Proof for MIFE

where we used the LCH property. Since the LKE property holds,

we know that sk𝑠𝑢𝑚 is a valid secret key that decrypts

𝑛∏
𝑖=1

c.

Theorem 5.1 (Selective Indistinguishability). Let PKE be an
IND-CPA secure public key cryptosystem that is linear-key and linear-
ciphertext homomorphic. Moreover, letMIFE𝑠𝑢𝑚 be our Multi-Input
Functional Encryption scheme for the sum of a vector’s components
which is obtained through PKE. Then MIFE𝑠𝑢𝑚 is s-IND-FE-CPA
secure.

Proof. To prove the security of our construction, we will show

that the s-IND-FE-CPA security game is indistinguishable from

a game in which a challenger C encrypts a random linear com-

bination of the challenge messages whose coefficients sum up to

one. Let ADV𝑀𝐼𝐹𝐸 be an adversary that breaks the IND-FE-CPA

security of MIFE. Then, we will show that there exists an adversary

ADV𝑃𝐾𝐸 that breaks the IND-CPA security of PKE. We assume

that two different games run independently but simultaneously. The

first game is the one described in definition 4.4, in whichADV𝑃𝐾𝐸

plays against a challenger C. The second game is the s-IND-FE-CPA

game (definition 4.8), in which ADV𝑃𝐾𝐸 acts as the challenger

against ADV𝑀𝐼𝐹𝐸 . We show that ADV𝑃𝐾𝐸 can perfectly simu-

late the environment for ADV𝑀𝐼𝐹𝐸 , and at the same time infer

enough information to break the IND-CPA security of PKE. In
particular, if 𝜖𝑀𝐼𝐹𝐸 is the advantage of ADV𝑀𝐼𝐹𝐸 and 𝜖𝑃𝐾𝐸 the

advantage of ADV𝑃𝐾𝐸 , we will prove that 𝜖𝑀𝐼𝐹𝐸 ≤ 𝜖𝑃𝐾𝐸 .

ADV𝑃𝐾𝐸 initiates the game by sending (0, `) to the challenger

C where ` is a random element in the message space of PKE. Upon
reception, C generates a (pkC, skC ) key pair, encrypts one of them

at random using pkC and replies toADV𝑃𝐾𝐸 with (𝑐𝑏 , pkC ). Upon
reception, ADV𝑃𝐾𝐸 invokes ADV𝑀𝐼𝐹𝐸 and receives two mes-

sages x0 and x1. Recall thatADV𝑀𝐼𝐹𝐸 can only ask for functional

decryption keys for vectors x0 and x1 such that ∥x0∥1= ∥x1∥1.
Hence, ADV𝑀𝐼𝐹𝐸 is allowed to issue queries to a vector space

𝑉 ⊂ M such that ∀ xi ∈ 𝑉 : ∥xi∥1= 0 and is not able to decrypt

vectors in other vector spaces. An overview of our proof if given in

figure 2.

Public Key Generation. To generate mpk, ADV𝑃𝐾𝐸 first se-

lects𝑛−1 randomvectors z1, . . . , zn−1 such that ∥zi∥1= 0,∀ 𝑖 ∈ [1, 𝑛 − 1],
and then produces a basis of 𝑉 as (x1 − x0, z1, . . . zn−1). Finally,
ADV𝑃𝐾𝐸 writes the canonical vectors of the basis as:
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(2)e = 𝛼𝑖 (x1 − x0) +
𝑛−1∑︁
1

zj

where 𝛼𝑖 =
x1,i−x0,i
∥x1,i−x0,i ∥2

2

.

As a next step, ADV𝑃𝐾𝐸 runs (pkzj , skzj ) ← PKE.Gen,∀ 𝑗 ∈
[𝑛 − 1] and finally sets:

(3)pki = pkC
𝛼𝑖
𝑛−1∏
𝑗=1

pk𝑧 𝑗 ,

where pkC is the public key received from C. The master public

key is then:

(4)mpk = (pki)𝑖∈[𝑛]

Moreover, to ensure that ∥x1 − x0∥2
2
̸= 0 mod 𝑞 in the message

spaceM = {0, . . . 𝑁 − 1} ⊆ Z𝑞 , we need to set 𝑞 to be a prime

larger than 𝑁 2
. Finally, due to the LKH property of the public-key

encryption scheme, ADV𝑃𝐾𝐸 is unknowingly setting

(5)sk𝑖 = 𝛼𝑖skC +
𝑛−1∑︁
1

skzj

where skC is not known to ADV𝑃𝐾𝐸 .

Challenge ciphertext. Upon receiving x0 and x1, fromADV𝑀𝐼𝐹𝐸 ,

ADV𝑃𝐾𝐸 is expected to pick a 𝛽 ∈ {0, 1} and reply with c𝛽 . How-
ever, instead of encrypting 𝑥𝛽 using the corresponding public key,

ADV𝑃𝐾𝐸 sets the challenge ciphertext c to be:

(6)𝑐 = 𝑐𝛼
𝑏
· PKE.Enc

(
𝑛−1∏
𝑖=1

pk𝑧 𝑗 , 0

)
· PKE.Enc(1𝐺𝑝𝑢𝑏 , x𝛽 )

where 1𝐺𝑝𝑢𝑏 is the identity element of the group 𝐺𝑝𝑢𝑏 . Finally

ADV𝑃𝐾𝐸 replies to ADV𝑀𝐼𝐹𝐸 with 𝑐 .

Functional Keys. To generate a functional key for a vector x ∈
𝑉 , ADV𝑃𝐾𝐸 simply sets:

(7)sk𝑠𝑢𝑚 =

𝑛−1∑︁
1

skzi

The game concludes as follows: ADV𝑀𝐼𝐹𝐸 correctly guesses

𝛽 which implies that ADV𝑃𝐾𝐸 guesses that C encrypted 0 or

ADV𝑀𝐼𝐹𝐸 fails to guess 𝛽 and ADV𝑃𝐾𝐸 guesses that C en-

crypted `. What remains to be done is show that ADV𝑃𝐾𝐸 sim-

ulated correctly the environment for ADV𝑀𝐼𝐹𝐸 . We distinguish

two cases based on C’s choice:
(1) C encrypted 0. In this case, the challenge ciphertext from

equation 6 becomes:

𝑐 = PKE.Enc(pkC, 0)
𝛼 · PKE.Enc

(
𝑛−1∏
𝑖=1

pk𝑧𝑖 , 0

)
· PKE.Enc(1𝐺𝑝𝑢𝑏 , x𝛽 )

= PKE.Enc

(
pkC

𝛼 ·
𝑛−1∏
𝑖=1

pk𝑧 · 1𝐺𝑝𝑢𝑏 , 0 + 0 + x𝛽

)
= PKE.Enc(pki, x𝛽 )

(8)

Hence, it can be seen that in this case ADV𝑃𝐾𝐸 perfectly

simulates the environment for ADV𝑀𝐼𝐹𝐸 . As a result, if

ADV𝑀𝐼𝐹𝐸 can correctly guess 𝛽 with advantage 𝜖 , then

ADV𝑃𝐾𝐸 will guess that C encrypted 0, with exactly the

same 𝜖 .

(2) C encrypted `. In this case, the challenge ciphertext from

equation 6 becomes:

𝑐 = PKE.Enc(pkC, `)
𝛼 · PKE.Enc

(
𝑛−1∏
𝑖=1

pk𝑧𝑖 , 0

)
· PKE.Enc(1𝐺𝑝𝑢𝑏 , x𝛽 )

= PKE.Enc

(
pkC

𝛼 ·
𝑛−1∏
𝑖=1

pk𝑧 · 1𝐺𝑝𝑢𝑏 , 𝛼` + 0 + x𝛽

)
= PKE.Enc(pki, 𝛼` + x𝛽 ) = PKE.Enc(pki, 𝑥

′
)

(9)

where 𝑥 ′ is a vector defined as:

𝑥 ′ = 𝑥𝛽 + 𝛼`

=

`

∥𝑥1 − 𝑥0∥2
2

(x1 − x0) + x𝛽

=

`

∥𝑥1 − 𝑥0∥2
2

(x1 − x0) + x0 + 𝛽(x1 − x0)

(10)

Setting 𝑢 =
`

∥𝑥1−𝑥0 ∥2
2

+ 𝛽 , yields x′ = 𝑢x1 + (1 − 𝑢)x0, which
is the message that corresponds to the challenge ciphertext.

Note that x′ ∈ 𝑉 , since ` ∈ 𝑉 , and hence x′ is a linear

combination of elements that live in 𝑉 . Hence, we conclude

that the challenge ciphertext is a valid ciphertext for x′ =
𝑢x1 + (1 − 𝑢)x0, which is a random linear combination of

x0 and x1 whose coefficients sum up to one. Finally, 𝛽 is

information theoretically hidden as the distribution of 𝑢 is

independent of 𝛽 . As a result, the advantage of ADV𝑃𝐾𝐸

is 0 when a non-zero vector is encrypted by C.
To calculate the overall advantage of ADV𝑃𝐾𝐸 , we simply

need to sum its advantage for each case. Hence, we have that

ADV𝑃𝐾𝐸 ’s advantage is 𝜖 + 0 = 𝜖 . However, recall that 𝜖 is de-

fined to be the advantage of ADV𝑀𝐼𝐹𝐸 against MIFE. Thus, the

best advantage one can get against the CPA security ofMIFE𝑠𝑢𝑚
is bounded by the best advantage one can get against IND-CPA

PKE. □

Functional Keys for Vectors in Different Vector Spaces: As
already mentioned, ADV𝑀𝐼𝐹𝐸 is only allowed to request func-

tional keys for vectors living in a vector space 𝑉 ⊂ 𝑀 , where

∀𝑥𝑖 ∈ 𝑉 : ∥𝑥𝑖 ∥1= 0. Notice that by allowing ADV𝑀𝐼𝐹𝐸 to obtain

functional decryption keys for vectors 𝑥 /∈ 𝑉 , our scheme can be

trivially broken. However, this would imply that ADV𝑃𝐾𝐸 can

generate such functional decryption keys, which is impossible since
ADV𝑃𝐾𝐸 does not know skC . Hence, the generated functional

keys can only decrypt ciphertexts whose plaintexts are elements of

𝑉 . This is a valid assumption since otherwise, we would demand

security in a scenario where the master secret key is known to the

adversary.

5.1 From Sums to Inner Products
We will now show how our construction for the sums can be gen-

eralized to further support the inner-product functionality. More
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precisely, given two vectors x, y ∈ Z𝑛 , we allow the computation

of their inner product ⟨x, y⟩ = 𝑥1𝑦1 + · · · + 𝑥𝑛𝑦𝑛 .

Construction for Inner Products. Let PKE = (Gen, Enc,Dec)
be an IND-CPA secure cryptosystem, that also fulfils the LCH and

LKE properties. Thenwe define ourMIFE scheme for inner products,

MIFEIP, as MIFEIP = (Setup, Enc,KeyGen,Dec) where:

(1) Setup(1_, 𝑛): The setup algorithm invokes the PKE’s Gen
algorithm and generates 𝑛 public and private key pairs as

(pk1, sk1), (pk2, sk2), . . . , (pkn, skn). The generated public keys
are then used to create and output a master public/private

key pair (mpk,msk), wherempk = (params, pk1, . . . , pkn) and
msk = (sk1, . . . , skn)4.

(2) Enc(mpk, x, y): The encryption algorithm Enc, takes as input
the master public key mpk and two vectors x, y and outputs

c = {𝑐1, . . . , 𝑐𝑛}, where 𝑐𝑖 = Enc(pki, 𝑥𝑖 )𝑦𝑖 .
(3) KeyGen(msk, y): The key generation algorithm, takes as in-

put the master secret key msk and the vector y and outputs

a functional key sky as sky = ⟨𝑦𝑖 , ski⟩5.
(4) Dec(sk𝑠𝑢𝑚, c): The decryption algorithm takes as input the

functional key sky and an encrypted vector c and outputs

PKE.Dec

(
sky,

𝑛∏
𝑖=1

c

)
.

The correctness and the IND-CPA security ofMIFEIP, are derived
directly from the corresponding properties ofMIFE𝑠𝑢𝑚 . However,

in the security proof, we now require that the adversary asks for

functional decryption keys, for vectors y such that ⟨x0, y⟩ = ⟨x1, y⟩.
This implies that the adversary can ask decryption keys for vectors

y that live in the vector space spanned by (x1 − x0)⊥ (i.e. they are

orhtogonal to (x1 − x0)). Hence, the adversary will not be able to

decrypt any inner product for a vector y such that y /∈ (𝑥1 − 𝑥0)⊥.

6 FUNCTIONALLY-ENCRYPTED AND
DIFFERENTIALLY PRIVATE DYNAMIC
DATABASES

We are now ready to present PLMH and PLM; two schemes for

functionally-encrypted private databases. To do so, we will use

our MIFE𝑠𝑢𝑚 construction from Section 5 and the binary mecha-

nism presented in [14]. In the first part of the section, we discuss

PLMH, our first approach to the problem that relies on the ho-

momorphic property of the public-key encryption scheme PKE.
Then, we present PLM – a modified version of PLMH that does not
require homomorphic encryption. Both versions share the same

architecture, presented below:

Architecture. We assume the existence of the following entities:

• Curator (C): C is responsible for creating an encrypted and

private database. C outsources the database to a CSP where

it will be stored. Moreover, C can issue update queries to

the CSP update specific entries of the database. To do so, C
keeps locally the latest version of the database.

• Analyst (A): A is an analyst that can perform statistics on

the data stored in the CSP.

4
The public parameters params depend on the choice of the PKE scheme.

5
In this case, the description of the function 𝑓 , is the vector y.

• CSP: A cloud service provider that stores an encrypted data-

base. The CSP releases statistics upon request of the analyst.

Both of our constructions are proven to be differentially private

in the continual observations model. In other words, by assum-

ing two neighbouring sequence operations 𝝈 = (𝜎1, . . . , 𝜎𝑛) and
𝝈 ′

=

(
𝜎 ′
1
, . . . , 𝜎 ′𝑛

)
, applied on two neighbouring databases 𝐷𝐵 and

𝐷𝐵′, we ensure that after 𝑛 updates, the presence or absence of an

individual does not affect the result of a query.

6.1 PLM using Homomorphic Encryption
Overview. At a high-level, our construction works as follows:

A curator C generates a binary tree similar to the one described in

Section 2 in which each node contains a noisy value where the noise

is sampled from the Laplace distribution. Then, C encrypts each

noisy value using MIFE𝑠𝑢𝑚 with an additive homomorphic public-

key encryption scheme PKE. The result, is an encrypted binary

tree which is then outsourced and stored in the CSP. To update

the values stored in the tree, C uses the homomorphic property of

PKE. At any given time, and after the tree has been stored in the

CSP, an analyst C can use the values stored in the tree to generate

statistics in a privacy-preserving way. To do so, A first contacts the

curator and requests a functional decryption key. Upon reception

of the key, the analyst forwards it to the CSP who will reply with

a sum corresponding to the analyst’s query. In our construction,

errors are sampled as 𝑒 ∼ 𝐿𝑎𝑝

(
1

𝜖′

)
, where 𝜖 ′ = 𝜖

log𝑁
and 𝑁 is the

total number of nodes in the tree. The reason for this, is that these

parameters help us achieve 𝜖-differential privacy as we will see in

the proof of theorem 6.1.

Formal Construction. PLMH makes use of theMIFE𝑠𝑢𝑚 and a

public-key encryption scheme PKE = (Gen, Enc,Dec) that satisfies
the LCH and LKH properties. Moreover, the encryption function

of PKE must be additively homomorphic. PLMH is then defined as

PLMH = (Setup,Update,Read). Our construction is illustrated in

figure 3 and works as follows:

Setup : Setup is a two party protocol between C and the CSP. C out-

puts a complete binary tree T with𝑛 nodes and adds Laplacian noise

to the content of each node. As a next step, C runs MIFE𝑠𝑢𝑚 .Setup
and generates 𝑛 public/private key pairs (pki, ski) . Finally, C en-

crypts each node 𝑖 using a public key pk𝑖 and T is outsourced to

the CSP.

Update : Update is a two party protocol between C and the CSP.

To update the content of a node, C makes use of the homomorphic

property of PKE.Enc. More precisely, assuming that C wishes to

add a value ^ to the content of a leaf node 𝑖 , she first finds the

path from the root of the tree to the leaf 𝑖 . For every node 𝑗 in the

path, C samples a distinct 𝑒 𝑗 ∼ 𝐿𝑎𝑝

(
1

𝜖′

)
and computes ^ ′

𝑗
= ^ 𝑗 + 𝑒 𝑗 .

As a next step, C encrypts each ^ ′
𝑗
using pk𝑗 . Apart from that, C

samples a fresh noise 𝑒𝑚 for every other node𝑚 of the tree and

encrypts it using pkm. Finally, for each node of the tree, C sends a

pair (𝑛, 𝑐𝑛) to the CSP. Upon reception, the CSP updates each node

𝑖 using 𝑐𝑖 by computing 𝑐 ′𝑛 = 𝑐𝑛𝑜𝑙𝑑 · 𝑐𝑛 , where 𝑐𝑛𝑜𝑙𝑑 the current

content of the node 𝑛.

Read : Read is a three party protocol between C, A and the CSP.

This protocol is initiated by A who wishes to perform statistics on
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PLMH

LetMIFE𝑠𝑢𝑚 be our construction from Section 5 instantiated with

a public key encryption scheme PKE that satisfies the LCH, LKH

properties and is additively homomorphic. Moreover, assume that

the total number of nodes in the tree is 𝑁 and let 𝜖′ ← 𝜖/𝑙𝑜𝑔𝑁 .

PLMH .Setup
C generates a binary tree𝑇

For each node 𝑖 ∈ 𝑇 :
yoyo C runs MIFE𝑠𝑢𝑚 .Setup

yoyo C samples 𝑒𝑖 ← 𝐿𝑎𝑝

(
1

𝜖′

)
yoyo C calculates 𝑎′

𝑖
= 𝑎𝑖 +𝜖 , where 𝑎𝑖 is the content of the node 𝑖

yoyo C computes 𝑐𝑎′
𝑖
← PKE.Enc(pk𝑖 , 𝑎

′
𝑖
)

yoyo C replaces the content of node 𝑖 with 𝑐𝑎′
𝑖

CSP receives𝑇

PLMH .Update
𝐿 = {}
C wishes to update the content of a leaf 𝑘 by either adding or

subtracting to it a ^ ∈ R
For every node 𝑗 in the path from the root of𝑇 to the leaf 𝑖:

yoyo C samples 𝑒 𝑗 ← 𝐿𝑎𝑝( 1

𝜖′ ) and computes ^′ = ^ + 𝑒 𝑗

yoyoC computes 𝑐^′ = PKE.Enc(pk𝑗 , ^
′
)

yoyo𝐿 = 𝐿 ∪ { 𝑗, 𝑐^′ }
For every other node𝑚 ∈ 𝑇 :
yoyo C samples an error 𝑒𝑚 ← 𝐿𝑎𝑝

(
1

𝜖′

)
yoyo C computes 𝑐𝑒𝑚 ← PKE.Enc(pk𝑚, 𝑒𝑚 )

yoyo 𝐿 = 𝐿 ∪ {𝑚,𝑐𝑚 }
C sends 𝐿 to the CSP

For each ciphertext 𝑐𝑛 ∈ 𝐿
yoyo CSP computes 𝑐′𝑛 = 𝑐𝑛𝑜𝑙𝑑 · 𝑐𝑛
yoyo CSP replaces the content of node 𝑛 with 𝑐′𝑛

PLMH .Read
A request a functional key sk𝑓 from C for a function 𝑓

C constructs sk𝑓 =

∑
sk𝑖 where each 𝑖 is picked based on the

description of 𝑓

C sends sk𝑓 to A

A sends a query to CSP including a range [𝑎,𝑏] and sk𝑓
CSP finds the appropriate nodes 𝑛1, . . . , 𝑛 𝑗 and runs

MIFE𝑠𝑢𝑚 .Dec(skf, 𝑛1, . . . , 𝑛 𝑗 )
A receives a noisy result

Figure 3: PLM based on Homomorphic Encryption

the data stored in the CSP. As a first step, A contacts C and requests

a functional decryption key for a function 𝑓 . This function can be

the sum of all nodes, a top-𝑘/bot-𝑘 query, or any function that can

be computed using a sum. Upon receiving the query, C generates

the functional decryption key sk𝑓 by summing up the appropriate

secret keys that were generated duringMIFE𝑠𝑢𝑚 .Setup.C forwards

sk𝑓 to the CSP and receives back a noisy result.

6.2 PLM without Homomorphic Encryption
Wewill now present PLM; a modified version of PLMH in which we

show that homomorphic encryption can be dropped entirely. This

is a significant improvement in terms of complexity and efficiency

PLM

Let MIFE𝑠𝑢𝑚 be instantiated with a public key encryption

scheme PKE that satisfies the LCH and LKH properties. Moreover,

assume that the total number of nodes in the tree is 𝑁 and let

𝜖′ ← 𝜖/𝑙𝑜𝑔𝑁 .

PLM.Setup
Identical to PLMH .Setup

PLMH .Update
𝐿 = {}
C wishes to update the content of a leaf 𝑘 by either adding or

subtracting to it a ^ ∈ R
C runs PLM.Setup where the content of the leaf 𝑘 and every node

in the path from the root to the leaf 𝑘 is updated by either adding

or subtracting ^ . C outputs a tree𝑇 ′

CSP receives𝑇 ′, deletes𝑇 and stores𝑇 ′

PLM.Read
Identical to PLMH .Read

Figure 4: PLM without Homomorphic Encryption

as homomorphic operations are particularly computationally ex-

pensive. Just like in PLM𝐻 , errors are sampled as 𝑒 ∼ 𝐿𝑎𝑝

(
1

𝜖′

)
.

PLM is illustrated in figure 4 and works as follows:

Setup : PLM.Setup is identical to PLMH .Setup
Update :When Cwishes to update the content of a node in the tree

𝑇 , she proceeds as in the case of PLMH .Update. However, instead
of sending the list 𝐿 to the CSP, C now sends directly the updated

tree 𝑇 ′ to the CSP. Upon reception, the CSP deletes 𝑇 and stores

𝑇 ′. This is possible, because, as already discussed, C always keeps

a version of the current tree locally.

Read : PLM.Read is identical to PLMH .Read

6.3 Privacy and Utility
We will now prove that both PLMH and PLM satisfy 𝜖-differential

privacy. Moreover, we prove the usefulness of our two schemes.

Theorem 6.1. The Read algorithm in both PLMH and PLM is
𝜖-differentially private as per definition 4.10.

Proof. Suppose a privacy mechanismM adds 𝐿𝑎𝑝 (1/𝜖) noise
to every sum before releasing it. Since in each update operation,

we add freshly sampled noise to every node of the tree, and since

each node contains a sum, we conclude that 𝑁 sums are affected by

a factor of 1/𝜖 during every update. Hence, if the tree has a total of

𝑁 nodes, thenM achieves 𝑁 · 𝜖-differential privacy. To achieve 𝜖-

differential privacy, we can scale appropriately to 𝜖 ′ = 𝜖
𝑁
. Observe,

that each sum maintains
𝜖

log𝑇
since Laplace mechanism maintains

differential privacy. Now, if the mechanismM adds 𝐿𝑎𝑝

(
1

𝜖′

)
noise

to each released sum, we get: 𝐿𝑎𝑝

(
1

𝜖′

)
= 𝐿𝑎𝑝

(
1

𝜖
𝑁

)
□

Since, aswe said before, adding𝐿𝑎𝑝 (1/𝜖) results to𝑁 ·𝜖-differential
privacy, by adding 𝐿𝑎𝑝 (1/𝜖 ′) results to:
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𝑁 · 𝜖
𝑁

= 𝜖-differential privacy

Theorem 6.2. For each update 𝜎(𝑡 ) at time 𝑡 , both PLMH and

PLM are
(
𝑂

(
1

𝜖

)
·
√
𝑁 ·

√︁
log𝑁 · log 1

𝛿
, 𝛿

)
-useful at time 𝑡 .

Proof. Let 𝜖𝑖 be independent random variables, where each 𝑒𝑖

has Laplace distribution 𝐿𝑎𝑝

(
log𝑁
𝜖

)
.Note that |∑𝑡

1
𝜎(𝑡 )−M(𝜎(𝑡 ))|=∑𝑡

1
𝑒𝑖 . Hence, using Corollary 4.15, with 𝑏𝑖 =

log𝑁
𝜖 we get that:

∑︁
𝑖

𝑒𝑖 ≤ 𝑂
©«
√︄∑︁

𝑖

(
log𝑁

𝜖

)
2

log

(
1

𝛿

)ª®¬
From which we conclude that both PLMH and PLM are

(11)

(
𝑂

(
1

𝜖

)
· 𝑁 ·

√︁
log𝑁 · log 1

𝛿
, 𝛿

)
− 𝑢𝑠𝑒 𝑓 𝑢𝑙 .

□

6.4 Comparison between PLMH and PLM
Since, PLMH requires the CSP to perform a homomorphic encryp-

tion on every node of the tree, we conclude that, PLMH requires

to perform 𝑂

(
2
log

2
𝑁

)
= 𝑂(𝑁 ) homomorphic encryptions. As a

result, we see that PLM outperforms PLMH by a factor of 𝑁 . It is

important to note that despite its inefficiencies, PLMH is a very

good candidate for a multi-client model, in which each node of the

tree is encrypted by a different user. However, dealing with the

updates in a multi-client scenario is not trivial as it would require

the cooperation of every user to embed a freshly sampled noise to

each node of the tree. As such, we leave it for future work. However,

in the next section, we present a scheme that offers 𝜖-differential

privacy, in the multi-client model when the database is static.

7 A STATIC PRIVATE DATABASE IN THE
MULTI-CLIENT MODEL

In this section, we are addressing the multi-client model and design

a scheme for a functionally encrypted private database. Both in

PLM and PLMH, the Setup function is executed by a single curator

who has total control over all ciphertexts. However, if we consider

that each ciphertext in the database is generated by a different user,

then generating a functional decryption key is not a trivial problem.

To address this problem, we design PLMM in which we show how

several users can cooperate to generate such a key. Our solution is

based on an MPC similar to the one presented in [15].

Probelm Statement (MIFE𝑠𝑢𝑚 with Multi-Client Support).

LetU = {𝑢1, . . . , 𝑢𝑛} be a set of users. Each user 𝑢 𝑗 ∈ U generates a
public/private key pair (pk𝑗 , sk𝑗 ) for a public-key encryption scheme
satisfying the properties defined in definitions 4.5 and 4.6, and uses
pk𝑗 to encrypt a message 𝑥 𝑗 . Additionally, assume that all generated
ciphertexts are outsourced and stored in a remote location operated
by an untrusted (i.e. possible malicious) CSP. Furthermore, we assume
that an analyst (e.g. a user from U) wishes to perform statistics
on the data stored on the CSP. Our multi-client construction shows
how a legitimate analyst can do this without learning any valuable
information about the individual values 𝑥 𝑗 .

MPC. Upon request of A, each user 𝑢𝑖 ∈ U generates a random

number 𝑟𝑖 and breaks it into 𝑛 shares as 𝑟𝑖 = 𝑟𝑖,1 + · · · + 𝑟𝑖,𝑛 . Each
share will be sent to a different user from the setU = {𝑢1, . . . , 𝑢𝑛}.
Upon receiving 𝑛− 1 different shares, each user 𝑢𝑖 mask her private

key sk𝑖 as 𝑏𝑖 = sk𝑖 + 𝑟𝑖 −
∑𝑛
𝑗=1

𝑟 𝑗,𝑖 , and sends the masked key to A.
When A has gathered all the masked keys, she computes sk𝑠𝑢𝑚 as

sk𝑠𝑢𝑚 =

∑𝑛
1
bi. The MPC is illustrated in algorithm 1.

Algorithm 1 MPC

1: A generates 𝑟𝑖

2: A writes 𝑟𝑖 as 𝑟𝑖 = 𝑟𝑖,1 + · · · + 𝑟𝑖,𝑛
3: for 𝑗 ∈ [𝑛 − 1] do
4: A sends 𝑟𝑖,𝑗 to 𝑢 𝑗

5: for all 𝑢 𝑗 ∈ U/{A} do
6: 𝑢 𝑗 generates 𝑟 𝑗

7: 𝑢 𝑗 writes 𝑟 𝑗 as 𝑟 𝑗 = 𝑟 𝑗,1 + · · · + 𝑟 𝑗,𝑛
8: 𝑢 𝑗 computes the masked values of the key as

𝑏 𝑗 = sk𝑗 + 𝑟 𝑗 −
∑𝑛
𝑘=1

𝑟𝑘,𝑖
9: 𝑢 𝑗 sends 𝑏 𝑗 to A
10: 𝑢 𝑗 sends 𝑟 𝑗,ℓ to 𝑢ℓ , ∀ℓ ̸= 𝑗 .
11: A computes

∑𝑛
1
𝑠 𝑗 =

∑𝑛
1
sk𝑗 = sk𝑠𝑢𝑚

It is important to highlight that splitting and distributing the

random numbers to the different users, allows the users to work in

parallel for the MPC and hence, we overcome the limitations that

would emerge by using a ring topology.

We are now ready to describe PLMM. Our construction con-

sists of two algorithms such that PLMM = (Setup,Read). PLM𝑀 is

illustrated in figure 5 and works as follows:

Setup : During the Setup, each 𝑢𝑖 generates a public/private key

pair (pki, ski) for a linear ciphertext and key homomorphic public

key encryption scheme PKE. Apart from that, 𝑢𝑖 picks a 𝑥𝑖 that

wishes to encrypt. Before the encryption,𝑢𝑖 samples 𝑒𝑖 ∼ 𝐿𝑎𝑝 (1/𝜖)
and calculates 𝑥 ′

𝑖
= 𝑥𝑖 + 𝑒𝑖 . Finally, 𝑢𝑖 runs 𝑐𝑖 ← PKE.Enc(pki, 𝑥 ′𝑖 )

and sends 𝑐𝑖 to the CSP. When all users are done, the CSP has

received 𝑛 distinct ciphertexts.

Read : The analyst A first needs to generate the functional key

sk𝑠𝑢𝑚 . To do so, A initiates the MPC described in algorithm 1. As

soon as A retrieves the functional key sk𝑠𝑢𝑚 , she simply forwards

it to the CSP. Upon reception, the CSP runsDec(sk𝑠𝑢𝑚, 𝑐1, . . . , 𝑐𝑛) =∑𝑛
1
𝑥 ′
𝑖
and sends the result to A.

Showing that the PLMM .Read maintains 𝑒-differential privacy

is trivial as it is a direct result of the fact that the Laplace mecha-

nism maintains differential privacy. In other words, to prove that

PLMM is 𝜖-differentially private one needs to prove that the Laplace

mechanism is 𝜖-differential private.

Theorem 7.1. The Read protocol defined in PLMM .Read is 𝜖-
differential private.

Theorem 7.2. LetADV be an adversary that corrupts at most𝑛−
2 users out of those inU. Then,ADV cannot infer any information
about the secret keys of the legitimate users.

Due to space limitations, the proof can be found in the full version

of the paper [9].
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PLMM

LetMIFE𝑠𝑢𝑚 be our construction from Section 5 instantiated with

a public key encryption scheme PKE that satisfies the LCH and

LKH properties. Moreover, let 𝑒𝑖 ∼ 𝐿𝑎𝑝 (1/𝜖) .
PLMM .Setup
For 𝑖 ∈ [𝑛]
yoyo 𝑢𝑖 runs (pki, ski)← (PKE.Gen)
yoyo 𝑢𝑖 samples 𝑒𝑖 ∼ 𝐿𝑎𝑝

(
1

𝜖

)
yoyo 𝑢𝑖 computes 𝑥′

𝑖
= 𝑥𝑖 + 𝑒𝑖

yoyo 𝑢𝑖 runs 𝑐𝑖 ← PKE.Enc(pk𝑖 , 𝑥
′
𝑖
)

yoyo 𝑢𝑖 sends 𝑐𝑖 to the CSP

PLMM .Read
A initiates the MPC protocol form algorithm 1 and receives sk𝑠𝑢𝑚
A forwards sk to the CSP

CSP runs MIFE𝑠𝑢𝑚 .Dec(sk𝑠𝑢𝑚, 𝑐1, . . . , 𝑐𝑛 )→
∑𝑛

1
𝑥′
𝑖

CSP sends

∑𝑛
1
𝑥′
𝑖
to A

Figure 5: Multi-Client PLM

8 EXPERIMENTAL EVALUATION
Below, we present the measured processing time of the experiments

in our construction. For the implementation of ourMIFE scheme, we

used ElGamal as the public-key encryption scheme. All experiments

were executed on a Lenovo T470p with 2.81 GHz Intel Core i7

and 32GB RAM running Windows 10, 64-bit. The construction

was implemented in Python 3.9.4 using the PyCryptoDome and

numpy libraries. For the experiments we mainly focused on (1) The
Setup time and (2) The generation of functional decryption keys. The
results presented are the average processing time computed after 50

runs of each experiment. Our results support our claim that using

differential privacy on top of encryption, does not add a noticeable

increase to the total processing time.

Setup phase This phase consists of (1) Generating and populating

a binary tree with plaintext values and (2) Embed noise and encrypt

each node of the tree. We used randomly generated datasets of

different size consisting of real numbers (100, 500, 1000 and 10000).

– Tree generation: The tree was implemented as a list, where each

element on the list corresponded to a leaf on the tree. To make

our construction compatible with continuous variables, each leaf

represented a subinterval in the interval defined by subtracting the

min value of the dataset from the max. Hence, the value of each leaf

represents the number of values in a specific interval. We measured

the time to generate the tree for different datasets and number of

nodes. The total number of nodes can be calculated by the number

of leaves, since a complete binary tree with 2
𝑛
leaves, consists of

a total 2
𝑛+1 − 1 nodes. Our experiments were conducted for 𝑛 =

5, 6, 7, 8, 9, 10, resulting in binary trees of sizes 63, 127, 255, 511, 1023

and 2047 respectively. This procedure did not add any noticeable

burden to the overall processing time, as in the worst case scenario,

the tree generation took less than a second.

– Encryption and Noise: After the tree generation, we had to (1) Add
noise to the value of each node, (2) Generate an ElGamal key pair for

each node and (3) Encrypt all noised contents. This part of the exper-
iments depended only on the number of nodes and not on the size of
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Figure 6: Total Setup Time

the dataset. Embedding Laplacian noise to the tree’s nodes was much

faster than key generation and encryption. The time for adding noise

varied from 0.16ms for 63 nodes tree to 5.7ms for a 2,047 nodes tree. In

contrast, generating 63 and 2,047 ElGamal key pairs of size 1,024bits

took 0.28s and 9.14s respectively. Similarly, encrypting 63 and 2,047

nodes was measured at 0.377s and 9.4574s respectively. It is important

to note that the key generation times were significantly accelerated

since all keys were sampled from the same group G, using the same

generator 𝑔. Despite this acceleration, as shown in table 1, the key

generation and tree node encryption time comprised more than 99%

of the total processing time. This is an important result, as it proves

that further securing an encrypted dataset with differential privacy

does not add significant computational burden. In Figure 6, we see

that the overall setup time is 𝑂(𝑛).

Functional Decryption Key Generation. In this phase of our

experiments, we assumed that the analyst performs queries of the

form "How many values lie in the interval 𝐼 = [𝑎, 𝑏]". To reply to

such a query, we must: (1) Find all the subintervals 𝐼𝑖 such that∑
𝑖 𝐼𝑖 = 𝐼 and retrieve the ciphertext that lies in each interval and

(2) Retrieve the private key that corresponds to each interval and

compute the functional decryption key. To prove the efficiency of

our construction, we assumed the analyst makes a complex query

of the form "How many values lie in the first interval and how many
values lie in the second interval and . . . and how many values lie
in the last interval". To answer such a query, all we have to do

is retrieve the value from the root of the tree and decrypt it. To

capture a, fully unrealistic/worst-case scenario, we measured the

time required to answer such a query sequentially, that is we only

retrieved values from tree’s sibling leaves, and for each pair of

siblings, generated a functional decryption key. The time required

to retrieve all the leaf values from a 1,024 leaves tree, was 0.9777s.

When we exploited the tree structure to reply to such a query, the

required time was imperceptible. Similarly, the required time for

generating functional keys was also negligible. For reference, the

average time to create a functional decryption key as the sum of

1,000 private keys, was 0.119ms.

9 CONCLUSION
Achieving competitive advantage in today’s market is largely a func-

tion of deploying better and more advanced analytics. Analytics’

expansion is driven by systematic, fully automated data collection

and capture of behavioural data from multiple touch points. Com-

panies use this data not only to see the current consumer choices

and behaviours but to shape the future ones. However the systems
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Time Required for each Function
Total Number of Tree

Nodes

Laplacian Noise Key Generation Encryption Tree Generation

(Dataset size = 10000)

Total Setup Time

63 0.16ms 0.28s 0.37s 31ms 0.6811s

127 0.35ms 0.56s 0.75s 60.6ms 1.3709s

255 0.67ms 1.41s 1.43s 137.8ms 2.7087s

511 1.4ms 2.27s 2.36s 247.8ms 4.8792s

1021 2.8ms 4.57s 4.73 483.9ms 9.3511s

2047 5.7ms 9.14s 9.45s 942.9ms 19.5386s

Table 1: Processing time for all Setup functions for the most demanding dataset.

using statistical models to analyze users’ behaviours are incorpo-

rating proxies which are often inexact and unfair. As big data is

here to stay, and statistical models increasingly will be the tools

to rely on, bringing transparency into the game is crucial. Cre-

ating schemes capable of performing high accuracy predictions,

whilst being unable to learn anything about processed data, would

inevitably ensure improved fairness.
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